Research Article

High Expression of miR-483-5p Predicts Chemotherapy Resistance in Epithelial Ovarian Cancer

Author(s): Yanisa Rattanapan, Veerawat Korkiatsakul, Adcharee Kongruang, Teerapong Siriboonpiputtana, Budsaba Rerkamnuaychoke and Takol Chareonsirisuthigul*

Volume 10, Issue 1, 2021

Published on: 12 April, 2021

Page: [51 - 57] Pages: 7

DOI: 10.2174/2211536610666210412155206

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Ovarian cancer is the most deadly cancer that requires novel diagnostics and therapeutics. MicroRNAs are viewed as essential gene regulatory elements involved in different pathobiological mechanisms of many cancers, including ovarian cancer.

Objective: This study examined the relationship between microRNA (miRNA) expression and response to platinum-based chemotherapy.

Methods: Genome-wide miRNA expression analysis was conducted using Epithelial Ovarian Cancer (EOC) tissues from 25 patients with 17 malignant tumors and eight benign ovarian tumors. Candidate miRNAs that respond to platinum-based chemotherapy were selected for validation by quantitative RT-PCR.

Results: Among 2,578 mature human miRNAs, high expression of miR-483-5p correlated with poor responses to platinum-based chemotherapy in EOC patients. Furthermore, high levels of miR-483-5p in the resistant group suppressed expression of the apoptotic regulator TAOK-1.

Conclusion: A possible marker for the prediction of chemotherapy response and resistance in patients may be miR-483-5p. Choosing the right treatment for each patient with EOC can avoid the risk of developing chemotherapy resistance.

Keywords: miR-483-5p, TAOK1, chemotherapy, epithelial ovarian cancer, chemotherapy resistance, RT-PCR.

Graphical Abstract
[1]
Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: Epidemiology and risk factors. Int J Womens Health 2019; 11: 287-99.
[http://dx.doi.org/10.2147/IJWH.S197604] [PMID: 31118829]
[2]
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G. Chemotherapy resistance in advanced ovarian cancer patients. Biomark Cancer 2019; 11: 1179299X1986081.
[http://dx.doi.org/10.1177/1179299X19860815]
[3]
Cornelison R, Llaneza DC, Landen CN. Emerging therapeutics to overcome chemoresistance in epithelial ovarian cancer: A mini-review. Int J Mol Sci 2017; 18(10): 2171.
[http://dx.doi.org/10.3390/ijms18102171] [PMID: 29057791]
[4]
Rattanapan Y, Korkiatsakul V, Kongruang A, et al. EGFL7 and RASSF1 promoter hypermethylation in epithelial ovarian cancer. Cancer Genet 2018; 224-225: 37-40.
[http://dx.doi.org/10.1016/j.cancergen.2018.04.117] [PMID: 29778234]
[5]
Singh A, Gupta S, Sachan M. Epigenetic biomarkers in the management of ovarian cancer: Current prospectives. Front Cell Dev Biol 2019; 7: 182.
[http://dx.doi.org/10.3389/fcell.2019.00182] [PMID: 31608277]
[6]
Yokoi A, Matsuzaki J, Yamamoto Y, et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat Commun 2018; 9(1): 4319.
[http://dx.doi.org/10.1038/s41467-018-06434-4] [PMID: 30333487]
[7]
Chen SN, Chang R, Lin LT, et al. MicroRNA in ovarian cancer: Biology, pathogenesis, and therapeutic opportunities. Int J Environ Res Public Health 2019; 16(9): 1510.
[http://dx.doi.org/10.3390/ijerph16091510] [PMID: 31035447]
[8]
Meinhold-Heerlein I, Fotopoulou C, Harter P, et al. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet 2016; 293(4): 695-700.
[http://dx.doi.org/10.1007/s00404-016-4035-8]
[9]
Prat J. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet 2014; 124(1): 1-5.
[http://dx.doi.org/10.1016/j.ijgo.2013.10.001] [PMID: 24219974]
[10]
Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A. Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis. Genomics 2007; 90(3): 344-53.
[http://dx.doi.org/10.1016/j.ygeno.2007.05.002] [PMID: 17604597]
[11]
Zhang J, Song YH, Brannigan BW, et al. Prevalence and functional analysis of sequence variants in the ATR checkpoint mediator claspin. Mol Cancer Res 2009; 7(9): 1510-6.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0033] [PMID: 19737971]
[12]
Causeret F, Sumia I, Pierani A. Kremen1 and Dickkopf1 control cell survival in a Wnt-independent manner. Cell Death Differ 2016; 23(2): 323-32.
[http://dx.doi.org/10.1038/cdd.2015.100] [PMID: 26206087]
[13]
Rattanapan Y, Korkiatsakul V, Kongruang A, Siriboonpiputtana T, Rerkamnuaychoke B, Chareonsirisuthigul T. MicroRNA expression profiling of epithelial ovarian cancer identifies new markers of tumor subtype. MicroRNA 2020; 9(4): 289-94.
[http://dx.doi.org/10.2174/2211536609666200722125737] [PMID: 32703147]
[14]
Luan J, Wang J, Su Q, Chen X, Jiang G, Xu X. Meta-analysis of the differentially expressed microRNA profiles in nasopharyngeal carcinoma. Oncotarget 2016; 7(9): 10513-21.
[http://dx.doi.org/10.18632/oncotarget.7013] [PMID: 26824418]
[15]
Li HY, Liu YC, Bai YH, et al. SNP at miR-483-5p-binding site in the 3′-untranslated region of the BSG gene is associated with susceptibility to esophageal cancer in a Chinese population. Genet Mol Res 2016; 15(2): 15027735.
[http://dx.doi.org/10.4238/gmr.15027735] [PMID: 27420938]
[16]
Xu H, Yang Y, Zhao H, et al. Serum miR-483-5p: a novel diagnostic and prognostic biomarker for patients with oral squamous cell carcinoma. Tumour Biol 2016; 37(1): 447-53.
[http://dx.doi.org/10.1007/s13277-015-3514-z] [PMID: 26224475]
[17]
Cui H, Liu Y, Jiang J, et al. IGF2-derived miR-483 mediated oncofunction by suppressing DLC-1 and associated with colorectal cancer. Oncotarget 2016; 7(30): 48456-66.
[http://dx.doi.org/10.18632/oncotarget.10309] [PMID: 27366946]
[18]
Wang C, Sun Y, Wu H, et al. Elevated miR-483-3p expression is an early event and indicates poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol 2015; 36(12): 9447-56.
[http://dx.doi.org/10.1007/s13277-015-3690-x] [PMID: 26124009]
[19]
Wang L, Shi M, Hou S, et al. MiR-483-5p suppresses the proliferation of glioma cells via directly targeting ERK1. FEBS Lett 2012; 586(9): 1312-7.
[http://dx.doi.org/10.1016/j.febslet.2012.03.035] [PMID: 22465663]
[20]
Wang W, Zhao LJ, Yang Y, et al. Retinoic acid induced 16 enhances tumorigenesis and serves as a novel tumor marker for hepatocellular carcinoma. Carcinogenesis 2012; 33(12): 2578-85.
[http://dx.doi.org/10.1093/carcin/bgs289] [PMID: 22971576]
[21]
Koo CY, Giacomini C, Reyes-Corral M, et al. Targeting TAO kinases using a new inhibitor compound delays mitosis and induces mitotic cell death in centrosome amplified breast cancer cells. Mol Cancer Ther 2017; 16(11): 2410-21.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0077] [PMID: 28830982]
[22]
Raman M, Earnest S, Zhang K, Zhao Y, Cobb MH. TAO kinases mediate activation of p38 in response to DNA damage. EMBO J 2007; 26: 2005-14.
[http://dx.doi.org/10.1038/sj.emboj.7601668]
[23]
Chen Z, Raman M, Chen L, Lee SF, Gilman AG, Cobb MH. TAO (thousand-and-one amino acid) protein kinases mediate signaling from carbachol to p38 mitogen-activated protein kinase and ternary complex factors. J Biol Chem 2003; 278(25): 22278-83.
[24]
Wu MF, Wang SG. Human TAO kinase 1 induces apoptosis in SH-SY5Y cells. Cell Biol Int 2008; 32(1): 151-6.
[http://dx.doi.org/10.1016/j.cellbi.2007.08.006] [PMID: 17900936]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy