Abstract
Background: Despite major advances in the fight against this parasitic disease, malaria remained a major cause of concern in 2021. This infection, mainly due to Plasmodium falciparum, causes more than 200 million cases every year and hundreds of thousands deaths in the developing regions, mostly in Africa. The last statistics show an increase in the cases for the third consecutive year; from 211 million in 2015, it has reached 229 million in 2019. This trend could be partially explained by the appearance of resistance to all the used antimalarials, including artemisinin. Thus, the design of new anti- Plasmodium compounds is an urgent need. For thousands of years, nature has offered humans medicines to cure their diseases or the inspiration for the development of new active principles. It then seems logical to explore the natural sources to find new molecules to treat this parasitosis.
Methods: Therefore, this review reports and analyzes the extracts (plants, bacteria, sponges, fungi) and the corresponding isolated compounds, showing antiplasmodial properties between 2013 and 2019.
Results and Conclusion: Nature remains a major source of active compounds. Indeed, 648 molecules from various origins, mostly plants, have been reported for their inhibitory effect on Plasmodium falciparum. Among them, 188 scaffolds were defined as highly active with IC50 ≤ 5 μM, and have been reported here in detail. Moreover, the most active compounds showed a large variety of structures, such as flavonoids, triterpenes, and alkaloids. Therefore, these compounds could be an interesting source of inspiration for medicinal chemists; several of these molecules could become the next leads for malaria treatment.
Keywords: Malaria, Plasmodium, natural products, antiplasmodial, marine products, fungi, bacteria.
Current Medicinal Chemistry
Title:Overview of Natural Antiplasmodials from the Last Decade to Inspire Medicinal Chemistry
Volume: 28 Issue: 30
Author(s): Gilles Degotte , Bernard Pirotte, Pierre Francotte and Michel Frédérich*
Affiliation:
- Laboratory of Pharmacognosy, Faculty of Medicine, University of Liege, Liege,Belgium
Keywords: Malaria, Plasmodium, natural products, antiplasmodial, marine products, fungi, bacteria.
Abstract:
Background: Despite major advances in the fight against this parasitic disease, malaria remained a major cause of concern in 2021. This infection, mainly due to Plasmodium falciparum, causes more than 200 million cases every year and hundreds of thousands deaths in the developing regions, mostly in Africa. The last statistics show an increase in the cases for the third consecutive year; from 211 million in 2015, it has reached 229 million in 2019. This trend could be partially explained by the appearance of resistance to all the used antimalarials, including artemisinin. Thus, the design of new anti- Plasmodium compounds is an urgent need. For thousands of years, nature has offered humans medicines to cure their diseases or the inspiration for the development of new active principles. It then seems logical to explore the natural sources to find new molecules to treat this parasitosis.
Methods: Therefore, this review reports and analyzes the extracts (plants, bacteria, sponges, fungi) and the corresponding isolated compounds, showing antiplasmodial properties between 2013 and 2019.
Results and Conclusion: Nature remains a major source of active compounds. Indeed, 648 molecules from various origins, mostly plants, have been reported for their inhibitory effect on Plasmodium falciparum. Among them, 188 scaffolds were defined as highly active with IC50 ≤ 5 μM, and have been reported here in detail. Moreover, the most active compounds showed a large variety of structures, such as flavonoids, triterpenes, and alkaloids. Therefore, these compounds could be an interesting source of inspiration for medicinal chemists; several of these molecules could become the next leads for malaria treatment.
Export Options
About this article
Cite this article as:
Degotte Gilles , Pirotte Bernard , Francotte Pierre and Frédérich Michel *, Overview of Natural Antiplasmodials from the Last Decade to Inspire Medicinal Chemistry, Current Medicinal Chemistry 2021; 28 (30) . https://dx.doi.org/10.2174/0929867328666210329112354
DOI https://dx.doi.org/10.2174/0929867328666210329112354 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements