Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Bisphenol A as a Factor in the Mosaic of Autoimmunity

Author(s): Zora Lazurova*, Ivica Lazurova and Yehuda Shoenfeld

Volume 22, Issue 7, 2022

Published on: 29 June, 2021

Page: [728 - 737] Pages: 10

DOI: 10.2174/1871530321666210516000042

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The population worldwide is largely exposed to bisphenol A (BPA), a commonly used plasticizer, that has a similar molecular structure to endogenous estrogens. Therefore, it is able to influence physiological processes in the human body, taking part in pathophysiology of various endocrinopathies, as well as, cardiovascular, neurological and oncological diseases. BPA has been found to affect the immune system, leading to the development of autoimmunity and allergies, too.

In the last few decades, the prevalence of autoimmune diseases has significantly increased that could be explained by a rising exposure of the population to environmental factors, such as BPA. BPA has been found to play a role in the pathogenesis of systemic autoimmune diseases and also organ-specific autoimmunity (thyroid autoimmunity, diabetes mellitus type 1, myocarditis, inflammatory bowel disease, multiple sclerosis, encephalomyelitis etc), but the results of some studies still remain controversial, so further research is needed.

Keywords: Bisphenol A, environmental estrogen, mosaic of autoimmunity, autoimmune diseases, systemic lupus erythematosus, thyroid autoimmunity.

Graphical Abstract
[1]
Rochester, J.R. Bisphenol A and human health: A review of the literature. Reprod. Toxicol., 2013, 42, 132-155.
[http://dx.doi.org/10.1016/j.reprotox.2013.08.008] [PMID: 23994667]
[2]
Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Ekong, J.; Needham, L.L. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ. Health Perspect., 2005, 113(4), 391-395.
[http://dx.doi.org/10.1289/ehp.7534] [PMID: 15811827]
[3]
Lazúrová, Z.; Lazúrová, I. The environmental estrogen bisphenol A and its effects on the human organism. Vnitr. Lek., 2013, 59(6), 466-471.
[PMID: 23808741]
[4]
Tomza-Marciniak, A.; Stępkowska, P.; Kuba, J.; Pilarczyk, B. Effect of bisphenol A on reproductive processes: A review of in vitro, in vivo and epidemiological studies. J. Appl. Toxicol., 2018, 38(1), 51-80.
[http://dx.doi.org/10.1002/jat.3480] [PMID: 28608465]
[5]
Lazurova, Z.; Tkac, I. Bisphenol A and its effects on cardiovascular system. Int Med, 2015, 15(2), 62-64.
[6]
Seachrist, D.D.; Bonk, K.W.; Ho, S.M.; Prins, G.S.; Soto, A.M.; Keri, R.A. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol., 2016, 59, 167-182.
[http://dx.doi.org/10.1016/j.reprotox.2015.09.006] [PMID: 26493093]
[7]
Jochmanová, I.; Lazúrová, Z.; Rudnay, M.; Bačová, I.; Mareková, M.; Lazúrová, I. Environmental estrogen bisphenol A and autoimmunity. Lupus, 2015, 24(4-5), 392-399.
[http://dx.doi.org/10.1177/0961203314560205] [PMID: 25801882]
[8]
Rubin, B.S. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol., 2011, 127(1-2), 27-34.
[http://dx.doi.org/10.1016/j.jsbmb.2011.05.002] [PMID: 21605673]
[9]
Aljadeff, G.; Longhi, E.; Shoenfeld, Y.; Bisphenol, A. Bisphenol A: A notorious player in the mosaic of autoimmunity. Autoimmunity, 2018, 51(8), 370-377.
[http://dx.doi.org/10.1080/08916934.2018.1551374] [PMID: 30590961]
[10]
Kharrazian, D. The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity. Autoimmune Dis., 2014, 2014, 743616.
[http://dx.doi.org/10.1155/2014/743616] [PMID: 24804084]
[11]
MacKay, H.; Abizaid, A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm. Behav., 2018, 101, 59-67.
[http://dx.doi.org/10.1016/j.yhbeh.2017.11.001] [PMID: 29104009]
[12]
Rogers, J.A.; Metz, L.; Yong, V.W. Review: Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms. Mol. Immunol., 2013, 53(4), 421-430.
[http://dx.doi.org/10.1016/j.molimm.2012.09.013] [PMID: 23123408]
[13]
Guo, H.; Liu, T.; Uemura, Y.; Jiao, S.; Wang, D.; Lin, Z.; Narita, Y.; Suzuki, M.; Hirosawa, N.; Ichihara, Y.; Ishihara, O.; Kikuchi, H.; Sakamoto, Y.; Senju, S.; Zhang, Q.; Ling, F. Bisphenol A in combination with TNF-alpha selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity. Cell. Mol. Immunol., 2010, 7(3), 227-234.
[http://dx.doi.org/10.1038/cmi.2010.14] [PMID: 20383177]
[14]
Yang, M.; Qiu, W.; Chen, B.; Chen, J.; Liu, S.; Wu, M.; Wang, K.J. The in vitro immune modulatory effect of bisphenol A on fish macrophages via estrogen receptor α and nuclear factor-κB signaling. Environ. Sci. Technol., 2015, 49(3), 1888-1895.
[http://dx.doi.org/10.1021/es505163v] [PMID: 25565130]
[15]
Huang, F.M.; Chang, Y.C.; Lee, S.S.; Ho, Y.C.; Yang, M.L.; Lin, H.W.; Kuan, Y.H. Bisphenol A exhibits cytotoxic or genotoxic potential via oxidative stress-associated mitochondrial apoptotic pathway in murine macrophages. Food Chem. Toxicol., 2018, 122, 215-224.
[http://dx.doi.org/10.1016/j.fct.2018.09.078] [PMID: 30312649]
[16]
Huang, F.M.; Chang, Y.C.; Lee, S.S.; Yang, M.L.; Kuan, Y.H. Expression of pro-inflammatory cytokines and mediators induced by Bisphenol A via ERK-NFκB and JAK1/2-STAT3 pathways in macrophages. Environ. Toxicol., 2019, 34(4), 486-494.
[http://dx.doi.org/10.1002/tox.22702] [PMID: 30609183]
[17]
Yazdani, R.; Sharifi, M.; Shirvan, A.S.; Azizi, G.; Ganjalikhani-Hakemi, M. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update). Cell. Immunol., 2015, 298(1-2), 66-76.
[http://dx.doi.org/10.1016/j.cellimm.2015.09.006] [PMID: 26429626]
[18]
Malaisé, Y.; Ménard, S.; Cartier, C.; Lencina, C.; Sommer, C.; Gaultier, E.; Houdeau, E.; Guzylack-Piriou, L. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice. Arch. Toxicol., 2018, 92(1), 347-358.
[http://dx.doi.org/10.1007/s00204-017-2038-2] [PMID: 28733891]
[19]
Tong, S.; Yang, S.; Li, T.; Gao, R.; Hu, J.; Luo, T.; Qing, H.; Zhen, Q.; Hu, R.; Li, X.; Yang, Y.; Peng, C.; Li, Q. Role of neutrophil extracellular traps in chronic kidney injury induced by bisphenol-A. J. Endocrinol., 2019, 241(2), 125-134.
[http://dx.doi.org/10.1530/JOE-18-0608] [PMID: 30798321]
[20]
Frangou, E.; Chrysanthopoulou, A.; Mitsios, A.; Kambas, K.; Arelaki, S.; Angelidou, I.; Arampatzioglou, A.; Gakiopoulou, H.; Bertsias, G.K.; Verginis, P.; Ritis, K.; Boumpas, D.T. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann. Rheum. Dis., 2019, 78(2), 238-248.
[http://dx.doi.org/10.1136/annrheumdis-2018-213181] [PMID: 30563869]
[21]
Lee, K.H.; Kronbichler, A.; Park, D.D.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; Yun, B.H.; Han, Y.; Lee, D.; Lee, S.Y.; Yoo, B.H.; Lee, K.H.; Kim, T.L.; Kim, H.; Shim, J.S.; Nam, W.; So, H.; Choi, S.; Lee, S.; Shin, J.I. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun. Rev., 2017, 16(11), 1160-1173.
[http://dx.doi.org/10.1016/j.autrev.2017.09.012] [PMID: 28899799]
[22]
Moudgil, K.D.; Choubey, D. Cytokines in autoimmunity: Role in induction, regulation, and treatment. J. Interferon Cytokine Res., 2011, 31(10), 695-703.
[http://dx.doi.org/10.1089/jir.2011.0065] [PMID: 21942420]
[23]
Yan, H.; Takamoto, M.; Sugane, K. Exposure to Bisphenol A prenatally or in adulthood promotes T(H)2 cytokine production associated with reduction of CD4CD25 regulatory T cells. Environ. Health Perspect., 2008, 116(4), 514-519.
[http://dx.doi.org/10.1289/ehp.10829] [PMID: 18414636]
[24]
Goto, M.; Takano-Ishikawa, Y.; Ono, H.; Yoshida, M.; Yamaki, K.; Shinmoto, H. Orally administered bisphenol A disturbed antigen specific immunoresponses in the naïve condition. Biosci. Biotechnol. Biochem., 2007, 71(9), 2136-2143.
[http://dx.doi.org/10.1271/bbb.70004] [PMID: 17827700]
[25]
Ellis, J.S.; Hong, S.H.; Zaghouani, H.; Braley-Mullen, H. Reduced effectiveness of CD4+Foxp3+ regulatory T cells in CD28-deficient NOD.H-2h4 mice leads to increased severity of spontaneous autoimmune thyroiditis. J. Immunol., 2013, 191(10), 4940-4949.
[http://dx.doi.org/10.4049/jimmunol.1301253] [PMID: 24098053]
[26]
Yoshino, S.; Yamaki, K.; Li, X.; Sai, T.; Yanagisawa, R.; Takano, H.; Taneda, S.; Hayashi, H.; Mori, Y. Prenatal exposure to bisphenol A up-regulates immune responses, including T helper 1 and T helper 2 responses, in mice. Immunology, 2004, 112(3), 489-495.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01900.x] [PMID: 15196218]
[27]
Liu, Y.; Mei, C.; Liu, H.; Wang, H.; Zeng, G.; Lin, J.; Xu, M. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochem. Biophys. Res. Commun., 2014, 451(4), 592-598.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.031] [PMID: 25128825]
[28]
Luo, S.; Li, Y.; Li, Y.; Zhu, Q.; Jiang, J.; Wu, C.; Shen, T. Gestational and lactational exposure to low-dose bisphenol A increases Th17 cells in mice offspring. Environ. Toxicol. Pharmacol., 2016, 47, 149-158.
[http://dx.doi.org/10.1016/j.etap.2016.09.017] [PMID: 27693988]
[29]
Wang, G.; Li, Y.; Li, Y.; Zhang, J.; Zhou, C.; Wu, C.; Zhu, Q.; Shen, T. Maternal vitamin D supplementation inhibits bisphenol A-induced proliferation of Th17 cells in adult offspring. Food Chem. Toxicol., 2020, 144, 111604.
[http://dx.doi.org/10.1016/j.fct.2020.111604] [PMID: 32702508]
[30]
Kamali, A.N.; Noorbakhsh, S.M.; Hamedifar, H.; Jadidi-Niaragh, F.; Yazdani, R.; Bautista, J.M.; Azizi, G. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol. Immunol., 2019, 105, 107-115.
[http://dx.doi.org/10.1016/j.molimm.2018.11.015] [PMID: 30502718]
[31]
Lee, M.H.; Chung, S.W.; Kang, B.Y.; Park, J.; Lee, C.H.; Hwang, S.Y.; Kim, T.S. Enhanced interleukin-4 production in CD4+ T cells and elevated immunoglobulin E levels in antigen-primed mice by bisphenol A and nonylphenol, endocrine disruptors: Involvement of nuclear factor-AT and Ca2+. Immunology, 2003, 109(1), 76-86.
[http://dx.doi.org/10.1046/j.1365-2567.2003.01631.x] [PMID: 12709020]
[32]
Yurino, H.; Ishikawa, S.; Sato, T.; Akadegawa, K.; Ito, T.; Ueha, S.; Inadera, H.; Matsushima, K. Endocrine disruptors (environmental estrogens) enhance autoantibody production by B1 cells. Toxicol. Sci., 2004, 81(1), 139-147.
[http://dx.doi.org/10.1093/toxsci/kfh179] [PMID: 15166399]
[33]
Hiroi, T.; Okada, K.; Imaoka, S.; Osada, M.; Funae, Y. Bisphenol A binds to protein disulfide isomerase and inhibits its enzymatic and hormone-binding activities. Endocrinology, 2006, 147(6), 2773-2780.
[http://dx.doi.org/10.1210/en.2005-1235] [PMID: 16543366]
[34]
Andreu, C.I.; Woehlbier, U.; Torres, M.; Hetz, C. Protein disulfide isomerases in neurodegeneration: From disease mechanisms to biomedical applications. FEBS Lett., 2012, 586(18), 2826-2834.
[http://dx.doi.org/10.1016/j.febslet.2012.07.023] [PMID: 22828277]
[35]
Kharrazian, D.; Vojdani, A. Correlation between antibodies to bisphenol A, its target enzyme protein disulfide isomerase and antibodies to neuron-specific antigens. J. Appl. Toxicol., 2017, 37(4), 479-484.
[http://dx.doi.org/10.1002/jat.3383] [PMID: 27610592]
[36]
Vojdani, A.; Kharrazian, D.; Mukherjee, P.S. Elevated levels of antibodies against xenobiotics in a subgroup of healthy subjects. J. Appl. Toxicol., 2015, 35(4), 383-397.
[http://dx.doi.org/10.1002/jat.3031] [PMID: 25042713]
[37]
Molodecky, N.A.; Kaplan, G.G. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol. (N. Y.), 2010, 6(5), 339-346.
[PMID: 20567592]
[38]
Legaki, E.; Gazouli, M. Influence of environmental factors in the development of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther., 2016, 7(1), 112-125.
[http://dx.doi.org/10.4292/wjgpt.v7.i1.112] [PMID: 26855817]
[39]
Xu, J.; Huang, G.; Nagy, T.; Guo, T.L.; Bisphenol, A. Bisphenol A alteration of type 1 diabetes in non-obese diabetic (NOD) female mice is dependent on window of exposure. Arch. Toxicol., 2019, 93(4), 1083-1093.
[http://dx.doi.org/10.1007/s00204-019-02419-4] [PMID: 30826855]
[40]
Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes, 2016, 7(6), 471-485.
[http://dx.doi.org/10.1080/19490976.2016.1234657] [PMID: 27624382]
[41]
Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab., 2002, 87(11), 5185-5190.
[http://dx.doi.org/10.1210/jc.2002-020209] [PMID: 12414890]
[42]
Davies, J.M. Molecular mimicry: Can epitope mimicry induce autoimmune disease? Immunol. Cell Biol., 1997, 75(2), 113-126.
[http://dx.doi.org/10.1038/icb.1997.16] [PMID: 9107563]
[43]
Steinmetz, R.; Brown, N.G.; Allen, D.L.; Bigsby, R.M.; Ben-Jonathan, N. The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology, 1997, 138(5), 1780-1786.
[http://dx.doi.org/10.1210/endo.138.5.5132] [PMID: 9112368]
[44]
Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and Autoimmunity. Front. Immunol., 2018, 9, 73.
[http://dx.doi.org/10.3389/fimmu.2018.00073] [PMID: 29483903]
[45]
Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and autoimmunity: The hormone as an inflammatory cytokine. Best Pract. Res. Clin. Endocrinol. Metab., 2019, 33(6), 101324.
[http://dx.doi.org/10.1016/j.beem.2019.101324] [PMID: 31564625]
[46]
Doherty, D.G. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J. Autoimmun., 2016, 66, 60-75.
[http://dx.doi.org/10.1016/j.jaut.2015.08.020] [PMID: 26358406]
[47]
Namazi, M.R. Cytochrome-P450 enzymes and autoimmunity: Expansion of the relationship and introduction of free radicals as the link. J. Autoimmune Dis., 2009, 6, 4-6.
[http://dx.doi.org/10.1186/1740-2557-6-4] [PMID: 19555503]
[48]
Gassman, N.R. Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ. Mol. Mutagen., 2017, 58(2), 60-71.
[http://dx.doi.org/10.1002/em.22072] [PMID: 28181297]
[49]
Xu, J.; Huang, G; Guo, T. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases. Toxics, 2016, 26, 4(4), 23.
[http://dx.doi.org/10.3390/toxics4040023]
[50]
Veiga-Lopez, A.; Luense, L.J.; Christenson, L.K.; Padmanabhan, V. Developmental programming: Gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology, 2013, 154(5), 1873-1884.
[http://dx.doi.org/10.1210/en.2012-2129] [PMID: 23525218]
[51]
Singh, S.; Li, S.S. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int. J. Mol. Sci., 2012, 13(8), 10143-10153.
[http://dx.doi.org/10.3390/ijms130810143] [PMID: 22949852]
[52]
Casati, L.; Sendra, R.; Sibilia, V.; Celotti, F. Endocrine disrupters: The new players able to affect the epigenome. Front. Cell Dev. Biol., 2015, 3, 37.
[http://dx.doi.org/10.3389/fcell.2015.00037] [PMID: 26151052]
[53]
Alhomaidan, H.T.; Rasheed, N.; Almatrafi, S.; Al-Rashdi, F.H.; Rasheed, Z. Bisphenol A modified DNA: A possible immunogenic stimulus for anti-DNA autoantibodies in systemic lupus erythematosus. Autoimmunity, 2019, 52(7-8), 272-280.
[http://dx.doi.org/10.1080/08916934.2019.1683545] [PMID: 31656085]
[54]
Dong, Y.; Zhang, Z.; Liu, H.; Jia, L.; Qin, M.; Wang, X. Exacerbating lupus nephritis following BPA exposure is associated with abnormal autophagy in MRL/lpr mice. Am. J. Transl. Res., 2020, 12(2) , eCollection.
[55]
Sugiura-Ogasawara, M.; Ozaki, Y.; Sonta, S.; Makino, T.; Suzumori, K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum. Reprod., 2005, 20(8), 2325-2329.
[http://dx.doi.org/10.1093/humrep/deh888] [PMID: 15947000]
[56]
Wang, J.; She, C.; Li, Z.; Tang, N.; Xu, L.; Liu, Z.; Liu, B. In vitro impact of bisphenol A on maturation and function of monocyte-derived dendritic cells in patients with primary Sjögren’s syndrome. Immunopharmacol. Immunotoxicol., 2020, 42(1), 28-36.
[http://dx.doi.org/10.1080/08923973.2019.1706554] [PMID: 31876196]
[57]
Palioura, E.; Diamanti-Kandarakis, E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev. Endocr. Metab. Disord., 2015, 16(4), 365-371.
[http://dx.doi.org/10.1007/s11154-016-9326-7] [PMID: 26825073]
[58]
Bonefeld-Jørgensen, EC.; Long, M.; Hofmeister, MV.; Vinggaard, AM. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: New data and a brief review. Environ Health Perspect, 2007, 115(Suppl 1), 69-76.
[59]
Kechagias, KS.; Semertzidou, A.; Athanasiou, A.; Paraskevaidi, M.; Kyrgiou, M. Bisphenol-A and polycystic ovary syndrome: A review of the literature. Rev. Environ. Health, 2020, 35(4), 323-331.
[http://dx.doi.org/10.1515/reveh-2020-0032]
[60]
Pivonello, C.; Muscogiuri, G.; Nardone, A.; Garifalos, F.; Provvisiero, D.P.; Verde, N.; de Angelis, C.; Conforti, A.; Piscopo, M.; Auriemma, R.S.; Colao, A.; Pivonello, R. Bisphenol A: An emerging threat to female fertility. Reprod. Biol. Endocrinol., 2020, 18(1), 22.
[http://dx.doi.org/10.1186/s12958-019-0558-8] [PMID: 32171313]
[61]
Fernandez, M.O.; Bourguignon, N.S.; Arocena, P.; Rosa, M.; Libertun, C.; Lux-Lantos, V. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats. Toxicol. Lett., 2018, 285, 81-86.
[http://dx.doi.org/10.1016/j.toxlet.2017.12.029] [PMID: 29305326]
[62]
Chianese, R.; Viggiano, A.; Urbanek, K.; Cappetta, D.; Troisi, J.; Scafuro, M.; Guida, M.; Esposito, G.; Ciuffreda, L.P.; Rossi, F.; Berrino, L.; Fasano, S.; Pierantoni, R.; De Angelis, A.; Meccariello, R. Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Sci. Rep., 2018, 8(1), 2961.
[http://dx.doi.org/10.1038/s41598-018-21076-8] [PMID: 29440646]
[63]
Zoeller, R.T.; Bansal, R.; Parris, C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology, 2005, 146(2), 607-612.
[http://dx.doi.org/10.1210/en.2004-1018] [PMID: 15498886]
[64]
Kim, M.J.; Park, Y.J. Bisphenols and Thyroid Hormone. Endocrinol. Metab. (Seoul), 2019, 34(4), 340-348.
[http://dx.doi.org/10.3803/EnM.2019.34.4.340] [PMID: 31884733]
[65]
Meeker, J.D.; Ferguson, K.K. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ. Health Perspect., 2011, 119(10), 1396-1402.
[http://dx.doi.org/10.1289/ehp.1103582] [PMID: 21749963]
[66]
Sriphrapradang, C.; Chailurkit, L.O.; Aekplakorn, W.; Ongphiphadhanakul, B. Association between bisphenol A and abnormal free thyroxine level in men. Endocrine, 2013, 44(2), 441-447.
[http://dx.doi.org/10.1007/s12020-013-9889-y] [PMID: 23377699]
[67]
Wang, T.; Lu, J.; Xu, M.; Xu, Y.; Li, M.; Liu, Y.; Tian, X.; Chen, Y.; Dai, M.; Wang, W.; Lai, S.; Bi, Y.; Ning, G. Urinary bisphenol a concentration and thyroid function in Chinese adults. Epidemiology, 2013, 24(2), 295-302.
[http://dx.doi.org/10.1097/EDE.0b013e318280e02f] [PMID: 23337242]
[68]
Park, C.; Choi, W.; Hwang, M.; Lee, Y.; Kim, S.; Yu, S.; Lee, I.; Paek, D.; Choi, K. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population - Korean National Environmental Health Survey (KoNEHS) 2012-2014. Sci. Total Environ., 2017, 584-585, 950-957.
[http://dx.doi.org/10.1016/j.scitotenv.2017.01.144] [PMID: 28153396]
[69]
Zhou, Z.; Zhang, J.; Jiang, F.; Xie, Y.; Zhang, X.; Jiang, L. Higher urinary bisphenol A concentration and excessive iodine intake are associated with nodular goiter and papillary thyroid carcinoma. Biosci. Rep., 2017, 37(4), 1-10.
[http://dx.doi.org/10.1042/BSR20170678] [PMID: 28684549]
[70]
Li, L.; Ying, Y.; Zhang, C.; Wang, W.; Li, Y.; Feng, Y.; Liang, J.; Song, H.; Wang, Y. Bisphenol A exposure and risk of thyroid nodules in Chinese women: A case-control study. Environ. Int., 2019, 126, 321-328.
[http://dx.doi.org/10.1016/j.envint.2019.02.026] [PMID: 30825751]
[71]
Wang, X.; Tang, N.; Nakayama, S.F.; Fan, P.; Liu, Z.; Zhang, J.; Ouyang, F. Maternal urinary bisphenol A concentration and thyroid hormone levels of Chinese mothers and newborns by maternal body mass index. Environ. Sci. Pollut. Res. Int., 2020, 27(10), 10939-10949.
[http://dx.doi.org/10.1007/s11356-020-07705-8] [PMID: 31953761]
[72]
Chailurkit, L.O.; Aekplakorn, W.; Ongphiphadhanakul, B. The Association of Serum Bisphenol A with Thyroid Autoimmunity. Int. J. Environ. Res. Public Health, 2016, 13(11), 1153.
[http://dx.doi.org/10.3390/ijerph13111153] [PMID: 27869686]
[73]
Maserejian, N. Possible association between dental sealants and urinary bisphenol A levels in children warrants additional biomonitoring and safety research. J. Evid. Based Dent. Pract., 2014, 14(4), 200-202.
[http://dx.doi.org/10.1016/j.jebdp.2014.10.009] [PMID: 25488874]
[74]
Vabre, P.; Gatimel, N.; Moreau, J.; Gayrard, V.; Picard-Hagen, N.; Parinaud, J.; Leandri, R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: A narrative review of animal and human data. Environ. Health, 2017, 16(1), 37.
[http://dx.doi.org/10.1186/s12940-017-0242-4] [PMID: 28388912]
[75]
Patel, S.; Zhou, C.; Rattan, S.; Flaws, J.A. Effects of endocrine-disrupting chemicals on the ovary. Biol. Reprod., 2015, 93(1), 20.
[http://dx.doi.org/10.1095/biolreprod.115.130336] [PMID: 26063868]
[76]
Howard, S.G. Exposure to environmental chemicals and type 1 diabetes: An update. J. Epidemiol. Community Health, 2019, 73(6), 483-488.
[http://dx.doi.org/10.1136/jech-2018-210627] [PMID: 30862699]
[77]
Bodin, J.; Stene, L.C.; Nygaard, U.C. Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BioMed Res. Int., 2015, 2015, 208947.
[http://dx.doi.org/10.1155/2015/208947] [PMID: 25883945]
[78]
Bodin, J.; Kocbach Bølling, A.; Wendt, A.; Eliasson, L.; Becher, R.; Kuper, F.; Løvik, M.; Nygaard, U.C. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice. Toxicol. Rep., 2015, 2, 99-110.
[http://dx.doi.org/10.1016/j.toxrep.2015.02.010] [PMID: 28962342]
[79]
Predieri, B.; Bruzzi, P.; Bigi, E.; Ciancia, S.; Madeo, S.F.; Lucaccioni, L.; Iughetti, L. Endocrine Disrupting Chemicals and Type 1 Diabetes. Int. J. Mol. Sci., 2020, 21(8), 2937.
[http://dx.doi.org/10.3390/ijms21082937] [PMID: 32331412]
[80]
Ahn, C.; Kang, H.S.; Lee, J.H.; Hong, E.J.; Jung, E.M.; Yoo, Y.M.; Jeung, E.B. Bisphenol A and octylphenol exacerbate type 1 diabetes mellitus by disrupting calcium homeostasis in mouse pancreas. Toxicol. Lett., 2018, 295, 162-172.
[http://dx.doi.org/10.1016/j.toxlet.2018.06.1071] [PMID: 29935216]
[81]
İnce, T.; Balcı, A.; Yalçın, S.S.; Özkemahlı, G.; Erkekoglu, P.; Kocer-Gumusel, B.; Yurdakök, K. Urinary bisphenol-A levels in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab., 2018, 31(8), 829-836.
[http://dx.doi.org/10.1515/jpem-2018-0141] [PMID: 29975667]
[82]
Yan, S.; Song, W.; Chen, Y.; Hong, K.; Rubinstein, J.; Wang, H.S. Low-dose bisphenol A and estrogen increase ventricular arrhythmias following ischemia-reperfusion in female rat hearts. Food Chem. Toxicol., 2013, 56, 75-80.
[http://dx.doi.org/10.1016/j.fct.2013.02.011] [PMID: 23429042]
[83]
Melzer, D.; Gates, P.; Osborne, N.J.; Henley, W.E.; Cipelli, R.; Young, A.; Money, C.; McCormack, P.; Schofield, P.; Mosedale, D.; Grainger, D.; Galloway, T.S. Urinary bisphenol a concentration and angiography-defined coronary artery stenosis. PLoS One, 2012, 7(8), e43378.
[http://dx.doi.org/10.1371/journal.pone.0043378] [PMID: 22916252]
[84]
Gao, X.; Wang, H.S. Impact of bisphenol a on the cardiovascular system - epidemiological and experimental evidence and molecular mechanisms. Int. J. Environ. Res. Public Health, 2014, 11(8), 8399-8413.
[http://dx.doi.org/10.3390/ijerph110808399] [PMID: 25153468]
[85]
Bruno, K.A.; Mathews, J.E.; Yang, A.L.; Frisancho, J.A.; Scott, A.J.; Greyner, H.D.; Molina, F.A.; Greenaway, M.S.; Cooper, G.M.; Bucek, A.; Morales-Lara, A.C.; Hill, A.R.; Mease, A.A.; Di Florio, D.N.; Sousou, J.M.; Coronado, A.C.; Stafford, A.R.; Fairweather, D. BPA Alters Estrogen Receptor Expression in the Heart After Viral Infection Activating Cardiac Mast Cells and T Cells Leading to Perimyocarditis and Fibrosis. Front. Endocrinol. (Lausanne), 2019, 10(598), 598.
[http://dx.doi.org/10.3389/fendo.2019.00598] [PMID: 31551929]
[86]
Koenig, A.; Buskiewicz, I.; Huber, S.A. Age-associated changes in estrogen receptor ratios correlate with increased female susceptibility to coxackievirus B3-induced myocarditis. Front. Immunol., 2017, 8, 1585.
[http://dx.doi.org/10.3389/fimmu.2017.01585] [PMID: 29201031]
[87]
DeLuca, J.A.A.; Allred, K.F.; Menon, R.; Riordan, R.; Weeks, B.R.; Jayaraman, A.; Allred, C.D. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp. Biol. Med. (Maywood), 2018, 243(10), 864-875.
[http://dx.doi.org/10.1177/1535370218782139] [PMID: 29874946]
[88]
Rogers, J.A.; Mishra, M.K.; Hahn, J.; Greene, C.J.; Yates, R.M.; Metz, L.M.; Yong, V.W. Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2017, 114(19), 4999-5004.
[http://dx.doi.org/10.1073/pnas.1620774114] [PMID: 28439012]
[89]
Krementsov, D.N.; Katchy, A.; Case, L.K.; Carr, F.E.; Davis, B.; Williams, C.; Teuscher, C.; Teuscher, C. Studies in experimental autoimmune encephalomyelitis do not support developmental bisphenol a exposure as an environmental factor in increasing multiple sclerosis risk. Toxicol. Sci., 2013, 135(1), 91-102.
[http://dx.doi.org/10.1093/toxsci/kft141] [PMID: 23798566]
[90]
Kharrazian, D.; Herbert, M.; Vojdani, A. The associations between immunological reactivity to the haptenation of unconjugated bisphenol A to albumin and protein disulfide isomerase with alpha-synuclein antibodies. Toxics, 2019, 7(2), 26.
[http://dx.doi.org/10.3390/toxics7020026] [PMID: 31064082]
[91]
Watad, A.; Sharif, K.; Shoenfeld, Y. The ASIA syndrome: Basic concepts. Mediterr J Rheumatol, 2017, 28(2), 64-69.
[http://dx.doi.org/10.31138/mjr.28.2.64] [PMID: 32185259]
[92]
Watad, A.; David, P.; Brown, S.; Shoenfeld, Y. Autoimmune/Inflammatory Syndrome Induced by Adjuvants and Thyroid Autoimmunity. Front. Endocrinol. (Lausanne), 2017, 7, 150.
[http://dx.doi.org/10.3389/fendo.2016.00150] [PMID: 28167927]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy