Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

From Anti-infective Agents to Cancer Therapy: A Drug Repositioning Study Revealed a New Use for Nitrofuran Derivatives

Author(s): Gabriella Ortore*, Giulio Poli, Adriano Martinelli, Tiziano Tuccinardi, Flavio Rizzolio and Isabella Caligiuri

Volume 18, Issue 2, 2022

Published on: 29 July, 2021

Page: [249 - 259] Pages: 11

DOI: 10.2174/1573406417666210511001241

Price: $65

conference banner
Abstract

Background: The progression of ovarian cancer seems to be related to HDAC1, HDAC3, and HDAC6 activity. A possible strategy for improving therapies for treating ovarian carcinoma, minimizing the preclinical screenings, is the repurposing of already approved pharmaceutical products as inhibitors of these enzymes.

Objective: This work was aimed to implement a computational strategy for identifying new HDAC inhibitors for ovarian carcinoma treatment among approved drugs.

Method: The CHEMBL database was used to construct training, test, and decoys sets for performing and validating HDAC1, HDAC3 and HDAC6 3D-QSAR models obtained by using the FLAP program. Docking and MD simulations were used in combination with the generated models to identify novel potential HDAC inhibitors. Cell viability assays and Western blot analyses were performed on normal and cancer cells for a direct evaluation of the anti-proliferative activity and an in vitro estimation of HDAC inhibition of the compounds selected through in silico screening.

Result: The best quantitative prediction was obtained for the HDAC6 3D-QSAR model. The screening of approved drugs highlighted a new potential use as HDAC inhibitors for some compounds, in particular nitrofuran derivatives, usually known for their antibacterial activity and frequently used as antimicrobial adjuvant therapy in cancer treatment. Experimental evaluation of these derivatives highlighted a significant antiproliferative activity against cancer cell lines overexpressing HDAC6, and an increase in acetylated alpha-tubulin levels.

Conclusion: Experimental results support the hypothesis of potential direct interaction of nitrofuran derivatives with HDACs. In addition to the possible repurposing of already approved drugs, this work suggests the nitro group as a new zinc-binding group, able to interact with the catalytic zinc ion of HDACs.

Keywords: 3D-QSAR, docking, drug repurposing, HDAC inhibitors, nitrofurans, ovarian cancer, virtual screening.

Graphical Abstract
[1]
Wiech, N.L.; Fisher, J.F.; Helquist, P.; Wiest, O. Inhibition of histone deacetylases: a pharmacological approach to the treatment of non-cancer disorders. Curr. Top. Med. Chem., 2009, 9(3), 257-271.
[http://dx.doi.org/10.2174/156802609788085241] [PMID: 19355990]
[2]
Shukla, S.; Tekwani, B.L. Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol., 2020, 11, 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[3]
Shakespear, M.R.; Halili, M.A.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol., 2011, 32(7), 335-343.
[http://dx.doi.org/10.1016/j.it.2011.04.001] [PMID: 21570914]
[4]
Divsalar, D.N.; Simoben, C.V.; Schonhofer, C.; Richard, K.; Sippl, W.; Ntie-Kang, F.; Tietjen, I. Novel histone deacetylase inhibitors and HIV-1 latency-reversing agents identified by large-scale virtual screening. Front. Pharmacol., 2020, 11, 905.
[http://dx.doi.org/10.3389/fphar.2020.00905] [PMID: 32625097]
[5]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7)E1414
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[6]
Poli, G.; Di Fabio, R.; Ferrante, L.; Summa, V.; Botta, M. Largazole analogues as histone deacetylase inhibitors and anticancer agents: an overview of structure-activity relationships. ChemMedChem, 2017, 12(23), 1917-1926.
[http://dx.doi.org/10.1002/cmdc.201700563] [PMID: 29117473]
[7]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[8]
Altucci, L. A key HDAC6 dependency of ARID1A-mutated ovarian cancer. Nat. Cell Biol., 2017, 19(8), 889-890.
[http://dx.doi.org/10.1038/ncb3588] [PMID: 28752851]
[9]
National Cancer Institute.. Vorinostat in Treating Patients With Recurrent or Persistent Ovarian Epithelial or Primary Peritoneal Cavity Cancer.ClinicalTrials.gov, 2000, Available from:, https://clinicaltrials.gov/ct2/show/NCT00132067
[10]
National Cancer Institute. Belinostat in Treating Patients With Advanced Ovarian Epithelial Cancer, Primary Peritoneal Cancer, or Fallopian Tube Cancer or Ovarian Low Malignant Potential Tumors. ClinicalTrials.gov, 2000, Available from:. https://clinicaltrials.gov/ct2/show/NCT00301756
[11]
Jones, P.; Altamura, S.; De Francesco, R.; Gallinari, P.; Lahm, A.; Neddermann, P.; Rowley, M.; Serafini, S.; Steinkühler, C. Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg. Med. Chem. Lett., 2008, 18(6), 1814-1819.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.025] [PMID: 18308563]
[12]
Mehndiratta, S.; Wang, R-S.; Huang, H-L.; Su, C-J.; Hsu, C-M.; Wu, Y-W.; Pan, S-L.; Liou, J-P. 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo. Eur. J. Med. Chem., 2017, 134, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.079] [PMID: 28395150]
[13]
Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J. Chem. Inf. Model., 2007, 47(2), 279-294.
[http://dx.doi.org/10.1021/ci600253e] [PMID: 17381166]
[14]
Poli, G.; Tuccinardi, T.; Rizzolio, F.; Caligiuri, I.; Botta, L.; Granchi, C.; Ortore, G.; Minutolo, F.; Schenone, S.; Martinelli, A. Identification of new Fyn kinase inhibitors using a FLAP-based approach. J. Chem. Inf. Model., 2013, 53(10), 2538-2547.
[http://dx.doi.org/10.1021/ci4002553] [PMID: 24001328]
[15]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[16]
Gupta, N.; Pandya, P.; Verma, S. Computational Predictions for Multi-Target Drug Design. Multi-Target Drug Design Using Chem-Bioinformatic Approaches. Methods in Pharmacology and Toxicology; Humana Press: New York, NY, 2018, pp. 27-50.
[http://dx.doi.org/10.1007/7653_2018_26]
[17]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[18]
Bottomley, M.J.; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C.; Gallinari, P.; Carfí, A. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem., 2008, 283(39), 26694-26704.
[http://dx.doi.org/10.1074/jbc.M803514200] [PMID: 18614528]
[19]
Bürli, R.W.; Luckhurst, C.A.; Aziz, O.; Matthews, K.L.; Yates, D.; Lyons, K.A.; Beconi, M.; McAllister, G.; Breccia, P.; Stott, A.J.; Penrose, S.D.; Wall, M.; Lamers, M.; Leonard, P.; Müller, I.; Richardson, C.M.; Jarvis, R.; Stones, L.; Hughes, S.; Wishart, G.; Haughan, A.F.; O’Connell, C.; Mead, T.; McNeil, H.; Vann, J.; Mangette, J.; Maillard, M.; Beaumont, V.; Munoz-Sanjuan, I.; Dominguez, C. Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J. Med. Chem., 2013, 56(24), 9934-9954.
[http://dx.doi.org/10.1021/jm4011884] [PMID: 24261862]
[20]
Luckhurst, C.A.; Breccia, P.; Stott, A.J.; Aziz, O.; Birch, H.L.; Bürli, R.W.; Hughes, S.J.; Jarvis, R.E.; Lamers, M.; Leonard, P.M.; Matthews, K.L.; McAllister, G.; Pollack, S.; Saville-Stones, E.; Wishart, G.; Yates, D.; Dominguez, C. Potent, selective, and CNS-penetrant tetrasubstituted cyclopropane class IIa histone deacetylase (HDAC) inhibitors. ACS Med. Chem. Lett., 2015, 7(1), 34-39.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00302] [PMID: 26819662]
[21]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B-C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334.
[http://dx.doi.org/10.1016/j.str.2004.04.012] [PMID: 15242608]
[22]
Dowling, D.P.; Gantt, S.L.; Gattis, S.G.; Fierke, C.A.; Christianson, D.W. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry, 2008, 47(51), 13554-13563.
[http://dx.doi.org/10.1021/bi801610c] [PMID: 19053282]
[23]
Watson, P.J.; Millard, C.J.; Riley, A.M.; Robertson, N.S.; Wright, L.C.; Godage, H.Y.; Cowley, S.M.; Jamieson, A.G.; Potter, B.V.L.; Schwabe, J.W.R. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun., 2016, 7, 11262.
[http://dx.doi.org/10.1038/ncomms11262] [PMID: 27109927]
[24]
Lauffer, B.E.L.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943.
[http://dx.doi.org/10.1074/jbc.M113.490706] [PMID: 23897821]
[25]
Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol., 2016, 12(9), 741-747.
[http://dx.doi.org/10.1038/nchembio.2134] [PMID: 27454933]
[26]
Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N.P.; Lewis, T.A.; Maglathin, R.L.; McLean, T.H.; Bochkarev, A.; Plotnikov, A.N.; Vedadi, M.; Arrowsmith, C.H. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem., 2008, 283(17), 11355-11363.
[http://dx.doi.org/10.1074/jbc.M707362200] [PMID: 18285338]
[27]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[28]
Schrödinger Inc; Macromodel: Portland, OR, 2009.
[29]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W.R. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340.
[http://dx.doi.org/10.1038/nature10728] [PMID: 22230954]
[30]
OpenEye Scientific Software I. OEChem; Santa Fe, NM, USA,. , 2010.
[31]
Kastenholz, M.A.; Pastor, M.; Cruciani, G.; Haaksma, E.E.J.; Fox, T. GRID/CPCA: a new computational tool to design selective ligands. J. Med. Chem., 2000, 43(16), 3033-3044.
[http://dx.doi.org/10.1021/jm000934y] [PMID: 10956211]
[32]
Cross, S.; Baroni, M.; Goracci, L.; Cruciani, G. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation. J. Chem. Inf. Model., 2012, 52(10), 2587-2598.
[http://dx.doi.org/10.1021/ci300153d] [PMID: 22970894]
[33]
Ragno, R.; Simeoni, S.; Valente, S.; Massa, S.; Mai, A. 3-D QSAR studies on histone deacetylase inhibitors. A GOLPE/GRID approach on different series of compounds. J. Chem. Inf. Model., 2006, 46(3), 1420-1430.
[http://dx.doi.org/10.1021/ci050556b] [PMID: 16711762]
[34]
Case, D.A.; Berryman, J.T.; Betz, R.M.; Cerutti, D.S.; Cheatham, T.E.I.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T.S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K.M.; Paesani, F.; Roe, D.R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C.L.; Smith, W.; Swails, J.; Walker, R.C.; Wang, J.; Wolf, R.M.; Wu, X.; Kollman, P.A. AMBER, Version 14; University of California: San Francisco, CA, 2015.
[35]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[36]
Granchi, C.; Rizzolio, F.; Palazzolo, S.; Carmignani, S.; Macchia, M.; Saccomanni, G.; Manera, C.; Martinelli, A.; Minutolo, F.; Tuccinardi, T. Structural optimization of 4-chlorobenzoylpiperidine derivatives for the development of potent, reversible, and selective monoacylglycerol lipase (MAGL) inhibitors. J. Med. Chem., 2016, 59(22), 10299-10314.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01459] [PMID: 27809504]
[37]
Roberti, A.; Rizzolio, F.; Lucchetti, C.; de Leval, L.; Giordano, A. Ubiquitin-mediated protein degradation and methylation-induced gene silencing cooperate in the inactivation of the INK4/ARF locus in Burkitt lymphoma cell lines. Cell Cycle, 2011, 10(1), 127-134.
[http://dx.doi.org/10.4161/cc.10.1.14446] [PMID: 21200153]
[38]
Green, M.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 5th ed; Cold Spring Harbor Laboratory Press: NY, 2012.
[39]
Tuccinardi, T.; Poli, G.; Romboli, V.; Giordano, A.; Martinelli, A. Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. J. Chem. Inf. Model., 2014, 54(10), 2980-2986.
[http://dx.doi.org/10.1021/ci500424n] [PMID: 25211541]
[40]
Tuccinardi, T.; Poli, G.; Dell’Agnello, M.; Granchi, C.; Minutolo, F.; Martinelli, A. Receptor-based virtual screening evaluation for the identification of estrogen receptor β ligands. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 662-670.
[http://dx.doi.org/10.3109/14756366.2014.959946] [PMID: 25265323]
[41]
Ortore, G.; Di Colo, F.; Martinelli, A. Docking of hydroxamic acids into HDAC1 and HDAC8: a rationalization of activity trends and selectivities. J. Chem. Inf. Model., 2009, 49(12), 2774-2785.
[http://dx.doi.org/10.1021/ci900288e] [PMID: 19947584]
[42]
Marques, S.M.; Nuti, E.; Rossello, A.; Supuran, C.T.; Tuccinardi, T.; Martinelli, A.; Santos, M.A. Dual inhibitors of matrix metalloproteinases and carbonic anhydrases: iminodiacetyl-based hydroxamate-benzenesulfonamide conjugates. J. Med. Chem., 2008, 51(24), 7968-7979.
[http://dx.doi.org/10.1021/jm800964f] [PMID: 19053764]
[43]
Cai, X.; Zhai, H-X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C-J.; Bao, R.; Qian, C. Discovery of 7-[4-[3-ethynylphenylamino]-7-methoxyquinazolin-6-yloxy]- n -hydroxyheptanamide [CUDC-101] as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J. Med. Chem., 2010, 53(5), 2000-2009.
[http://dx.doi.org/10.1021/jm901453q] [PMID: 20143778]
[44]
Auzzas, L.; Larsson, A.; Matera, R.; Baraldi, A.; Deschênes-Simard, B.; Giannini, G.; Cabri, W.; Battistuzzi, G.; Gallo, G.; Ciacci, A.; Vesci, L.; Pisano, C.; Hanessian, S. Non-natural macrocyclic inhibitors of histone deacetylases: design, synthesis, and activity. J. Med. Chem., 2010, 53(23), 8387-8399.
[http://dx.doi.org/10.1021/jm101092u] [PMID: 21073160]
[45]
Wang, H.; Yu, N.; Chen, D.; Lee, K.C.L.; Lye, P.L.; Chang, J.W.W.; Deng, W.; Ng, M.C.Y.; Lu, T.; Khoo, M.L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K.C.; Wang, X.; Fang, L.; Goh, K.L.; Khng, H.H.; Goh, S.K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J.M.; Dymock, B.W.; Kantharaj, E.; Sun, E.T. Discovery of (2E)-3-2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J. Med. Chem., 2011, 54(13), 4694-4720.
[http://dx.doi.org/10.1021/jm2003552] [PMID: 21634430]
[46]
Lee, H-Y.; Tsai, A-C.; Chen, M-C.; Shen, P-J.; Cheng, Y-C.; Kuo, C-C.; Pan, S-L.; Liu, Y-M.; Liu, J-F.; Yeh, T-K.; Wang, J-C.; Chang, C-Y.; Chang, J.Y.; Liou, J.P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem., 2014, 57(10), 4009-4022.
[http://dx.doi.org/10.1021/jm401899x] [PMID: 24766560]
[47]
The leukemia and lymphoma society. A phase 1/2, open-label, multicenter study of ACY-1215 administered orally as monotherapy and in combination with bortezomib and dexamethasone for the treatment of relapsed or relapsed/refractory multiple myeloma ClinicalTrials.gov, 2000, Available from:. https://clinicaltrials.gov/ct2/show/NCT01323751
[48]
Carrillo, A.K.; Guiguemde, W.A.; Guy, R.K. Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg. Med. Chem., 2015, 23(16), 5151-5155. [HAT
[http://dx.doi.org/10.1016/j.bmc.2014.12.066] [PMID: 25637120]
[49]
Kozlov, M.V.; Kleymenova, A.A.; Romanova, L.I.; Konduktorov, K.A.; Kamarova, K.A.; Smirnova, O.A.; Prassolov, V.S.; Kochetkov, S.N. Pyridine hydroxamic acids are specific anti-HCV agents affecting HDAC6. Bioorg. Med. Chem. Lett., 2015, 25(11), 2382-2385.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.016] [PMID: 25937017]
[50]
TetraLogic Pharmaceuticals. Safety, Pharmacodynamics (PD), Pharmacokinetics (PK) Study of SHP141 in 1A, 1B, or 2A Cutaneous T-Cell Lymphoma (CTCL). ClinicalTrials.gov, 2000, Available from:. https://clinicaltrials.gov/ct2/show/NCT01433731
[51]
Kalin, J.H.; Bergman, J.A. Development and therapeutic implications of selective histone deacetylase 6 inhibitors. J. Med. Chem., 2013, 56(16), 6297-6313.
[http://dx.doi.org/10.1021/jm4001659] [PMID: 23627282]
[52]
Andersen, J.A. Benurestat, a urease inhibitor for the therapy of infected ureolysis. Invest. Urol., 1975, 12(5), 381-386.
[PMID: 1089613]
[53]
Tuccinardi, T.; Ortore, G.; Santos, M.A.; Marques, S.M.; Nuti, E.; Rossello, A.; Martinelli, A. Multitemplate alignment method for the development of a reliable 3D-QSAR model for the analysis of MMP3 inhibitors. J. Chem. Inf. Model., 2009, 49(7), 1715-1724.
[http://dx.doi.org/10.1021/ci900118v] [PMID: 19522467]
[54]
Wang, Y.; Yang, L.; Hou, J.; Zou, Q.; Gao, Q.; Yao, W.; Yao, Q.; Zhang, J. Hierarchical Virtual Screening of the Dual MMP-2/HDAC-6 Inhibitors from Natural Products Based on Pharmacophore Models and Molecular Docking. J. Biomol. Struct. Dyn., 2019, 37(3), 649-670.
[http://dx.doi.org/10.1080/07391102.2016.1266967] [PMID: 29380672]
[55]
Goracci, L.; Deschamps, N.; Randazzo, G.M.; Petit, C.; Dos Santos Passos, C.; Carrupt, P-A.; Simões-Pires, C.; Nurisso, A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci. Rep., 2016, 6(1), 29086.
[http://dx.doi.org/10.1038/srep29086] [PMID: 27404291]
[56]
Auerbach, S.S.; Svoboda, D. DrugMatrix, Available from:. https://ntp.niehs.nih.gov/results/drugmatrix/index.html
[57]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[58]
Gelpi, J.; Hospital, A.; Goñi, R.; Orozco, M. Molecular Dynamics Simulations:Advances and Applications. Adv. Appl. Bioinforma. Chem, 2015, 8, 37.
[59]
Ortore, G.; Tuccinardi, T.; Bertini, S.; Martinelli, A. A theoretical study to investigate D2DAR/D4DAR selectivity: receptor modeling and molecular docking of dopaminergic ligands. J. Med. Chem., 2006, 49(4), 1397-1407.
[http://dx.doi.org/10.1021/jm051046b] [PMID: 16480275]
[60]
Tuccinardi, T.; Ortore, G.; Manera, C.; Saccomanni, G.; Martinelli, A. Adenosine receptor modelling. A1/A2a selectivity. Eur. J. Med. Chem., 2006, 41(3), 321-329.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.011] [PMID: 16427161]
[61]
Liu, K.; Watanabe, E.; Kokubo, H. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J. Comput. Aided Mol. Des., 2017, 31(2), 201-211.
[http://dx.doi.org/10.1007/s10822-016-0005-2] [PMID: 28074360]
[62]
Wang, S-H.; Wang, S-F.; Xuan, W.; Zeng, Z-H.; Jin, J-Y.; Ma, J.; Tian, G.R. Nitro as a novel zinc-binding group in the inhibition of carboxypeptidase A. Bioorg. Med. Chem., 2008, 16(7), 3596-3601.
[http://dx.doi.org/10.1016/j.bmc.2008.02.010] [PMID: 18289863]
[63]
Wang, H.; Xiao, H.; Liu, N.; Zhang, B.; Shi, Q. Three New Compounds Derived from Nitrofurantoin: X-Ray Structures and Hirshfeld Surface Analyses. Open J. Inorg. Chem., 2015, 5, 63-73.
[http://dx.doi.org/10.4236/ojic.2015.53008]
[64]
Sączewski, F.; Stencel, A.; Bieńczak, A.M.; Langowska, K.A.; Michaelis, M.; Werel, W.; Hałasa, R.; Reszka, P.; Bednarski, P.J. Structure-activity relationships of novel heteroaryl-acrylonitriles as cytotoxic and antibacterial agents. Eur. J. Med. Chem., 2008, 43(9), 1847-1857.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.017] [PMID: 18187237]
[65]
Andrade, J.K.F.; Souza, M.I.F.; Gomes Filho, M.A.; Silva, D.M.F.; Barros, A.L.S.; Rodrigues, M.D.; Silva, P.B.N.; Nascimento, S.C.; Aguiar, J.S.; Brondani, D.J.; Militão, G.C.G.; Silva, T.G. N-pentyl-nitrofurantoin induces apoptosis in HL-60 leukemia cell line by upregulating BAX and downregulating BCL-xL gene expression. Pharmacol. Rep., 2016, 68(5), 1046-1053.
[http://dx.doi.org/10.1016/j.pharep.2016.06.004] [PMID: 27505854]
[66]
Nelson, E.A.; Walker, S.R.; Kepich, A.; Gashin, L.B.; Hideshima, T.; Ikeda, H.; Chauhan, D.; Anderson, K.C.; Frank, D.A. Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood, 2008, 112(13), 5095-5102.
[http://dx.doi.org/10.1182/blood-2007-12-129718] [PMID: 18824601]
[67]
Gupta, M.; Han, J.J.; Stenson, M.; Wellik, L.; Witzig, T.E. Regulation of STAT3 by Histone Deacetylase-3 in Diffuse Large B-Cell Lymphoma: Implications for Therapy. Leukemia, 2012, 26(6), 1356-1364.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy