Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Precision Oncology, Signaling, and Anticancer Agents in Cancer Therapeutics

Author(s): Dia Advani, Sudhanshu Sharma, Smita Kumari, Rashmi K. Ambasta and Pravir Kumar*

Volume 22, Issue 3, 2022

Published on: 08 March, 2021

Page: [433 - 468] Pages: 36

DOI: 10.2174/1871520621666210308101029

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: The global alliance for genomics and healthcare facilities provides innovative solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention, and treatment based on patients’ genetic profiles. Advancements in “omics” techniques, next-generation sequencing, artificial intelligence, and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures.

Methods: Data were collected from PubMed and Google Scholar using keywords “Precision medicine,” “precision medicine and cancer,” “anticancer agents in precision medicine,” and reviewed comprehensively.

Results: Personalized therapeutics, including immunotherapy and cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described, along with various hurdles identified in the successful establishment of precision therapeutics.

Conclusion: This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival, and improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.

Keywords: Precision medicine, anticancer agents, cancer, personalized therapies, randomization, oncology.

Graphical Abstract
[1]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies.Nature Rev. Clin. Oncolo., 2018, 15.2, 81.,
[http://dx.doi.org/10.1038/nrclinonc.2017.166]
[2]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9(9), 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[3]
Seyhan, A.A.; Carini, C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med., 2019, 17(1), 114.
[http://dx.doi.org/10.1186/s12967-019-1864-9] [PMID: 30953518]
[4]
Salgado, R.; Moore, H.; Martens, J.W.M.; Lively, T.; Malik, S.; McDermott, U.; Michiels, S.; Moscow, J.A.; Tejpar, S.; McKee, T.; Lacombe, D. Steps forward for cancer precision medicine. Nat. Rev. Drug Discov., 2018, 17(1), 1-2.
[http://dx.doi.org/10.1038/nrd.2017.218] [PMID: 29170471]
[5]
Xue, Y.; Wilcox, W.R. Changing paradigm of cancer therapy: precision medicine by next-generation sequencing. Cancer Biol. Med., 2016, 13(1), 12-18.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0003] [PMID: 27144059]
[6]
Homer, C. Human services. Public Health Rep., 2017, 132(2), 127-129.
[http://dx.doi.org/10.1177/0033354916689662] [PMID: 28135429]
[7]
Prasad, V.; Fojo, T.; Brada, M. Precision oncology: origins, optimism, and potential. Lancet Oncol., 2016, 17(2), e81-e86.
[http://dx.doi.org/10.1016/S1470-2045(15)00620-8] [PMID: 26868357]
[8]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; O’Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The Growing role of precision and personalized medicine for cancer treatment. Technology, 2018, 6(03n04), 79-100.,
[http://dx.doi.org/10.1142/S2339547818300020]
[9]
Bode, A.M.; Dong, Z. Recent advances in precision oncology research. NPJ Precis. Oncol., 2018, 2, 11.
[10]
Soldatos, T.G.; Kaduthanam, S.; Jackson, D.B. Precision oncology-the quest for evidence. J. Pers. Med., 2019, 9(3), 43.
[http://dx.doi.org/10.3390/jpm9030043] [PMID: 31492009]
[11]
Long, G.V.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Chiarion-Sileni, V.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; Robert, C.; Mortier, L.; Schachter, J.; Schadendorf, D.; Lesimple, T.; Plummer, R.; Ji, R.; Zhang, P.; Mookerjee, B.; Legos, J.; Kefford, R.; Dummer, R.; Kirkwood, J.M. Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma. N. Engl. J. Med., 2017, 377(19), 1813-1823.
[http://dx.doi.org/10.1056/NEJMoa1708539] [PMID: 28891408]
[12]
Mavaddat, N.; Pharoah, P.D.P.; Michailidou, K.; Tyrer, J.; Brook, M.N.; Bolla, M.K. Prediction of breast cancer risk based on profiling with common genetic variants. J. Natl. Cancer Inst., 2015, 107, 5.
[13]
Maas, P.; Barrdahl, M.; Joshi, A.D.; Auer, P.L.; Gaudet, M.M.; Milne, R.L.; Schumacher, F.R.; Anderson, W.F.; Check, D.; Chattopadhyay, S.; Baglietto, L.; Berg, C.D.; Chanock, S.J.; Cox, D.G.; Figueroa, J.D.; Gail, M.H.; Graubard, B.I.; Haiman, C.A.; Hankinson, S.E.; Hoover, R.N.; Isaacs, C.; Kolonel, L.N.; Le Marchand, L.; Lee, I.M.; Lindström, S.; Overvad, K.; Romieu, I.; Sanchez, M.J.; Southey, M.C.; Stram, D.O.; Tumino, R.; VanderWeele, T.J.; Willett, W.C.; Zhang, S.; Buring, J.E.; Canzian, F.; Gapstur, S.M.; Henderson, B.E.; Hunter, D.J.; Giles, G.G.; Prentice, R.L.; Ziegler, R.G.; Kraft, P.; Garcia-Closas, M.; Chatterjee, N. Breast cancer risk from modifiable and nonmodifiable risk factors among white women in the United States. JAMA Oncol., 2016, 2(10), 1295-1302.
[http://dx.doi.org/10.1001/jamaoncol.2016.1025] [PMID: 27228256]
[14]
Bristow, R.G.; Alexander, B.; Baumann, M.; Bratman, S.V.; Brown, J.M.; Camphausen, K.; Choyke, P.; Citrin, D.; Contessa, J.N.; Dicker, A.; Kirsch, D.G.; Krause, M.; Le, Q.T.; Milosevic, M.; Morris, Z.S.; Sarkaria, J.N.; Sondel, P.M.; Tran, P.T.; Wilson, G.D.; Willers, H.; Wong, R.K.S.; Harari, P.M. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol., 2018, 19(5), e240-e251.
[http://dx.doi.org/10.1016/S1470-2045(18)30096-2] [PMID: 29726389]
[15]
Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; Hiller, W.; Fisher, E.R.; Wickerham, D.L.; Bryant, J.; Wolmark, N. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med., 2004, 351(27), 2817-2826.
[http://dx.doi.org/10.1056/NEJMoa041588] [PMID: 15591335]
[16]
Mamounas, E.P.; Tang, G.; Fisher, B.; Paik, S.; Shak, S.; Costantino, J.P.; Watson, D.; Geyer, C.E., Jr; Wickerham, D.L.; Wolmark, N. Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J. Clin. Oncol., 2010, 28(10), 1677-1683.
[http://dx.doi.org/10.1200/JCO.2009.23.7610] [PMID: 20065188]
[17]
Northcott, P.A.; Korshunov, A.; Witt, H.; Hielscher, T.; Eberhart, C.G.; Mack, S.; Bouffet, E.; Clifford, S.C.; Hawkins, C.E.; French, P.; Rutka, J.T.; Pfister, S.; Taylor, M.D. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol., 2011, 29(11), 1408-1414.
[http://dx.doi.org/10.1200/JCO.2009.27.4324] [PMID: 20823417]
[18]
Kamran, S.C.; Mouw, K.W. Applying precision oncology principles in radiation oncology. JCO Precis Oncol, 2018, 2, 1-23.
[http://dx.doi.org/10.1200/PO.18.00034] [PMID: 32914000]
[19]
Lohaus, F.; Linge, A.; Tinhofer, I.; Budach, V.; Gkika, E.; Stuschke, M.; Balermpas, P.; Rödel, C.; Avlar, M.; Grosu, A.L.; Abdollahi, A.; Debus, J.; Bayer, C.; Belka, C.; Pigorsch, S.; Combs, S.E.; Mönnich, D.; Zips, D.; von Neubeck, C.; Baretton, G.B.; Löck, S.; Thames, H.D.; Krause, M.; Baumann, M. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother. Oncol., 2014, 113(3), 317-323.
[http://dx.doi.org/10.1016/j.radonc.2014.11.011] [PMID: 25480095]
[20]
Fatehullah, A.; Tan, S.H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat. Cell Biol., 2016, 18(3), 246-254.
[http://dx.doi.org/10.1038/ncb3312] [PMID: 26911908]
[21]
Liu, X.; Krawczyk, E.; Suprynowicz, F.A.; Palechor-Ceron, N.; Yuan, H.; Dakic, A.; Simic, V.; Zheng, Y.L.; Sripadhan, P.; Chen, C.; Lu, J.; Hou, T.W.; Choudhury, S.; Kallakury, B.; Tang, D.G.; Darling, T.; Thangapazham, R.; Timofeeva, O.; Dritschilo, A.; Randell, S.H.; Albanese, C.; Agarwal, S.; Schlegel, R. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat. Protoc., 2017, 12(2), 439-451.
[http://dx.doi.org/10.1038/nprot.2016.174] [PMID: 28125105]
[22]
Vaira, V.; Fedele, G.; Pyne, S.; Fasoli, E.; Zadra, G.; Bailey, D.; Snyder, E.; Faversani, A.; Coggi, G.; Flavin, R.; Bosari, S.; Loda, M. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc. Natl. Acad. Sci. USA, 2010, 107(18), 8352-8356.
[http://dx.doi.org/10.1073/pnas.0907676107] [PMID: 20404174]
[23]
Zhang, B.; Korolj, A.; Lai, B.F.L.; Radisic, M. Advances in organ-on-a-chip engineering. Nat. Rev. Mater., 2018, 3(8), 257-278.
[http://dx.doi.org/10.1038/s41578-018-0034-7]
[24]
Bregenzer, M.E.; Horst, E.N.; Mehta, P.; Novak, C.M.; Raghavan, S.; Snyder, C.S.; Mehta, G. Integrated cancer tissue engineering models for precision medicine. PLoS One, 2019, 14(5)e0216564
[http://dx.doi.org/10.1371/journal.pone.0216564] [PMID: 31075118]
[25]
Skardal, A.; Devarasetty, M.; Forsythe, S.; Atala, A.; Soker, S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol. Bioeng., 2016, 113(9), 2020-2032.
[http://dx.doi.org/10.1002/bit.25950] [PMID: 26888480]
[26]
Sobrino, A.; Phan, D.T.T.; Datta, R.; Wang, X.; Hachey, S.J.; Romero-López, M.; Gratton, E.; Lee, A.P.; George, S.C.; Hughes, C.C. 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep., 2016, 6(1), 31589.
[http://dx.doi.org/10.1038/srep31589] [PMID: 27549930]
[27]
Saad, E.D.; Paoletti, X.; Burzykowski, T.; Buyse, M. Precision medicine needs randomized clinical trials. Nat. Rev. Clin. Oncol., 2017, 14(5), 317-323.
[http://dx.doi.org/10.1038/nrclinonc.2017.8] [PMID: 28169302]
[28]
Bourin, M. Phase III Clinical trials: what methodology? SOJ Pharm. Pharm. Sci., 2017, 16(1), 122.
[29]
Buyse, M.; Sargent, D.J.; Grothey, A.; Matheson, A.; de Gramont, A. Biomarkers and surrogate end points-the challenge of statistical validation. Nat. Rev. Clin. Oncol., 2010, 7(6), 309-317.
[http://dx.doi.org/10.1038/nrclinonc.2010.43] [PMID: 20368727]
[30]
Hu, F.; Hu, Y.; Ma, W.; Zhang, L.; Zhu, H. Statistical inference of adaptive randomized clinical trials for personalized medicine. Clin. Investig. (Lond.), 2015, 5(4), 415-425.
[http://dx.doi.org/10.4155/cli.15.15]
[31]
Shen, D. Paper PO06 Randomization in Clinical Trial Studies. Trial, 2006.
[32]
Lim, C.Y.; In, J. Randomization in clinical studies. Korean J. Anesthesiol., 2019, 72(3), 221-232.
[http://dx.doi.org/10.4097/kja.19049] [PMID: 30929415]
[33]
Harrington, J.A.; Hernandez-Guerrero, T.C.; Basu, B. Early phase clinical trial designs-state of play and adapting for the future. Clin. Oncol. (R. Coll. Radiol.), 2017, 29(12), 770-777.
[http://dx.doi.org/10.1016/j.clon.2017.10.005] [PMID: 29108786]
[34]
Garralda, E.; Dienstmann, R.; Piris-Giménez, A.; Braña, I.; Rodon, J.; Tabernero, J. New clinical trial designs in the era of precision medicine. Mol. Oncol., 2019, 13(3), 549-557.
[http://dx.doi.org/10.1002/1878-0261.12465] [PMID: 30698321]
[35]
Pemovska, T.; Kontro, M.; Yadav, B.; Edgren, H.; Eldfors, S.; Szwajda, A.; Almusa, H.; Bespalov, M.M.; Ellonen, P.; Elonen, E.; Gjertsen, B.T.; Karjalainen, R.; Kulesskiy, E.; Lagström, S.; Lehto, A.; Lepistö, M.; Lundán, T.; Majumder, M.M.; Marti, J.M.; Mattila, P.; Murumägi, A.; Mustjoki, S.; Palva, A.; Parsons, A.; Pirttinen, T.; Rämet, M.E.; Suvela, M.; Turunen, L.; Västrik, I.; Wolf, M.; Knowles, J.; Aittokallio, T.; Heckman, C.A.; Porkka, K.; Kallioniemi, O.; Wennerberg, K. Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov., 2013, 3(12), 1416-1429.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0350] [PMID: 24056683]
[36]
Park, J.J.H.; Siden, E.; Zoratti, M.J.; Dron, L.; Harari, O.; Singer, J. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials, 2019, 20(1), 1-10.
[http://dx.doi.org/10.1186/s13063-019-3664-1]
[37]
Renfro, L.A.; Sargent, D.J. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann. Oncol., 2017, 28(1), 34-43.
[http://dx.doi.org/10.1093/annonc/mdw413] [PMID: 28177494]
[38]
Ferrarotto, R.; Redman, M.W.; Gandara, D.R.; Herbst, R.S.; Papadimitrakopoulou, V.A. Lung-MAP--framework, overview, and design principles. Linchuang Zhongliuxue Zazhi, 2015, 4(3), 36-36.
[PMID: 26408303]
[39]
Govindan, R.; Mandrekar, S.J.; Gerber, D.E.; Oxnard, G.R.; Dahlberg, S.E.; Chaft, J.; Malik, S.; Mooney, M.; Abrams, J.S.; Jänne, P.A.; Gandara, D.R.; Ramalingam, S.S.; Vokes, E.E. Alchemist trials: a golden opportunity to transform outcomes in early-stage non-small cell lung cancer. Clin. Cancer Res., 2015, 21(24), 5439-5444.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0354] [PMID: 26672084]
[40]
Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; Cecchi, F.; Schwartz, S.; Pavlakis, N.; Clarke, S.; Won, H.H.; Brzostowski, E.B.; Riely, G.J.; Solit, D.B.; Hyman, D.M.; Drilon, A.; Rudin, C.M.; Berger, M.F.; Baselga, J.; Scaltriti, M.; Arcila, M.E.; Kris, M.G. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J. Clin. Oncol., 2018, 36(24), 2532-2537.
[http://dx.doi.org/10.1200/JCO.2018.77.9777] [PMID: 29989854]
[41]
Li, B.T.; Makker, V.; Buonocore, D.J.; Offin, M.D.; Olah, Z.T.; Panora, E. A multi-histology basket trial of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J. Clin. Oncol., 2018, 36(15), 2502-2502.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.2502]
[42]
Diaz, L.; Marabelle, A.; Kim, T.W.; Geva, R.; Van Cutsem, E.; André, T. Efficacy of pembrolizumab in phase 2 KEYNOTE-164 and KEYNOTE-158 studies of microsatellite instability high cancers. Ann. Oncol., 2017, 28(suppl_5).,
[43]
Diaz, L.A.; Le, D.; Maio, M.; Ascierto, P.A.; Geva, R.; Motola-Kuba, D. Pembrolizumab in microsatellite instability high cancers: updated analysis of the phase II KEYNOTE-164 and KEYNOTE-158 studies. Ann. Oncol., 2019, 30, v475.
[http://dx.doi.org/10.1093/annonc/mdz253]
[44]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[45]
Tan, D.S.W.; Lassen, U.N.; Albert, C.M.; Kummar, S.; van Tilburg, C.; Dubois, S.G. Larotrectinib efficacy and safety in TRK fusion cancer: an expanded clinical dataset showing consistency in an age and tumor agnostic approach.Ann. Oncol., 2018, 29(suppl_8), mdy279-397.,
[46]
Garber, K. Tissue-agnostic cancer drug pipeline grows, despite doubts. Nat. Rev. Drug Discov., 2018, 17(4), 227-229.
[http://dx.doi.org/10.1038/nrd.2018.6] [PMID: 29520093]
[47]
Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; Wilson, K.J.; DiPietro, L.; Fleming, P.; Palmer, M.; Hu, M.I.; Wirth, L.; Brose, M.S.; Ou, S.I.; Taylor, M.; Garralda, E.; Miller, S.; Wolf, B.; Lengauer, C.; Guzi, T.; Evans, E.K. Precision targeted therapy with BLU-667 for RET-driven cancers. Cancer Discov., 2018, 8(7), 836-849.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0338] [PMID: 29657135]
[48]
Lih, C.J.; Sims, D.J.; Harrington, R.D.; Polley, E.C.; Zhao, Y.; Mehaffey, M.G.; Forbes, T.D.; Das, B.; Walsh, W.D.; Datta, V.; Harper, K.N.; Bouk, C.H.; Rubinstein, L.V.; Simon, R.M.; Conley, B.A.; Chen, A.P.; Kummar, S.; Doroshow, J.H.; Williams, P.M. Analytical validation and application of a targeted next-generation sequencing mutation-detection assay for use in treatment assignment in the NCI-MPACT trial. J. Mol. Diagn., 2016, 18(1), 51-67.
[http://dx.doi.org/10.1016/j.jmoldx.2015.07.006] [PMID: 26602013]
[49]
Lih, C.J.; Takebe, N. Considerations of developing an NGS assay for clinical applications in precision oncology: the NCI-MATCH NGS assay experience. Curr. Probl. Cancer, 2017, 41(3), 201-211.
[http://dx.doi.org/10.1016/j.currproblcancer.2017.05.003] [PMID: 28625332]
[50]
Dienstmann, R.; Rodon, J.; Barretina, J.; Tabernero, J. Genomic medicine frontier in human solid tumors: prospects and challenges. J. Clin. Oncol., 2013, 31(15), 1874-1884.
[http://dx.doi.org/10.1200/JCO.2012.45.2268] [PMID: 23589551]
[51]
Jung, Y.S.; Park, J. Il. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp. Mol. Med., 2020, 52, 183-191.
[52]
Martin-Orozco, E.; Sanchez-Fernandez, A.; Ortiz-Parra, I.; Ayala-San Nicolas, M. WNT signaling in tumors: the way to evade drugs and immunity. Front. Immunol., 2019, 10, 2854.
[http://dx.doi.org/10.3389/fimmu.2019.02854] [PMID: 31921125]
[53]
Zhang, Y.; Zu, D.; Chen, Z.; Ying, G. An update on Wnt signaling pathway in cancer. Transl. Cancer Res., 2020, 9(2), 1246-1252.
[http://dx.doi.org/10.21037/tcr.2019.12.50]
[54]
Chen, M.; Wang, J.; Lu, J.; Bond, M.C.; Ren, X-R.; Lyerly, H.K.; Barak, L.S.; Chen, W. The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Bone, 2012, 48(43), 10267-10274.
[55]
Koval, A.V.; Vlasov, P.; Shichkova, P.; Khunderyakova, S.; Markov, Y.; Panchenko, J.; Volodina, A.; Kondrashov, F.A.; Katanaev, V.L. Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling. Biochem. Pharmacol., 2014, 87(4), 571-578.
[http://dx.doi.org/10.1016/j.bcp.2013.12.007] [PMID: 24355563]
[56]
Guimaraes, P.P.G.; Tan, M.; Tammela, T.; Wu, K.; Chung, A.; Oberli, M.; Wang, K.; Spektor, R.; Riley, R.S.; Viana, C.T.R.; Jacks, T.; Langer, R.; Mitchell, M.J. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J. Control. Release, 2018, 290, 75-87.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.025] [PMID: 30290244]
[57]
Thomson, D.W.; Wagner, A.J.; Bantscheff, M.; Benson, R.E.; Dittus, L.; Duempelfeld, B.; Drewes, G.; Krause, J.; Moore, J.T.; Mueller, K.; Poeckel, D.; Rau, C.; Salzer, E.; Shewchuk, L.; Hopf, C.; Emery, J.G.; Muelbaier, M. Discovery of a highly selective tankyrase inhibitor displaying growth inhibition effects against a diverse range of tumor derived cell lines. J. Med. Chem., 2017, 60(13), 5455-5471.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00137] [PMID: 28591512]
[58]
HHS Public, Access. Physiol. Behav., 2016, 35(28), 3705-3717.
[59]
Gurney, A.; Axelrod, F.; Bond, C.J.; Cain, J.; Chartier, C.; Donigan, L.; Fischer, M.; Chaudhari, A.; Ji, M.; Kapoun, A.M.; Lam, A.; Lazetic, S.; Ma, S.; Mitra, S.; Park, I.K.; Pickell, K.; Sato, A.; Satyal, S.; Stroud, M.; Tran, H.; Yen, W.C.; Lewicki, J.; Hoey, T. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl. Acad. Sci. USA, 2012, 109(29), 11717-11722.
[http://dx.doi.org/10.1073/pnas.1120068109] [PMID: 22753465]
[60]
Guo, H.; Lu, Y.; Wang, J.; Liu, X.; Keller, E.T.; Liu, Q.; Zhou, Q.; Zhang, J. Targeting the Notch signaling pathway in cancer therapeutics. Thorac. Cancer, 2014, 5(6), 473-486.
[http://dx.doi.org/10.1111/1759-7714.12143] [PMID: 26767041]
[61]
Ellisen, L.W.; Bird, J.; West, D.C.; Soreng, A.L.; Reynolds, T.C.; Smith, S.D.; Sklar, J. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 1991, 66(4), 649-661.
[http://dx.doi.org/10.1016/0092-8674(91)90111-B] [PMID: 1831692]
[62]
Katoh, M.; Katoh, M. Precision medicine for human cancers with Notch signaling dysregulation. Review Int. J. Mol. Med., 2020, 45(2), 279-297.
[PMID: 31894255]
[63]
Rosati, E.; Sabatini, R.; De Falco, F.; Del Papa, B.; Falzetti, F.; Di Ianni, M.; Cavalli, L.; Fettucciari, K.; Bartoli, A.; Screpanti, I.; Marconi, P. γ-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch down-regulation. Int. J. Cancer, 2013, 132(8), 1940-1953.
[http://dx.doi.org/10.1002/ijc.27863] [PMID: 23001755]
[64]
Huynh, C.; Poliseno, L.; Segura, M.F.; Medicherla, R.; Haimovic, A.; Menendez, S.; Shang, S.; Pavlick, A.; Shao, Y.; Darvishian, F.; Boylan, J.F.; Osman, I.; Hernando, E. The novel gamma secretase inhibitor RO4929097 reduces the tumor initiating potential of melanoma. PLoS One, 2011, 6(9)e25264
[http://dx.doi.org/10.1371/journal.pone.0025264] [PMID: 21980408]
[65]
Tilly, H.; Morschhauser, F.; Bartlett, N.L.; Mehta, A.; Salles, G.; Haioun, C.; Munoz, J.; Chen, A.I.; Kolibaba, K.; Lu, D.; Yan, M.; Penuel, E.; Hirata, J.; Lee, C.; Sharman, J.P. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: an open-label, non-randomised, phase 1b-2 study. Lancet Oncol., 2019, 20(7), 998-1010.
[http://dx.doi.org/10.1016/S1470-2045(19)30091-9] [PMID: 31101489]
[66]
Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; Rossi, G.; Kim, W.S.; Feldman, T.; Lennard, A.; Belada, D.; Illés, Á.; Tobinai, K.; Tsukasaki, K.; Yeh, S.P.; Shustov, A.; Hüttmann, A.; Savage, K.J.; Yuen, S.; Iyer, S.; Zinzani, P.L.; Hua, Z.; Little, M.; Rao, S.; Woolery, J.; Manley, T.; Trümper, L. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet, 2019, 393(10168), 229-240.
[http://dx.doi.org/10.1016/S0140-6736(18)32984-2] [PMID: 30522922]
[67]
Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; Paccagnella, M.L.; Sleight, B.; Vandendries, E.; Advani, A.S. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N. Engl. J. Med., 2016, 375(8), 740-753.
[http://dx.doi.org/10.1056/NEJMoa1509277] [PMID: 27292104]
[68]
Dong, X.; Lin, Q.; Aihara, A.; Li, Y.; Huang, C.K.; Chung, W.; Tang, Q.; Chen, X.; Carlson, R.; Nadolny, C.; Gabriel, G.; Olsen, M.; Wands, J.R. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget, 2015, 6(2), 1231-1248.
[http://dx.doi.org/10.18632/oncotarget.2840] [PMID: 25483102]
[69]
Sureban, S.M.; May, R.; Mondalek, F.G.; Qu, D.; Ponnurangam, S.; Pantazis, P.; Anant, S.; Ramanujam, R.P.; Houchen, C.W. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism. J. Nanobiotechnology, 2011, 9(1), 40.
[http://dx.doi.org/10.1186/1477-3155-9-40] [PMID: 21929751]
[70]
Kobia, F.; Duchi, S.; Deflorian, G.; Vaccari, T. Pharmacologic inhibition of vacuolar H+ ATPase reduces physiologic and oncogenic Notch signaling. Mol. Oncol., 2014, 8(2), 207-220.
[http://dx.doi.org/10.1016/j.molonc.2013.11.002] [PMID: 24309677]
[71]
Johnson, R.L.; Rothman, A.L.; Xie, J.; Goodrich, L.V.; Bare, J.W.; Bonifas, J.M. Human homolog of patched, a candidate gene for the basal cell nevus syndrome.Science (80- ), 1996, 272(5268), 1668-1671.,
[http://dx.doi.org/10.1126/science.272.5268.1668]
[72]
Cooper, M.K.; Porter, J.A.; Young, K.E.; Beachy, P.A. Teratogen-mediated inhibition of target tissue response to Shh signaling.Science (80-), 1998, 280(5369), 1603-1607.,
[http://dx.doi.org/10.1126/science.280.5369.1603]
[73]
Onishi, H.; Katano, M. Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci., 2011, 102(10), 1756-1760.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02010.x] [PMID: 21679342]
[74]
Wu, F.; Zhang, Y.; Sun, B.; McMahon, A.P.; Wang, Y. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem. Biol., 2017, 24(3), 252-280.
[http://dx.doi.org/10.1016/j.chembiol.2017.02.010] [PMID: 28286127]
[75]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[76]
Forbes, S.A.; Bhamra, G.; Bamford, S.; Dawson, E.; Kok, C.; Clements, J.; Menzies, A.; Teague, J.W.; Futreal, P.A.; Stratton, M.R. The catalogue of somatic mutations in cancer (COSMIC). Curr. Protoc. Hum. Genet., 2008, Chapter 10(1), 11;
[http://dx.doi.org/10.1002/0471142905.hg1011s57] [PMID: 18428421]
[77]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[78]
Maira, S.M.; Pecchi, S.; Huang, A.; Burger, M.; Knapp, M.; Sterker, D.; Schnell, C.; Guthy, D.; Nagel, T.; Wiesmann, M.; Brachmann, S.; Fritsch, C.; Dorsch, M.; Chène, P.; Shoemaker, K.; De Pover, A.; Menezes, D.; Martiny-Baron, G.; Fabbro, D.; Wilson, C.J.; Schlegel, R.; Hofmann, F.; García-Echeverría, C.; Sellers, W.R.; Voliva, C.F. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol. Cancer Ther., 2012, 11(2), 317-328.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0474] [PMID: 22188813]
[79]
Dong, S.; Guinn, D.; Dubovsky, J.A.; Zhong, Y.; Lehman, A.; Kutok, J.; Woyach, J.A.; Byrd, J.C.; Johnson, A.J. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood, 2014, 124(24), 3583-3586.
[http://dx.doi.org/10.1182/blood-2014-07-587279] [PMID: 25258342]
[80]
Fritsch, C.; Huang, A.; Chatenay-Rivauday, C.; Schnell, C.; Reddy, A.; Liu, M.; Kauffmann, A.; Guthy, D.; Erdmann, D.; De Pover, A.; Furet, P.; Gao, H.; Ferretti, S.; Wang, Y.; Trappe, J.; Brachmann, S.M.; Maira, S.M.; Wilson, C.; Boehm, M.; Garcia-Echeverria, C.; Chene, P.; Wiesmann, M.; Cozens, R.; Lehar, J.; Schlegel, R.; Caravatti, G.; Hofmann, F.; Sellers, W.R. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol. Cancer Ther., 2014, 13(5), 1117-1129.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0865] [PMID: 24608574]
[81]
van Geel, R.M.J.M.; Tabernero, J.; Elez, E.; Bendell, J.C.; Spreafico, A.; Schuler, M.; Yoshino, T.; Delord, J.P.; Yamada, Y.; Lolkema, M.P.; Faris, J.E.; Eskens, F.A.L.M.; Sharma, S.; Yaeger, R.; Lenz, H.J.; Wainberg, Z.A.; Avsar, E.; Chatterjee, A.; Jaeger, S.; Tan, E.; Maharry, K.; Demuth, T.; Schellens, J.H.M. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov., 2017, 7(6), 610-619.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0795] [PMID: 28363909]
[82]
Gopal, A.K.; Kahl, B.S.; de Vos, S.; Wagner-Johnston, N.D.; Schuster, S.J.; Jurczak, W.J.; Flinn, I.W.; Flowers, C.R.; Martin, P.; Viardot, A.; Blum, K.A.; Goy, A.H.; Davies, A.J.; Zinzani, P.L.; Dreyling, M.; Johnson, D.; Miller, L.L.; Holes, L.; Li, D.; Dansey, R.D.; Godfrey, W.R.; Salles, G.A. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med., 2014, 370(11), 1008-1018.
[http://dx.doi.org/10.1056/NEJMoa1314583] [PMID: 24450858]
[83]
Kondapaka, S.B.; Singh, S.S.; Dasmahapatra, G.P.; Sausville, E.A.; Roy, K.K. Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther., 2003, 2(11), 1093-1103.
[PMID: 14617782]
[84]
Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov., 2005, 4(12), 988-1004.
[http://dx.doi.org/10.1038/nrd1902] [PMID: 16341064]
[85]
Orton, R.J.; Sturm, O.E.; Vyshemirsky, V.; Calder, M.; Gilbert, D.R.; Kolch, W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem. J., 2005, 392(Pt 2), 249-261.
[http://dx.doi.org/10.1042/BJ20050908] [PMID: 16293107]
[86]
Takeda, H.; Nishikawa, H.; Osaki, Y. The new era of precision medicine in hepatocellular carcinoma: the urgent need for promising biomarkers. Hepatobiliary Surg. Nutr., 2018, 7(6), 490-491.
[http://dx.doi.org/10.21037/hbsn.2018.08.06] [PMID: 30652097]
[87]
Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198.
[88]
Smalley, I.; Smalley, K.S.M. ERK inhibition: a new front in the war against mapk pathway-driven cancers? Cancer Discov., 2018, 8(2), 140-142.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1355] [PMID: 29431672]
[89]
Dahlman, K.B.; Xia, J.; Hutchinson, K.; Ng, C.; Hucks, D.; Jia, P.; Atefi, M.; Su, Z.; Branch, S.; Lyle, P.L.; Hicks, D.J.; Bozon, V.; Glaspy, J.A.; Rosen, N.; Solit, D.B.; Netterville, J.L.; Vnencak-Jones, C.L.; Sosman, J.A.; Ribas, A.; Zhao, Z.; Pao, W. BRAF(L597) mutations in melanoma are associated with sensitivity to MEK inhibitors. Cancer Discov., 2012, 2(9), 791-797.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0097] [PMID: 22798288]
[90]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[91]
Buolamwini, J.K. Cell cycle molecular targets in novel anticancer drug discovery. Curr. Pharm. Des., 2000, 6(4), 379-392.
[http://dx.doi.org/10.2174/1381612003400948] [PMID: 10788588]
[92]
Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; Shparyk, Y.; Thummala, A.R.; Voytko, N.L.; Fowst, C.; Huang, X.; Kim, S.T.; Randolph, S.; Slamon, D.J. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol., 2015, 16(1), 25-35.
[http://dx.doi.org/10.1016/S1470-2045(14)71159-3] [PMID: 25524798]
[93]
Meijer, L.; Raymond, E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res., 2003, 36(6), 417-425.
[http://dx.doi.org/10.1021/ar0201198] [PMID: 12809528]
[94]
Wang, L-M.; Ren, D-M. Flavopiridol, the first cyclin-dependent kinase inhibitor: recent advances in combination chemotherapy. Mini Rev. Med. Chem., 2010, 10(11), 1058-1070.
[http://dx.doi.org/10.2174/1389557511009011058] [PMID: 21047304]
[95]
Manfredi, M.G.; Ecsedy, J.A.; Chakravarty, A.; Silverman, L.; Zhang, M.; Hoar, K.M.; Stroud, S.G.; Chen, W.; Shinde, V.; Huck, J.J.; Wysong, D.R.; Janowick, D.A.; Hyer, M.L.; Leroy, P.J.; Gershman, R.E.; Silva, M.D.; Germanos, M.S.; Bolen, J.B.; Claiborne, C.F.; Sells, T.B. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res., 2011, 17(24), 7614-7624.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1536] [PMID: 22016509]
[96]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[97]
Anderson, R.T.; Keysar, S.B.; Bowles, D.W.; Glogowska, M.J.; Astling, D.P.; Morton, J.J.; Le, P.; Umpierrez, A.; Eagles-Soukup, J.; Gan, G.N.; Vogler, B.W.; Sehrt, D.; Takimoto, S.M.; Aisner, D.L.; Wilhelm, F.; Frederick, B.A.; Varella-Garcia, M.; Tan, A.C.; Jimeno, A. The dual pathway inhibitor rigosertib is effective in direct patient tumor xenografts of head and neck squamous cell carcinomas. Mol. Cancer Ther., 2013, 12(10), 1994-2005.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0206] [PMID: 23873848]
[98]
Rudolph, D.; Steegmaier, M.; Hoffmann, M.; Grauert, M.; Baum, A.; Quant, J.; Haslinger, C.; Garin-Chesa, P.; Adolf, G.R. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res., 2009, 15(9), 3094-3102.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2445] [PMID: 19383823]
[99]
Sugarman, E.T.; Zhang, G.; Shay, J.W. In perspective: an update on telomere targeting in cancer. Mol. Carcinog., 2019, 58(9), 1581-1588.
[http://dx.doi.org/10.1002/mc.23035] [PMID: 31062416]
[100]
Asai, A.; Oshima, Y.; Yamamoto, Y.; Uochi, T.A.; Kusaka, H.; Akinaga, S.; Yamashita, Y.; Pongracz, K.; Pruzan, R.; Wunder, E.; Piatyszek, M.; Li, S.; Chin, A.C.; Harley, C.B.; Gryaznov, S. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res., 2003, 63(14), 3931-3939.
[PMID: 12873987]
[101]
Thompson, P.A.; Drissi, R.; Muscal, J.A.; Panditharatna, E.; Fouladi, M.; Ingle, A.M.; Ahern, C.H.; Reid, J.M.; Lin, T.; Weigel, B.J.; Blaney, S.M. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL1112). Clin. Cancer Res., 2013, 19(23), 6578-6584.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1117] [PMID: 24097866]
[102]
Ding, X.; Cheng, J.; Pang, Q.; Wei, X.; Zhang, X.; Wang, P.; Yuan, Z.; Qian, D. BIBR1532, a selective telomerase inhibitor, enhances radiosensitivity of non-small cell lung cancer through increasing telomere dysfunction and ATM/CHK1 inhibition. Int. J. Radiat. Oncol. Biol. Phys., 2019, 105(4), 861-874.
[http://dx.doi.org/10.1016/j.ijrobp.2019.08.009] [PMID: 31419512]
[103]
Bauer, N.C.; Corbett, A.H.; Doetsch, P.W. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res., 2015, 43(21), 10083-10101.
[http://dx.doi.org/10.1093/nar/gkv1136] [PMID: 26519467]
[104]
Rainey, M.D.; Charlton, M.E.; Stanton, R.V.; Kastan, M.B. Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res., 2008, 68(18), 7466-7474.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0763] [PMID: 18794134]
[105]
Zabludoff, S.D.; Deng, C.; Grondine, M.R.; Sheehy, A.M.; Ashwell, S.; Caleb, B.L.; Green, S.; Haye, H.R.; Horn, C.L.; Janetka, J.W.; Liu, D.; Mouchet, E.; Ready, S.; Rosenthal, J.L.; Queva, C.; Schwartz, G.K.; Taylor, K.J.; Tse, A.N.; Walker, G.E.; White, A.M. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol. Cancer Ther., 2008, 7(9), 2955-2966.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0492] [PMID: 18790776]
[106]
Ding, Q.; Zhang, Z.; Liu, J.J.; Jiang, N.; Zhang, J.; Ross, T.M.; Chu, X.J.; Bartkovitz, D.; Podlaski, F.; Janson, C.; Tovar, C.; Filipovic, Z.M.; Higgins, B.; Glenn, K.; Packman, K.; Vassilev, L.T.; Graves, B. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem., 2013, 56(14), 5979-5983.
[http://dx.doi.org/10.1021/jm400487c] [PMID: 23808545]
[107]
Chen, S.; Yuan, X.; Xu, H.; Yi, M.; Liu, S.; Wen, F. WNT974 inhibits proliferation, induces apoptosis, and enhances chemosensitivity to doxorubicin in lymphoma cells by inhibiting Wnt/β-catenin signaling. Med. Sci. Monit., 2020, 26e923799
[PMID: 32597418]
[108]
Madan, B.; Ke, Z.; Harmston, N.; Ho, S.Y.; Frois, A.O.; Alam, J. Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene, 2016, 35(17), 2197-2207.
[http://dx.doi.org/10.1038/onc.2015.280]
[109]
Liu, J.; Pan, S.; Hsieh, M.H.; Ng, N.; Sun, F.; Wang, T.; Kasibhatla, S.; Schuller, A.G.; Li, A.G.; Cheng, D.; Li, J.; Tompkins, C.; Pferdekamper, A.; Steffy, A.; Cheng, J.; Kowal, C.; Phung, V.; Guo, G.; Wang, Y.; Graham, M.P.; Flynn, S.; Brenner, J.C.; Li, C.; Villarroel, M.C.; Schultz, P.G.; Wu, X.; McNamara, P.; Sellers, W.R.; Petruzzelli, L.; Boral, A.L.; Seidel, H.M.; McLaughlin, M.E.; Che, J.; Carey, T.E.; Vanasse, G.; Harris, J.L. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20224-20229.
[http://dx.doi.org/10.1073/pnas.1314239110] [PMID: 24277854]
[110]
Jimeno, A.; Gordon, M.; Chugh, R.; Messersmith, W.; Mendelson, D.; Dupont, J.; Stagg, R.; Kapoun, A.M.; Xu, L.; Uttamsingh, S.; Brachmann, R.K.; Smith, D.C. A first-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for wnt ligands, in patients with advanced solid tumors. Clin. Cancer Res., 2017, 23(24), 7490-7497.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2157] [PMID: 28954784]
[111]
Lenz, H.J.; Kahn, M. Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci., 2014, 105(9), 1087-1092.
[http://dx.doi.org/10.1111/cas.12471] [PMID: 24975284]
[112]
Yu, J.; Chen, Y.; Chen, L.; Zhang, L.; Rassenti, L.Z.; Widhopf, G.F., II; Kipps, T.J. Cirmtuzumab inhibits ibrutinib-resistant, Wnt5a-induced Rac1 activation and proliferation in mantle cell lymphoma. Oncotarget, 2018, 9(37), 24731-24736.
[http://dx.doi.org/10.18632/oncotarget.25340] [PMID: 29872501]
[113]
Scarborough, H.A.; Helfrich, B.A.; Casás-Selves, M.; Schuller, A.G.; Grosskurth, S.E.; Kim, J.; Tan, A.C.; Chan, D.C.; Zhang, Z.; Zaberezhnyy, V.; Bunn, P.A.; DeGregori, J. AZ1366: an inhibitor of tankyrase and the canonical wnt pathway that limits the persistence of non-small cell lung cancer cells following EGFR inhibition. Clin. Cancer Res., 2017, 23(6), 1531-1541.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1179] [PMID: 27663586]
[114]
Fulciniti, M.; Tassone, P.; Hideshima, T.; Vallet, S.; Nanjappa, P.; Ettenberg, S.A.; Shen, Z.; Patel, N.; Tai, Y.T.; Chauhan, D.; Mitsiades, C.; Prabhala, R.; Raje, N.; Anderson, K.C.; Stover, D.R.; Munshi, N.C. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood, 2009, 114(2), 371-379.
[http://dx.doi.org/10.1182/blood-2008-11-191577] [PMID: 19417213]
[115]
Shan, J.; Shi, D.L.; Wang, J.; Zheng, J. Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry, 2005, 44(47), 15495-15503.
[http://dx.doi.org/10.1021/bi0512602] [PMID: 16300398]
[116]
Yang, Q.; Chen, L.S.; Ha, M.J.; Do, K.A.; Neelapu, S.S.; Gandhi, V. Idelalisib impacts cell growth through inhibiting translation-regulatory mechanisms in mantle cell lymphoma. Clin. Cancer Res., 2017, 23(1), 181-192.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-3135] [PMID: 27342398]
[117]
Fruman, D.A.; Cantley, L.C. Idelalisib-a PI3Kδ inhibitor for B-cell cancers. N. Engl. J. Med., 2014, 370(11), 1061-1062.
[http://dx.doi.org/10.1056/NEJMe1400055] [PMID: 24620870]
[118]
Folkes, A.J.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Eccles, S.A.; Friedman, L.S.; Hayes, A.; Hancox, T.C.; Kugendradas, A.; Moore, P.; Olivero, A.G.; Pang, J.; Patel, S.; Pergl-Wilson, G.H.; Robson, A.; Saghir, N.; Salphati, L.; Sohal, S.; Ultsch, M.H.; Wallweber, H.J.A.; Wan, N.C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.; Shuttleworth, S.J. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem., 2008, 51, 11.
[119]
Foster, P.; Yamaguchi, K.; Hsu, P.P.; Qian, F.; Du, X.; Wu, J.; Won, K.A.; Yu, P.; Jaeger, C.T.; Zhang, W.; Marlowe, C.K.; Keast, P.; Abulafia, W.; Chen, J.; Young, J.; Plonowski, A.; Yakes, F.M.; Chu, F.; Engell, K.; Bentzien, F.; Lam, S.T.; Dale, S.; Yturralde, O.; Matthews, D.J.; Lamb, P.; Laird, A.D. The selective PI3K inhibitor XL147 (SAR245408) inhibits tumor growth and survival and potentiates the activity of chemotherapeutic agents in preclinical tumor models. Mol. Cancer Ther., 2015, 14(4), 931-940.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0833] [PMID: 25637314]
[120]
Jiang, H.; Fan, D.; Zhou, G.; Li, X.; Deng, H. Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29(1), 34.
[http://dx.doi.org/10.1186/1756-9966-29-34] [PMID: 20412566]
[121]
Davies, B.R.; Greenwood, H.; Dudley, P.; Crafter, C.; Yu, D.H.; Zhang, J.; Li, J.; Gao, B.; Ji, Q.; Maynard, J.; Ricketts, S.A.; Cross, D.; Cosulich, S.; Chresta, C.C.; Page, K.; Yates, J.; Lane, C.; Watson, R.; Luke, R.; Ogilvie, D.; Pass, M. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol. Cancer Ther., 2012, 11(4), 873-887.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0824-T] [PMID: 22294718]
[122]
Saura, C.; Roda, D.; Roselló, S.; Oliveira, M.; Macarulla, T.; Pérez-Fidalgo, J.A.; Morales-Barrera, R.; Sanchis-García, J.M.; Musib, L.; Budha, N.; Zhu, J.; Nannini, M.; Chan, W.Y.; Sanabria Bohórquez, S.M.; Meng, R.D.; Lin, K.; Yan, Y.; Patel, P.; Baselga, J.; Tabernero, J.; Cervantes, A. A first-in-human phase I study of the ATP-competitive AKT inhibitor Ipatasertib demonstrates Robust and safe targeting of AKT in patients with solid tumors. Cancer Discov., 2017, 7(1), 102-113.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0512] [PMID: 27872130]
[123]
Sun, L.; Huang, Y.; Liu, Y.; Zhao, Y.; He, X.; Zhang, L. Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-κB directly regulates PUMA-dependent apoptosis. Cell Death Dis., 2018, 9(9), 1-13.
[http://dx.doi.org/10.1038/s41419-018-0943-9]
[124]
Pinton, G.; Manente, A.G.; Angeli, G.; Mutti, L.; Moro, L. Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma. PLoS One, 2012, 7(5)e36856
[http://dx.doi.org/10.1371/journal.pone.0036856] [PMID: 22590625]
[125]
Imrali, A.; Mao, X.; Yeste-Velasco, M.; Shamash, J.; Lu, Y. Rapamycin inhibits prostate cancer cell growth through cyclin D1 and enhances the cytotoxic efficacy of cisplatin. Am. J. Cancer Res., 2016, 6(8), 1772-1784.
[PMID: 27648364]
[126]
Mabuchi, S.; Altomare, D.A.; Connolly, D.C.; Klein-Szanto, A.; Litwin, S.; Hoelzle, M.K.; Hensley, H.H.; Hamilton, T.C.; Testa, J.R. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res., 2007, 67(6), 2408-2413.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4490] [PMID: 17363557]
[127]
Shi, F.; Zhang, J.; Liu, H.; Wu, L.; Jiang, H.; Wu, Q.; Liu, T.; Lou, M.; Wu, H. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget, 2017, 9(1), 706-717.
[http://dx.doi.org/10.18632/oncotarget.23091] [PMID: 29416647]
[128]
Chresta, C.M.; Davies, B.R.; Hickson, I.; Harding, T.; Cosulich, S.; Critchlow, S.E.; Vincent, J.P.; Ellston, R.; Jones, D.; Sini, P.; James, D.; Howard, Z.; Dudley, P.; Hughes, G.; Smith, L.; Maguire, S.; Hummersone, M.; Malagu, K.; Menear, K.; Jenkins, R.; Jacobsen, M.; Smith, G.C.; Guichard, S.; Pass, M. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res., 2010, 70(1), 288-298.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1751] [PMID: 20028854]
[129]
Hertzman Johansson, C.; Egyhazi Brage, S. BRAF inhibitors in cancer therapy. Pharmacol. Ther., 2014, 142(2), 176-182.
[http://dx.doi.org/10.1016/j.pharmthera.2013.11.011] [PMID: 24325952]
[130]
Wright, C.J.M.; McCormack, P.L. Trametinib: first global approval. Drugs, 2013, 73(11), 1245-1254.
[http://dx.doi.org/10.1007/s40265-013-0096-1] [PMID: 23846731]
[131]
Han, K.; Jin, J.Y.; Marchand, M.; Eppler, S.; Choong, N.; Hack, S.P.; Tikoo, N.; Bruno, R.; Dresser, M.; Musib, L.; Budha, N.R. Population pharmacokinetics and dosing implications for cobimetinib in patients with solid tumors. Cancer Chemother. Pharmacol., 2015, 76(5), 917-924.
[http://dx.doi.org/10.1007/s00280-015-2862-0] [PMID: 26365290]
[132]
Woodfield, S.E.; Zhang, L.; Scorsone, K.A.; Liu, Y.; Zage, P.E. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer, 2016, 16(1), 172.
[http://dx.doi.org/10.1186/s12885-016-2199-z] [PMID: 26925841]
[133]
Ciombor, K.K.; Bekaii-Saab, T. Selumetinib for the treatment of cancer. Expert Opin. Investig. Drugs, 2015, 24(1), 111-123.
[http://dx.doi.org/10.1517/13543784.2015.982275] [PMID: 25385055]
[134]
Germann, U.A.; Furey, B.F.; Markland, W.; Hoover, R.R.; Aronov, A.M.; Roix, J.J.; Hale, M.; Boucher, D.M.; Sorrell, D.A.; Martinez-Botella, G.; Fitzgibbon, M.; Shapiro, P.; Wick, M.J.; Samadani, R.; Meshaw, K.; Groover, A.; DeCrescenzo, G.; Namchuk, M.; Emery, C.M.; Saha, S.; Welsch, D.J. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Mol. Cancer Ther., 2017, 16(11), 2351-2363.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0456] [PMID: 28939558]
[135]
Barok, M.; Joensuu, H.; Isola, J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res., 2014, 16(2), 209.
[http://dx.doi.org/10.1186/bcr3621] [PMID: 24887180]
[136]
Valabrega, G.; Montemurro, F.; Aglietta, M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann. Oncol., 2007, 18(6), 977-984.
[http://dx.doi.org/10.1093/annonc/mdl475] [PMID: 17229773]
[137]
Smith, D.C.; Eisenberg, P.D.; Manikhas, G.; Chugh, R.; Gubens, M.A.; Stagg, R.J.; Kapoun, A.M.; Xu, L.; Dupont, J.; Sikic, B. A phase I dose escalation and expansion study of the anticancer stem cell agent demcizumab (anti-DLL4) in patients with previously treated solid tumors. Clin. Cancer Res., 2014, 20(24), 6295-6303.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1373] [PMID: 25324140]
[138]
Mancarella, S.; Serino, G.; Dituri, F.; Cigliano, A.; Ribback, S.; Wang, J.; Chen, X.; Calvisi, D.F.; Giannelli, G. Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Cell Death Differ., 2020, 27(8), 2330-2343.
[http://dx.doi.org/10.1038/s41418-020-0505-4] [PMID: 32042099]
[139]
Zhao, H.; Gulesserian, S.; Ganesan, S.K.; Zeng, Z.; Ou, J.; Robles, V. Abstract 3853: Potential mechanisms for thrombocytopenia and neutropenia induced by antibody-drug conjugates. Cancer Res., 2016, 76, 3853-3853.
[140]
Chiorean, E.G.; LoRusso, P.; Strother, R.M.; Diamond, J.R.; Younger, A.; Messersmith, W.A.; Adriaens, L.; Liu, L.; Kao, R.J.; DiCioccio, A.T.; Kostic, A.; Leek, R.; Harris, A.; Jimeno, A. A phase I first-in-human study of enoticumab (REGN421), a fully human delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(12), 2695-2703.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2797] [PMID: 25724527]
[141]
Zhang, Y.; Li, D.; Jiang, Q.; Cao, S.; Sun, H.; Chai, Y.; Li, X.; Ren, T.; Yang, R.; Feng, F.; Li, B.A.; Zhao, Q. Novel ADAM-17 inhibitor ZLDI-8 enhances the in vitro and in vivo chemotherapeutic effects of Sorafenib on hepatocellular carcinoma cells. Cell Death Dis., 2018, 9(7), 743.
[http://dx.doi.org/10.1038/s41419-018-0804-6] [PMID: 29970890]
[142]
El-Khoueiry, A.B.; Desai, J.; Iyer, S.P.; Gadgeel, S.M.; Ramalingam, S.S.; Horn, L. A phase I study of AL101, a pan-NOTCH inhibitor, in patients (pts) with locally advanced or metastatic solid tumors. J. Clin. Oncol., 2018, 36(15), 2515-2515.
[http://dx.doi.org/10.1200/JCO.2018.36.15_suppl.2515]
[143]
Habets, R.A.; de Bock, C.E.; Serneels, L.; Lodewijckx, I.; Verbeke, D.; Nittner, D.; Narlawar, R.; Demeyer, S.; Dooley, J.; Liston, A.; Taghon, T.; Cools, J.; de Strooper, B. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci. Transl. Med., 2019, 11(494)eaau6246
[http://dx.doi.org/10.1126/scitranslmed.aau6246] [PMID: 31142678]
[144]
Munchhof, M.J.; Li, Q.; Shavnya, A.; Borzillo, G.V.; Boyden, T.L.; Jones, C.S.; LaGreca, S.D.; Martinez-Alsina, L.; Patel, N.; Pelletier, K.; Reiter, L.A.; Robbins, M.D.; Tkalcevic, G.T. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med. Chem. Lett., 2011, 3(2), 106-111.
[http://dx.doi.org/10.1021/ml2002423] [PMID: 24900436]
[145]
Pan, S.; Wu, X.; Jiang, J.; Gao, W.; Wan, Y.; Cheng, D.; Han, D.; Liu, J.; Englund, N.P.; Wang, Y.; Peukert, S.; Miller-Moslin, K.; Yuan, J.; Guo, R.; Matsumoto, M.; Vattay, A.; Jiang, Y.; Tsao, J.; Sun, F.; Pferdekamper, A.C.; Dodd, S.; Tuntland, T.; Maniara, W.; Kelleher, J.F., III; Yao, Y.M.; Warmuth, M.; Williams, J.; Dorsch, M. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett., 2010, 1(3), 130-134.
[http://dx.doi.org/10.1021/ml1000307] [PMID: 24900187]
[146]
Robarge, K.D.; Brunton, S.A.; Castanedo, G.M.; Cui, Y.; Dina, M.S.; Goldsmith, R.; Gould, S.E.; Guichert, O.; Gunzner, J.L.; Halladay, J.; Jia, W.; Khojasteh, C.; Koehler, M.F.; Kotkow, K.; La, H.; Lalonde, R.L.; Lau, K.; Lee, L.; Marshall, D.; Marsters, J.C., Jr; Murray, L.J.; Qian, C.; Rubin, L.L.; Salphati, L.; Stanley, M.S.; Stibbard, J.H.; Sutherlin, D.P.; Ubhayaker, S.; Wang, S.; Wong, S.; Xie, M. GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett., 2009, 19(19), 5576-5581.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.049] [PMID: 19716296]
[147]
Stanton, B.Z.; Peng, L.F.; Maloof, N.; Nakai, K.; Wang, X.; Duffner, J.L.; Taveras, K.M.; Hyman, J.M.; Lee, S.W.; Koehler, A.N.; Chen, J.K.; Fox, J.L.; Mandinova, A.; Schreiber, S.L. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat. Chem. Biol., 2009, 5(3), 154-156.
[http://dx.doi.org/10.1038/nchembio.142] [PMID: 19151731]
[148]
Ericson, J.; Morton, S.; Kawakami, A.; Roelink, H.; Jessell, T.M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 1996, 87(4), 661-673.
[http://dx.doi.org/10.1016/S0092-8674(00)81386-0] [PMID: 8929535]
[149]
Lauth, M.; Bergström, A.; Shimokawa, T.; Toftgård, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. USA, 2007, 104(20), 8455-8460.
[http://dx.doi.org/10.1073/pnas.0609699104] [PMID: 17494766]
[150]
Hyman, J.M.; Firestone, A.J.; Heine, V.M.; Zhao, Y.; Ocasio, C.A.; Han, K.; Sun, M.; Rack, P.G.; Sinha, S.; Wu, J.J.; Solow-Cordero, D.E.; Jiang, J.; Rowitch, D.H.; Chen, J.K. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 14132-14137.
[http://dx.doi.org/10.1073/pnas.0907134106] [PMID: 19666565]
[151]
Shapiro, G.I. Preclinical and clinical development of the cyclin-dependent kinase inhibitor flavopiridol. Clin. Cancer Res., 2004, 10(12 Pt 2), 4270s-4275s.
[http://dx.doi.org/10.1158/1078-0432.CCR-040020] [PMID: 15217973]
[152]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Levy, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med., 2015, 3(10), 135.
[PMID: 26207228]
[153]
Dey, A.; Wong, E.T.; Cheok, C.F.; Tergaonkar, V.; Lane, D.P. R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death Differ., 2008, 15(2), 263-273.
[http://dx.doi.org/10.1038/sj.cdd.4402257] [PMID: 17975552]
[154]
Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Prabhavalkar, D.; Wiswell, D.; Seghezzi, W.; Paruch, K.; Dwyer, M.P.; Doll, R.; Nomeir, A.; Windsor, W.; Fischmann, T.; Wang, Y.; Oft, M.; Chen, T.; Kirschmeier, P.; Lees, E.M. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther., 2010, 9(8), 2344-2353.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0324] [PMID: 20663931]
[155]
Feldmann, G.; Mishra, A.; Bisht, S.; Karikari, C.; Garrido-Laguna, I.; Rasheed, Z.; Ottenhof, N.A.; Dadon, T.; Alvarez, H.; Fendrich, V.; Rajeshkumar, N.V.; Matsui, W.; Brossart, P.; Hidalgo, M.; Bannerji, R.; Maitra, A.; Nelkin, B.D. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol. Ther., 2011, 12(7), 598-609.
[http://dx.doi.org/10.4161/cbt.12.7.16475] [PMID: 21768779]
[156]
Fry, D.W.; Harvey, P.J.; Keller, P.R.; Elliott, W.L.; Meade, M.; Trachet, E.; Albassam, M.; Zheng, X.; Leopold, W.R.; Pryer, N.K.; Toogood, P.L. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther., 2004, 3(11), 1427-1438.
[PMID: 15542782]
[157]
Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.S.; Sonke, G.S.; Paluch-Shimon, S.; Campone, M.; Blackwell, K.L.; André, F.; Winer, E.P.; Janni, W.; Verma, S.; Conte, P.; Arteaga, C.L.; Cameron, D.A.; Petrakova, K.; Hart, L.L.; Villanueva, C.; Chan, A.; Jakobsen, E.; Nusch, A.; Burdaeva, O.; Grischke, E.M.; Alba, E.; Wist, E.; Marschner, N.; Favret, A.M.; Yardley, D.; Bachelot, T.; Tseng, L.M.; Blau, S.; Xuan, F.; Souami, F.; Miller, M.; Germa, C.; Hirawat, S.; O’Shaughnessy, J. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med., 2016, 375(18), 1738-1748.
[http://dx.doi.org/10.1056/NEJMoa1609709] [PMID: 27717303]
[158]
Martin, J.M.; Goldstein, L.J. Profile of abemaciclib and its potential in the treatment of breast cancer. OncoTargets Ther., 2018, 11, 5253-5259.
[http://dx.doi.org/10.2147/OTT.S149245] [PMID: 30214230]
[159]
Canon, J.; Osgood, T.; Olson, S.H.; Saiki, A.Y.; Robertson, R.; Yu, D.; Eksterowicz, J.; Ye, Q.; Jin, L.; Chen, A.; Zhou, J.; Cordover, D.; Kaufman, S.; Kendall, R.; Oliner, J.D.; Coxon, A.; Radinsky, R. The MDM2 inhibitor AMG 232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents. Mol. Cancer Ther., 2015, 14(3), 649-658.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0710] [PMID: 25567130]
[160]
Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med., 2016, 8(1), 69.
[http://dx.doi.org/10.1186/s13073-016-0324-x] [PMID: 27323951]
[161]
Guzi, T.J.; Paruch, K.; Dwyer, M.P.; Labroli, M.; Shanahan, F.; Davis, N.; Taricani, L.; Wiswell, D.; Seghezzi, W.; Penaflor, E.; Bhagwat, B.; Wang, W.; Gu, D.; Hsieh, Y.; Lee, S.; Liu, M.; Parry, D. Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol. Cancer Ther., 2011, 10(4), 591-602.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0928] [PMID: 21321066]
[162]
Bi, S.; Wei, Q.; Zhao, Z.; Chen, L.; Wang, C.; Xie, S. Wee1 inhibitor AZD1775 effectively inhibits the malignant phenotypes of esophageal squamous cell carcinoma in vitro and in vivo. Front. Pharmacol., 2019, 10, 864.
[http://dx.doi.org/10.3389/fphar.2019.00864] [PMID: 31427973]
[163]
Davies, K.D.; Cable, P.L.A.; Garrus, J.E.; Sullivan, F.X.; von Carlowitz, I.; Huerou, Y.L.; Wallace, E.; Woessner, R.D.; Gross, S. Chk1 inhibition and Wee1 inhibition combine synergistically to impede cellular proliferation. Cancer Biol. Ther., 2011, 12(9), 788-796.
[http://dx.doi.org/10.4161/cbt.12.9.17673] [PMID: 21892012]
[164]
Gumireddy, K.; Reddy, M.V.R.; Cosenza, S.C.; Boominathan, R.; Baker, S.J.; Papathi, N.; Jiang, J.; Holland, J.; Reddy, E.P. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell, 2005, 7(3), 275-286.
[http://dx.doi.org/10.1016/j.ccr.2005.02.009] [PMID: 15766665]
[165]
Abdelfatah, S.; Berg, A.; Huang, Q.; Yang, L.J.; Hamdoun, S.; Klinger, A.; Greten, H.J.; Fleischer, E.; Berg, T.; Wong, V.K.W.; Efferth, T. MCC1019, a selective inhibitor of the Polo-box domain of Polo-like kinase 1 as novel, potent anticancer candidate. Acta Pharm. Sin. B, 2019, 9(5), 1021-1034.
[http://dx.doi.org/10.1016/j.apsb.2019.02.001] [PMID: 31649851]
[166]
Moretti, L.; Niermann, K.; Schleicher, S.; Giacalone, N.J.; Varki, V.; Kim, K.W.; Kopsombut, P.; Jung, D.K.; Lu, B. MLN8054, a small molecule inhibitor of aurora kinase a, sensitizes androgen-resistant prostate cancer to radiation. Int. J. Radiat. Oncol. Biol. Phys., 2011, 80(4), 1189-1197.
[http://dx.doi.org/10.1016/j.ijrobp.2011.01.060] [PMID: 21514073]
[167]
Mayeux, R. Biomarkers: potential uses and limitations. NeuroRx, 2004, 1(2), 182-188.
[http://dx.doi.org/10.1602/neurorx.1.2.182] [PMID: 15717018]
[168]
Mehta, S.; Shelling, A.; Muthukaruppan, A.; Lasham, A.; Blenkiron, C.; Laking, G.; Print, C. Predictive and prognostic molecular markers for cancer medicine. Ther. Adv. Med. Oncol., 2010, 2(2), 125-148.
[http://dx.doi.org/10.1177/1758834009360519] [PMID: 21789130]
[169]
Couch, F.J.; Nathanson, K.L.; Offit, K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention.Science (80-), 2014, 343(6178), 1466-1470.,
[170]
Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res., 2014, 20(19), 5064-5074.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3271] [PMID: 24714771]
[171]
Brahmer, J.R.; Drake, C.G.; Wollner, I.; Powderly, J.D.; Picus, J.; Sharfman, W.H.; Stankevich, E.; Pons, A.; Salay, T.M.; McMiller, T.L.; Gilson, M.M.; Wang, C.; Selby, M.; Taube, J.M.; Anders, R.; Chen, L.; Korman, A.J.; Pardoll, D.M.; Lowy, I.; Topalian, S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 2010, 28(19), 3167-3175.
[http://dx.doi.org/10.1200/JCO.2009.26.7609] [PMID: 20516446]
[172]
Marchetti, A.; Barberis, M.; Franco, R.; De Luca, G.; Pace, M.V.; Staibano, S.; Volante, M.; Buttitta, F.; Guerini-Rocco, E.; Righi, L.; D’antuono, T.; Scagliotti, G.V.; Pinto, C.; De Rosa, G.; Papotti, M. Multicenter comparison of 22C3 PharmDx (Agilent) and SP263 (Ventana) assays to test PD-L1 expression for NSCLC patients to be treated with immune checkpoint inhibitors. J. Thorac. Oncol., 2017, 12(11), 1654-1663.
[http://dx.doi.org/10.1016/j.jtho.2017.07.031] [PMID: 28818609]
[173]
Cheng, D.T.; Mitchell, T.N.; Zehir, A.; Shah, R.H.; Benayed, R.; Syed, A.; Chandramohan, R.; Liu, Z.Y.; Won, H.H.; Scott, S.N.; Brannon, A.R.; O’Reilly, C.; Sadowska, J.; Casanova, J.; Yannes, A.; Hechtman, J.F.; Yao, J.; Song, W.; Ross, D.S.; Oultache, A.; Dogan, S.; Borsu, L.; Hameed, M.; Nafa, K.; Arcila, M.E.; Ladanyi, M.; Berger, M.F. Memorial sloan kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn., 2015, 17(3), 251-264.
[http://dx.doi.org/10.1016/j.jmoldx.2014.12.006] [PMID: 25801821]
[174]
Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol., 2019, 30(1), 44-56.
[http://dx.doi.org/10.1093/annonc/mdy495] [PMID: 30395155]
[175]
Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med., 2014, 370(14), 1287-1297.
[http://dx.doi.org/10.1056/NEJMoa1311194] [PMID: 24645800]
[176]
Shapiro, J.A.; Bobo, J.K.; Church, T.R.; Rex, D.K.; Chovnick, G.; Thompson, T.D.; Zauber, A.G.; Lieberman, D.; Levin, T.R.; Joseph, D.A.; Nadel, M.R. A comparison of fecal immunochemical and high-sensitivity guaiac tests for colorectal cancer screening. Am. J. Gastroenterol., 2017, 112(11), 1728-1735.
[http://dx.doi.org/10.1038/ajg.2017.285] [PMID: 29016558]
[177]
Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; Reinacher-Schick, A.; Tortora, G.; Algül, H.; O’Reilly, E.M.; McGuinness, D.; Cui, K.Y.; Schlienger, K.; Locker, G.Y.; Kindler, H.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med., 2019, 381(4), 317-327.
[http://dx.doi.org/10.1056/NEJMoa1903387] [PMID: 31157963]
[178]
Gunderson, C.C.; Moore, K.N. BRACAnalysis CDx as a companion diagnostic tool for Lynparza. Expert Rev. Mol. Diagn., 2015, 15(9), 1111-1116.
[http://dx.doi.org/10.1586/14737159.2015.1078238] [PMID: 26292709]
[179]
Gittelman, M.C.; Hertzman, B.; Bailen, J.; Williams, T.; Koziol, I.; Henderson, R.J.; Efros, M.; Bidair, M.; Ward, J.F. PCA3 molecular urine test as a predictor of repeat prostate biopsy outcome in men with previous negative biopsies: a prospective multicenter clinical study. J. Urol., 2013, 190(1), 64-69.
[http://dx.doi.org/10.1016/j.juro.2013.02.018] [PMID: 23416644]
[180]
Alunni-Fabbroni, M.; Rönsch, K.; Huber, T.; Cyran, C.C.; Seidensticker, M.; Mayerle, J.; Pech, M.; Basu, B.; Verslype, C.; Benckert, J.; Malfertheiner, P.; Ricke, J. Circulating DNA as prognostic biomarker in patients with advanced hepatocellular carcinoma: a translational exploratory study from the SORAMIC trial. J. Transl. Med., 2019, 17(1), 328.
[http://dx.doi.org/10.1186/s12967-019-2079-9] [PMID: 31570105]
[181]
Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.W.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; Shrager, J.B.; Loo, B.W., Jr; Alizadeh, A.A.; Diehn, M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med., 2014, 20(5), 548-554.
[http://dx.doi.org/10.1038/nm.3519] [PMID: 24705333]
[182]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[183]
Wang, L.; Li, Y.; Guan, X.; Zhao, J.; Shen, L.; Liu, J. Exosomal double-stranded DNA as a biomarker for the diagnosis and preoperative assessment of pheochromocytoma and paraganglioma. Mol. Cancer, 2018, 17(1), 128.
[http://dx.doi.org/10.1186/s12943-018-0876-z] [PMID: 30139385]
[184]
Xi, X.; Li, T.; Huang, Y.; Sun, J.; Zhu, Y.; Yang, Y.; Lu, Z.J. RNA biomarkers: Frontier of precision medicine for cancer. Noncoding RNA, 2017, 3(1), 9.
[http://dx.doi.org/10.3390/ncrna3010009] [PMID: 29657281]
[185]
Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation-exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep., 2015, 5(1), 8057.
[http://dx.doi.org/10.1038/srep08057] [PMID: 25624062]
[186]
Li, P.; Chen, S.; Chen, H.; Mo, X.; Li, T.; Shao, Y.; Xiao, B.; Guo, J. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin. Chim. Acta, 2015, 444, 132-136.
[http://dx.doi.org/10.1016/j.cca.2015.02.018] [PMID: 25689795]
[187]
Zhang, H.D.; Jiang, L.H.; Sun, D.W.; Hou, J.C.; Ji, Z.L. CircRNA: a novel type of biomarker for cancer. Breast Cancer, 2018, 25(1), 1-7.
[http://dx.doi.org/10.1007/s12282-017-0793-9] [PMID: 28721656]
[188]
Chen, B.; Huang, S. Circular RNA: an emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett., 2018, 418, 41-50.
[http://dx.doi.org/10.1016/j.canlet.2018.01.011] [PMID: 29330104]
[189]
Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; Watanabe, M.; Nakagama, H.; Yokota, J.; Kohno, T.; Tsuchiya, N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 2014, 9(4)e92921
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[190]
Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[191]
Iorio, M.V.; Croce, C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 2012, 4(3), 143-159.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[192]
Schwarzenbach, H.; Nishida, N.; Calin, G.A.; Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol., 2014, 11(3), 145-156.
[http://dx.doi.org/10.1038/nrclinonc.2014.5] [PMID: 24492836]
[193]
Hamam, R.; Ali, A.M.; Alsaleh, K.A.; Kassem, M.; Alfayez, M.; Aldahmash, A.; Alajez, N.M. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci. Rep., 2016, 6(1), 25997.
[http://dx.doi.org/10.1038/srep25997] [PMID: 27180809]
[194]
Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells, 2020, 9(2), 276.
[http://dx.doi.org/10.3390/cells9020276] [PMID: 31979244]
[195]
Zhang, H.; Mao, F.; Shen, T.; Luo, Q.; Ding, Z.; Qian, L.; Huang, J. Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol. Lett., 2017, 13(2), 669-676.
[http://dx.doi.org/10.3892/ol.2016.5462] [PMID: 28356944]
[196]
Shao, Y.; Chen, L.; Lu, R.; Zhang, X.; Xiao, B.; Ye, G.; Guo, J. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumour Biol., 2017, 39(4)1010428317699125
[http://dx.doi.org/10.1177/1010428317699125] [PMID: 28443463]
[197]
Chen, S.; Li, T.; Zhao, Q.; Xiao, B.; Guo, J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim. Acta, 2017, 466, 167-171.
[http://dx.doi.org/10.1016/j.cca.2017.01.025] [PMID: 28130019]
[198]
Peng, W.; Zhu, J.; Liu, D.; Qian, P.; Zhang, Q.; Li, H. Clinical value of piR-36026 and piR-651 in esophageal squamous cell carcinoma. J. Clin. Oncol., 2020, 38(15), e15265-e15265.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.e15265]
[199]
Cordeiro, A.; Navarro, A.; Gaya, A.; Díaz-Beyá, M.; Gonzalez-Farré, B.; Castellano, J.J.; Fuster, D.; Martínez, C.; Martínez, A.; Monzó, M. PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget, 2016, 7(29), 46002-46013.
[http://dx.doi.org/10.18632/oncotarget.10015] [PMID: 27329591]
[200]
Yang, Z.; Zhou, L.; Wu, L.M.; Lai, M.C.; Xie, H.Y.; Zhang, F.; Zheng, S.S. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol., 2011, 18(5), 1243-1250.
[http://dx.doi.org/10.1245/s10434-011-1581-y] [PMID: 21327457]
[201]
Geng, Y.J.; Xie, S.L.; Li, Q.; Ma, J.; Wang, G.Y. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res., 2011, 39(6), 2119-2128.
[http://dx.doi.org/10.1177/147323001103900608] [PMID: 22289527]
[202]
Kogo, R.; Shimamura, T.; Mimori, K.; Kawahara, K.; Imoto, S.; Sudo, T.; Tanaka, F.; Shibata, K.; Suzuki, A.; Komune, S.; Miyano, S.; Mori, M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res., 2011, 71(20), 6320-6326.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1021] [PMID: 21862635]
[203]
Kim, K.; Jutooru, I.; Chadalapaka, G.; Johnson, G.; Frank, J.; Burghardt, R.; Kim, S.; Safe, S. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 2013, 32(13), 1616-1625.
[http://dx.doi.org/10.1038/onc.2012.193] [PMID: 22614017]
[204]
Sørensen, K.P.; Thomassen, M.; Tan, Q.; Bak, M.; Cold, S.; Burton, M.; Larsen, M.J.; Kruse, T.A. Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res. Treat., 2013, 142(3), 529-536.
[http://dx.doi.org/10.1007/s10549-013-2776-7] [PMID: 24258260]
[205]
Pellegrini, K.L.; Sanda, M.G.; Moreno, C.S. RNA biomarkers to facilitate the identification of aggressive prostate cancer. Mol. Aspects Med., 2015, 45, 37-46.
[http://dx.doi.org/10.1016/j.mam.2015.05.003] [PMID: 26022941]
[206]
Liu, Y.; Zong, Z.H.; Guan, X.; Wang, L.L.; Zhao, Y. The role of long non-coding RNA PCA3 in epithelial ovarian carcinoma tumorigenesis and progression. Gene, 2017, 633, 42-47.
[http://dx.doi.org/10.1016/j.gene.2017.08.027] [PMID: 28864116]
[207]
Lemos, A.E.G.; Matos, A.D.R.; Ferreira, L.B.; Gimba, E.R.P. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget, 2019, 10(61), 6589-6603.
[http://dx.doi.org/10.18632/oncotarget.27284] [PMID: 31762940]
[208]
Pu, M.; Messer, K.; Davies, S.R.; Vickery, T.L.; Pittman, E.; Parker, B.A.; Ellis, M.J.; Flatt, S.W.; Marinac, C.R.; Nelson, S.H.; Mardis, E.R.; Pierce, J.P.; Natarajan, L. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res. Treat., 2020, 179(1), 197-206.
[http://dx.doi.org/10.1007/s10549-019-05446-y] [PMID: 31542876]
[209]
Ochoa, S.; de Anda-Jáuregui, G.; Hernández-Lemus, E. Multi-omic regulation of the PAM50 gene signature in breast cancer molecular subtypes. Front. Oncol., 2020, 10, 845.
[http://dx.doi.org/10.3389/fonc.2020.00845] [PMID: 32528899]
[210]
March-Villalba, J.A.; Martínez-Jabaloyas, J.M.; Herrero, M.J.; Santamaria, J.; Aliño, S.F.; Dasí, F. Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS One, 2012, 7(8)e43470
[http://dx.doi.org/10.1371/journal.pone.0043470] [PMID: 22916267]
[211]
Liao, J.; Yu, L.; Mei, Y.; Guarnera, M.; Shen, J.; Li, R.; Liu, Z.; Jiang, F. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol. Cancer, 2010, 9(1), 198.
[http://dx.doi.org/10.1186/1476-4598-9-198] [PMID: 20663213]
[212]
Mourksi, N-E-H.; Morin, C.; Fenouil, T.; Diaz, J-J.; Marcel, V. snoRNAs offer novel insight and promising perspectives for lung cancer understanding and management. Cells, 2020, 9(3), 541.
[http://dx.doi.org/10.3390/cells9030541] [PMID: 32111002]
[213]
Hwang, J.H.; Voortman, J.; Giovannetti, E.; Steinberg, S.M.; Leon, L.G.; Kim, Y.T.; Funel, N.; Park, J.K.; Kim, M.A.; Kang, G.H.; Kim, S.W.; Del Chiaro, M.; Peters, G.J.; Giaccone, G. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One, 2010, 5(5)e10630
[http://dx.doi.org/10.1371/journal.pone.0010630] [PMID: 20498843]
[214]
Teplyuk, N.M.; Mollenhauer, B.; Gabriely, G.; Giese, A.; Kim, E.; Smolsky, M.; Kim, R.Y.; Saria, M.G.; Pastorino, S.; Kesari, S.; Krichevsky, A.M. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-oncol., 2012, 14(6), 689-700.
[http://dx.doi.org/10.1093/neuonc/nos074] [PMID: 22492962]
[215]
Wei, J.; Gao, W.; Zhu, C.J.; Liu, Y.Q.; Mei, Z.; Cheng, T.; Shu, Y.Q. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin. J. Cancer, 2011, 30(6), 407-414.
[http://dx.doi.org/10.5732/cjc.010.10522] [PMID: 21627863]
[216]
Wu, J.; Li, G.; Wang, Z.; Yao, Y.; Chen, R.; Pu, X.; Wang, J. Circulating MicroRNA-21 is a potential diagnostic biomarker in gastric cancer. Dis. Markers, 2015, 2015435656
[http://dx.doi.org/10.1155/2015/435656] [PMID: 26063956]
[217]
Simonian, M.; Mosallayi, M.; Mirzaei, H. Circulating miR-21 as novel biomarker in gastric cancer: diagnostic and prognostic biomarker. J. Cancer Res. Ther., 2018, 14(2), 475.
[PMID: 29516946]
[218]
Liu, G.H.; Zhou, Z.G.; Chen, R.; Wang, M.J.; Zhou, B.; Li, Y.; Sun, X.F. Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol., 2013, 34(4), 2175-2181.
[http://dx.doi.org/10.1007/s13277-013-0753-8] [PMID: 23625654]
[219]
Staff, A.C. An introduction to gene therapy and its potential prenatal use. Acta Obstet. Gynecol. Scand., 2001, 80(6), 485-491.
[PMID: 11380282]
[220]
Cai, M.; Yang, Y. Targeted genome editing tools for disease modeling and gene therapy. Curr. Gene Ther., 2014, 14(1), 2-9.
[http://dx.doi.org/10.2174/156652321402140318165450] [PMID: 24665839]
[221]
Gaj, T.; Sirk, S.J.; Shui, S.L.; Liu, J. Genome-editing technologies: principles and applications. Cold Spring Harb. Perspect. Biol., 2016, 8(12)a023754
[http://dx.doi.org/10.1101/cshperspect.a023754] [PMID: 27908936]
[222]
Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target. Ther., 2020, 5(1), 1-23.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[223]
Gaj, T.; Gersbach, C.A.; Barbas, C.F., III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 2013, 31(7), 397-405.
[http://dx.doi.org/10.1016/j.tibtech.2013.04.004] [PMID: 23664777]
[224]
Kim, H.; Kim, J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 2014, 15(5), 321-334.
[http://dx.doi.org/10.1038/nrg3686] [PMID: 24690881]
[225]
Franic, D.; Dobrinic, P.; Korac, P. Key achievements in gene therapy development and its promising progress with gene editing tools (ZFN, TALEN, CRISPR/Cas9). Mol. Exp. Biol. Med., 2019, 2(1).,
[226]
Shuvalov, O.; Petukhov, A.; Daks, A.; Fedorova, O.; Ermakov, A.; Melino, G.; Barlev, N.A. Current genome editing tools in gene therapy: new approaches to treat cancer. Curr. Gene Ther., 2015, 15(5), 511-529.
[http://dx.doi.org/10.2174/1566523215666150818110241] [PMID: 26282844]
[227]
Qasim, W.; Amrolia, P.J.; Samarasinghe, S.; Ghorashian, S.; Zhan, H.; Stafford, S. First clinical application of talen engineered universal CAR19 T cells in B-ALL. Blood, 2015, 126(23), 2046-2046.
[http://dx.doi.org/10.1182/blood.V126.23.2046.2046]
[228]
Lam, P.; Khan, G.; Stripecke, R.; Hui, K.M.; Kasahara, N.; Peng, K.W.; Guinn, B.A. The innovative evolution of cancer gene and cellular therapies. Cancer Gene Ther., 2013, 20(3), 141-149.
[http://dx.doi.org/10.1038/cgt.2012.93] [PMID: 23370333]
[229]
Salmikangas, P.; Kinsella, N.; Chamberlain, P. Chimeric Antigen Receptor T-Cells (CAR T-Cells) for cancer immunotherapy - moving target for industry? Pharm. Res., 2018, 35(8), 152.
[http://dx.doi.org/10.1007/s11095-018-2436-z] [PMID: 29855723]
[230]
Papadouli, I.; Mueller-Berghaus, J.; Beuneu, C.; Ali, S.; Hofner, B.; Petavy, F.; Tzogani, K.; Miermont, A.; Norga, K.; Kholmanskikh, O.; Leest, T.; Schuessler-Lenz, M.; Salmonson, T.; Gisselbrecht, C.; Garcia, J.L.; Pignatti, F. EMA review of axicabtagene ciloleucel (Yescarta) for the treatment of diffuse large B-cell lymphoma. Oncologist, 2020, 25(10), 894-902.
[http://dx.doi.org/10.1634/theoncologist.2019-0646] [PMID: 32339368]
[231]
O’Leary, M.C.; Lu, X.; Huang, Y.; Lin, X.; Mahmood, I.; Przepiorka, D.; Gavin, D.; Lee, S.; Liu, K.; George, B.; Bryan, W.; Theoret, M.R.; Pazdur, R. FDA Approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory b-cell precursor acute lymphoblastic leukemia. Clin. Cancer Res., 2019, 25(4), 1142-1146.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2035] [PMID: 30309857]
[232]
Prasad, V. Immunotherapy: tisagenlecleucel - the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol., 2018, 15(1), 11-12.
[http://dx.doi.org/10.1038/nrclinonc.2017.156] [PMID: 28975930]
[233]
Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; Qayed, M.; De Moerloose, B.; Hiramatsu, H.; Schlis, K.; Davis, K.L.; Martin, P.L.; Nemecek, E.R.; Yanik, G.A.; Peters, C.; Baruchel, A.; Boissel, N.; Mechinaud, F.; Balduzzi, A.; Krueger, J.; June, C.H.; Levine, B.L.; Wood, P.; Taran, T.; Leung, M.; Mueller, K.T.; Zhang, Y.; Sen, K.; Lebwohl, D.; Pulsipher, M.A.; Grupp, S.A. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med., 2018, 378(5), 439-448.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[234]
Seif, M.; Einsele, H.; Löffler, J. CAR T cells beyond cancer: hope for immunomodulatory therapy of infectious diseases. Front. Immunol., 2019, 10, 2711.
[http://dx.doi.org/10.3389/fimmu.2019.02711] [PMID: 31824500]
[235]
Liu, D. CAR-T “the living drugs”, immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J. Hematol. Oncol., 2019, 12(1), 113.
[http://dx.doi.org/10.1186/s13045-019-0819-1] [PMID: 31703740]
[236]
Ribatti, D. The concept of immune surveillance against tumors. The first theories. Oncotarget, 2017, 8(4), 7175-7180.
[http://dx.doi.org/10.18632/oncotarget.12739] [PMID: 27764780]
[237]
Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol., 2016, 13(5), 273-290.
[http://dx.doi.org/10.1038/nrclinonc.2016.25] [PMID: 26977780]
[238]
Lesokhin, A.M.; Callahan, M.K.; Postow, M.A.; Wolchok, J.D. On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation.Sci. Transl. Med., 2015, 7(280), 280sr1-280sr1.,
[239]
Chen, D.S.; Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013, 39(1), 1-10.
[http://dx.doi.org/10.1016/j.immuni.2013.07.012] [PMID: 23890059]
[240]
Rossi, J.F.; Céballos, P.; Lu, Z.Y. Immune precision medicine for cancer: a novel insight based on the efficiency of immune effector cells. Cancer Commun (Lond), 2019, 39(1), 34.
[http://dx.doi.org/10.1186/s40880-019-0379-3] [PMID: 31200766]
[241]
Lee, J.K.; Priceman, S.J. Precision Medicine-Enabled Cancer Immunotherapy.Cancer Treat. Res., 2019, 178, 189-205;
[http://dx.doi.org/10.1007/978-3-030-16391-4_7]
[242]
Sul, J.; Blumenthal, G.M.; Jiang, X.; He, K.; Keegan, P.; Pazdur, R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist, 2016, 21(5), 643-650.
[http://dx.doi.org/10.1634/theoncologist.2015-0498] [PMID: 27026676]
[243]
Pai-Scherf, L.; Blumenthal, G.M.; Li, H.; Subramaniam, S.; Mishra-Kalyani, P.S.; He, K.; Zhao, H.; Yu, J.; Paciga, M.; Goldberg, K.B.; McKee, A.E.; Keegan, P.; Pazdur, R. FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. Oncologist, 2017, 22(11), 1392-1399.
[http://dx.doi.org/10.1634/theoncologist.2017-0078] [PMID: 28835513]
[244]
Lim, S.H.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opin. Biol. Ther., 2016, 16(3), 397-406.
[http://dx.doi.org/10.1517/14712598.2016.1145652] [PMID: 26800463]
[245]
Chuk, M.K.; Chang, J.T.; Theoret, M.R.; Sampene, E.; He, K.; Weis, S.L.; Helms, W.S.; Jin, R.; Li, H.; Yu, J.; Zhao, H.; Zhao, L.; Paciga, M.; Schmiel, D.; Rawat, R.; Keegan, P.; Pazdur, R. FDA approval summary: accelerated approval of pembrolizumab for second-line treatment of metastatic melanoma. Clin. Cancer Res., 2017, 23(19), 5666-5670.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0663] [PMID: 28235882]
[246]
Fashoyin-Aje, L.; Donoghue, M.; Chen, H.; He, K.; Veeraraghavan, J.; Goldberg, K.B.; Keegan, P.; McKee, A.E.; Pazdur, R. FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist, 2019, 24(1), 103-109.
[http://dx.doi.org/10.1634/theoncologist.2018-0221] [PMID: 30120163]
[247]
Poole, R.M.; Vaidya, A. Ramucirumab: first global approval. Drugs, 2014, 74(9), 1047-1058.
[http://dx.doi.org/10.1007/s40265-014-0244-2] [PMID: 24916147]
[248]
Larkins, E.; Blumenthal, G.M.; Yuan, W.; He, K.; Sridhara, R.; Subramaniam, S.; Zhao, H.; Liu, C.; Yu, J.; Goldberg, K.B.; McKee, A.E.; Keegan, P.; Pazdur, R. FDA approval summary: pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist, 2017, 22(7), 873-878.
[http://dx.doi.org/10.1634/theoncologist.2016-0496] [PMID: 28533473]
[249]
Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist, 2016, 21(5), 634-642.
[http://dx.doi.org/10.1634/theoncologist.2015-0507] [PMID: 26984449]
[250]
Raedler, L.A. Opdivo (nivolumab): second PD-1 inhibitor receives FDA approval for unresectable or metastatic melanoma. Am. Health Drug Benefits, 2015, 8, 180-183.
[251]
Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (80-), 2017, 8(Spec Feature), 180.,
[252]
Ning, Y.M.; Suzman, D.; Maher, V.E.; Zhang, L.; Tang, S.; Ricks, T.; Palmby, T.; Fu, W.; Liu, Q.; Goldberg, K.B.; Kim, G.; Pazdur, R. FDA approval summary: atezolizumab for the treatment of patients with progressive advanced urothelial carcinoma after platinum-containing chemotherapy. Oncologist, 2017, 22(6), 743-749.
[http://dx.doi.org/10.1634/theoncologist.2017-0087] [PMID: 28424325]
[253]
Weinstock, C.; Khozin, S.; Suzman, D.; Zhang, L.; Tang, S.; Wahby, S.; Goldberg, K.B.; Kim, G.; Pazdur, R.U.S. Food and Drug Administration approval summary: atezolizumab for metastatic non-small cell lung cancer. Clin. Cancer Res., 2017, 23(16), 4534-4539.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0540] [PMID: 28611199]
[254]
Kim, E.S. Avelumab: first global approval. Drugs, 2017, 77(8), 929-937.
[http://dx.doi.org/10.1007/s40265-017-0749-6] [PMID: 28456944]
[255]
Sambi, M.; Bagheri, L.; Szewczuk, M.R. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol., 2019, 20194508794
[http://dx.doi.org/10.1155/2019/4508794] [PMID: 30941175]
[256]
Klemen, N.D.; Wang, M.; Feingold, P.L.; Cooper, K.; Pavri, S.N.; Han, D.; Detterbeck, F.C.; Boffa, D.J.; Khan, S.A.; Olino, K.; Clune, J.; Ariyan, S.; Salem, R.R.; Weiss, S.A.; Kluger, H.M.; Sznol, M.; Cha, C. Patterns of failure after immunotherapy with checkpoint inhibitors predict durable progression-free survival after local therapy for metastatic melanoma. J. Immunother. Cancer, 2019, 7(1), 196.
[http://dx.doi.org/10.1186/s40425-019-0672-3] [PMID: 31340861]
[257]
Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer, 2019, 18(1), 155.
[http://dx.doi.org/10.1186/s12943-019-1091-2] [PMID: 31690319]
[258]
Deng, R.; Zuo, C.; Li, Y.; Xue, B.; Xun, Z.; Guo, Y.; Wang, X.; Xu, Y.; Tian, R.; Chen, S.; Liu, Q.; Chen, J.; Wang, J.; Huang, X.; Li, H.; Guo, M.; Wang, X.; Yang, M.; Wu, Z.; Wang, J.; Ma, J.; Hu, J.; Li, G.; Tang, S.; Tu, Z.; Ji, H.; Zhu, H. The innate immune effector ISG12a promotes cancer immunity by suppressing the canonical Wnt/β-catenin signaling pathway. Cell. Mol. Immunol., 2020, 17(11), 1163-1179.
[http://dx.doi.org/10.1038/s41423-020-00549-9] [PMID: 32963356]
[259]
Higano, C.S.; Small, E.J.; Schellhammer, P.; Yasothan, U.; Gubernick, S.; Kirkpatrick, P. Sipuleucel-T. Nat. Rev. Drug Discov., 2010, 9(7), 513-514.
[260]
Gulley, J.L.; Mulders, P.; Albers, P.; Banchereau, J.; Bolla, M.; Pantel, K.; Powles, T. Perspectives on sipuleucel-T: its role in the prostate cancer treatment paradigm. OncoImmunology, 2015, 5(4)e1107698
[http://dx.doi.org/10.1080/2162402X.2015.1107698] [PMID: 27141392]
[261]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[262]
Rehman, H.; Silk, A.W.; Kane, M.P.; Kaufman, H.L. Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J. Immunother. Cancer, 2016, 4(1), 53.
[http://dx.doi.org/10.1186/s40425-016-0158-5] [PMID: 27660707]
[263]
Higano, C.S.; Corman, J.M.; Smith, D.C.; Centeno, A.S.; Steidle, C.P.; Gittleman, M.; Simons, J.W.; Sacks, N.; Aimi, J.; Small, E.J. Phase 1/2 dose-escalation study of a GM-CSF-secreting, allogeneic, cellular immunotherapy for metastatic hormone-refractory prostate cancer. Cancer, 2008, 113(5), 975-984.
[http://dx.doi.org/10.1002/cncr.23669] [PMID: 18646045]
[264]
Geary, S.M.; Salem, A.K. Prostate cancer vaccines: update on clinical development. OncoImmunology, 2013, 2(5)e24523
[http://dx.doi.org/10.4161/onci.24523] [PMID: 23762812]
[265]
Zhang, Q.; Ping, J.; Huang, Z.; Zhang, X.; Zhou, J.; Wang, G.; Liu, S.; Ma, J. CAR-T cell therapy in cancer: tribulations and road ahead. J. Immunol. Res., 2020, 20201924379
[http://dx.doi.org/10.1155/2020/1924379] [PMID: 32411789]
[266]
Morgan, D.A.; Ruscetti, F.W.; Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows.Science (80-), 1976, 193(4257), 1007-1008.,
[http://dx.doi.org/10.1126/science.181845]
[267]
Stevanović, S.; Helman, S.R.; Wunderlich, J.R.; Langhan, M.M.; Doran, S.L.; Kwong, M.L.M.; Somerville, R.P.T.; Klebanoff, C.A.; Kammula, U.S.; Sherry, R.M.; Yang, J.C.; Rosenberg, S.A.; Hinrichs, C.S. A Phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res., 2019, 25(5), 1486-1493.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2722] [PMID: 30518633]
[268]
Kim, R.; Coppola, D.; Wang, E.; Chang, Y.D.; Kim, Y.; Anaya, D.; Kim, D.W. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma. Oncotarget, 2018, 9(34), 23366-23372.
[http://dx.doi.org/10.18632/oncotarget.25163] [PMID: 29805739]
[269]
Ali, S.; Kjeken, R.; Niederlaender, C.; Markey, G.; Saunders, T.S.; Opsata, M.; Moltu, K.; Bremnes, B.; Grønevik, E.; Muusse, M.; Håkonsen, G.D.; Skibeli, V.; Kalland, M.E.; Wang, I.; Buajordet, I.; Urbaniak, A.; Johnston, J.; Rantell, K.; Kerwash, E.; Schuessler-Lenz, M.; Salmonson, T.; Bergh, J.; Gisselbrecht, C.; Tzogani, K.; Papadouli, I.; Pignatti, F. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist, 2020, 25(2), e321-e327.
[http://dx.doi.org/10.1634/theoncologist.2019-0233] [PMID: 32043764]
[270]
Halford, Z.; Anderson, M.K.; Bennett, L.L.; Moody, J. Tisagenlecleucel in acute lymphoblastic leukemia: a review of the literature and practical considerations. Ann. Pharmacother., 2021, 55(4), 466-479.
[http://dx.doi.org/10.1177/1060028020948165] [PMID: 32762363]
[271]
Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; Timmerman, J.M.; Stiff, P.J.; Friedberg, J.W.; Flinn, I.W.; Goy, A.; Hill, B.T.; Smith, M.R.; Deol, A.; Farooq, U.; McSweeney, P.; Munoz, J.; Avivi, I.; Castro, J.E.; Westin, J.R.; Chavez, J.C.; Ghobadi, A.; Komanduri, K.V.; Levy, R.; Jacobsen, E.D.; Witzig, T.E.; Reagan, P.; Bot, A.; Rossi, J.; Navale, L.; Jiang, Y.; Aycock, J.; Elias, M.; Chang, D.; Wiezorek, J.; Go, W.Y. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-Cell lymphoma. N. Engl. J. Med., 2017, 377(26), 2531-2544.
[http://dx.doi.org/10.1056/NEJMoa1707447] [PMID: 29226797]
[272]
Jacobson, C.A.; Farooq, U.; Ghobadi, A. Axicabtagene ciloleucel, an anti-cd19 chimeric antigen receptor T-Cell therapy for relapsed or refractory large B-cell lymphoma: practical implications for the community oncologist. Oncologist, 2020, 25(1), e138-e146.
[http://dx.doi.org/10.1634/theoncologist.2019-0395] [PMID: 31585984]
[273]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[274]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[275]
Kobayashi, K.; Maeda, K.; Takefuji, M.; Kikuchi, R.; Morishita, Y.; Hirashima, M.; Murohara, T. Dynamics of angiogenesis in ischemic areas of the infarcted heart. Sci. Rep., 2017, 7(1), 7156.
[http://dx.doi.org/10.1038/s41598-017-07524-x] [PMID: 28769049]
[276]
Seto, S-W.; Chang, D.; Jenkins, A.; Bensoussan, A.; Kiat, H. Angiogenesis in ischemic stroke and angiogenic effects of chinese herbal medicine. J. Clin. Med., 2016, 5(6), 56.
[http://dx.doi.org/10.3390/jcm5060056] [PMID: 27275837]
[277]
Szekanecz, Z.; Koch, A.E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nat. Clin. Pract. Rheumatol., 2007, 3(11), 635-643.
[http://dx.doi.org/10.1038/ncprheum0647] [PMID: 17968334]
[278]
Bielenberg, D.R.; Zetter, B.R. The contribution of angiogenesis to the process of metastasis. Cancer J., 2015, 21(4), 267-273.
[http://dx.doi.org/10.1097/PPO.0000000000000138] [PMID: 26222078]
[279]
Bikfalvi, A. Significance of angiogenesis in tumour progression and metastasis. Eur. J. Cancer, 1995, 31A(7-8), 1101-1104.
[http://dx.doi.org/10.1016/0959-8049(95)00169-J] [PMID: 7577000]
[280]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1995, 1(1), 27-31.
[http://dx.doi.org/10.1038/nm0195-27] [PMID: 7584949]
[281]
Baluk, P.; Hashizume, H.; McDonald, D.M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev., 2005, 15(1), 102-111.
[http://dx.doi.org/10.1016/j.gde.2004.12.005] [PMID: 15661540]
[282]
Hillen, F.; Griffioen, A.W. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev., 2007, 26(3-4), 489-502.
[http://dx.doi.org/10.1007/s10555-007-9094-7] [PMID: 17717633]
[283]
Kerbel, R.; Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer, 2002, 2(10), 727-739.
[http://dx.doi.org/10.1038/nrc905] [PMID: 12360276]
[284]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[285]
El-Kenawi, A.E.; El-Remessy, A.B. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationales. Br. J. Pharmacol., 2013, 170(4), 712-729.
[http://dx.doi.org/10.1111/bph.12344] [PMID: 23962094]
[286]
Roskoski, R., Jr Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun., 2007, 356(2), 323-328.
[http://dx.doi.org/10.1016/j.bbrc.2007.02.156] [PMID: 17367763]
[287]
Mousa, S.A.; Davis, P.J. Angiogenesis and Anti-Angiogenesis Strategies in Cancer; Elsevier Inc.: Amsterdam, 2017, pp. 1-19.
[288]
Galanina, N.; Petrich, A.; Nabhan, C. The evolving role of lenalidomide in non-Hodgkin lymphoma. Leuk. Lymphoma, 2016, 57(7), 1507-1516.
[http://dx.doi.org/10.3109/10428194.2016.1146949] [PMID: 26902680]
[289]
Witzig, T.E.; Nowakowski, G.S.; Habermann, T.M.; Goy, A.; Hernandez-Ilizaliturri, F.J.; Chiappella, A.; Vitolo, U.; Fowler, N.; Czuczman, M.S. A comprehensive review of lenalidomide therapy for B-cell non-Hodgkin lymphoma. Ann. Oncol., 2015, 26(8), 1667-1677.
[http://dx.doi.org/10.1093/annonc/mdv102] [PMID: 25712458]
[290]
Vogel, A.; Rimassa, L.; Sun, H-C.; Abou-Alfa, G.K.; El-Khoueiry, A.B.; Pinato, D.J. Clinical value of atezolizumab + bevacizumab for first-line unresectable hepatocellular carcinoma (HCC): a network meta-analysis. J. Clin. Oncol., 2020, 38(15), 4585.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.4585]
[291]
Johnson, D.H.; Fehrenbacher, L.; Novotny, W.F.; Herbst, R.S.; Nemunaitis, J.J.; Jablons, D.M.; Langer, C.J.; DeVore, R.F., III; Gaudreault, J.; Damico, L.A.; Holmgren, E.; Kabbinavar, F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol., 2004, 22(11), 2184-2191.
[http://dx.doi.org/10.1200/JCO.2004.11.022] [PMID: 15169807]
[292]
Cohen, M.H.; Gootenberg, J.; Keegan, P.; Pazdur, R. FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist, 2007, 12(6), 713-718.
[http://dx.doi.org/10.1634/theoncologist.12-6-713] [PMID: 17602060]
[293]
Zhou, M.; Yu, P.; Qu, X.; Liu, Y.; Zhang, J. Phase III trials of standard chemotherapy with or without bevacizumab for ovarian cancer: a meta-analysis. PLoS One, 2013, 8(12)e81858
[http://dx.doi.org/10.1371/journal.pone.0081858] [PMID: 24324725]
[294]
Althoff, E.; Phillips, F. Novartis receives first ever FDA approval; Novartis Int AG Novartis Glob Commun, 2017.
[295]
Zheng, P.P.; Kros, J.M.; Li, J. Approved CAR T cell therapies: ice bucket challenges on glaring safety risks and long-term impacts. Drug Discov. Today, 2018, 23(6), 1175-1182.
[http://dx.doi.org/10.1016/j.drudis.2018.02.012] [PMID: 29501911]
[296]
Pol, J.; Kroemer, G.; Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. OncoImmunology, 2015, 5(1)e1115641
[http://dx.doi.org/10.1080/2162402X.2015.1115641] [PMID: 26942095]
[297]
U.S. Food and Drug Administration. FDA approves first-of-its-kind product for the treatment of melanoma; US Food Drug Adm, 2017.
[298]
Cheever, M.A.; Higano, C.S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res., 2011, 17(11), 3520-3526.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3126] [PMID: 21471425]
[299]
Brower, V. Approval of provenge seen as first step for cancer treatment vaccines. J. Natl. Cancer Inst., 2010, 102(15), 1108-1110.
[http://dx.doi.org/10.1093/jnci/djq295] [PMID: 20668267]
[300]
Jarosławski, S.; Toumi, M. Sipuleucel-T (Provenge®)-autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs, 2015, 29(5), 301-307.
[http://dx.doi.org/10.1007/s40259-015-0140-7] [PMID: 26403092]
[301]
Hazarika, M.; Chuk, M.K.; Theoret, M.R.; Mushti, S.; He, K.; Weis, S.L.; Putman, A.H.; Helms, W.S.; Cao, X.; Li, H.; Zhao, H.; Zhao, L.; Welch, J.; Graham, L.; Libeg, M.; Sridhara, R.; Keegan, P.; Pazdur, R.U.S. FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clin. Cancer Res., 2017, 23(14), 3484-3488.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0712] [PMID: 28087644]
[302]
Sondak, V.K.; Smalley, K.S.M.; Kudchadkar, R.; Grippon, S.; Kirkpatrick, P. Ipilimumab. Nat. Rev. Drug Discov., 2011, 10(6), 411-412.
[303]
Camacho, L.H. CTLA-4 blockade with ipilimumab: biology, safety, efficacy, and future considerations. Cancer Med., 2015, 4(5), 661-672.
[http://dx.doi.org/10.1002/cam4.371] [PMID: 25619164]
[304]
Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; Rodig, S.J.; Chapuy, B.; Ligon, A.H.; Zhu, L.; Grosso, J.F.; Kim, S.Y.; Timmerman, J.M.; Shipp, M.A.; Armand, P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med., 2015, 372(4), 311-319.
[http://dx.doi.org/10.1056/NEJMoa1411087] [PMID: 25482239]
[305]
Simeone, E.; Ascierto, P.A. Anti-PD-1 and PD-L1 antibodies in metastatic melanoma. Melanoma Manag., 2017, 4(4), 175-178.
[http://dx.doi.org/10.2217/mmt-2017-0018] [PMID: 30190923]
[306]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[307]
Lee, H.T.; Lee, J.Y.; Lim, H.; Lee, S.H.; Moon, Y.J.; Pyo, H.J.; Ryu, S.E.; Shin, W.; Heo, Y.S. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep., 2017, 7(1), 5532.
[http://dx.doi.org/10.1038/s41598-017-06002-8] [PMID: 28717238]
[308]
Syed, Y.Y. Durvalumab: first global approval. Drugs, 2017, 77(12), 1369-1376.
[http://dx.doi.org/10.1007/s40265-017-0782-5] [PMID: 28643244]
[309]
Presta, L.G.; Chen, H.; O’Connor, S.J.; Chisholm, V.; Meng, Y.G.; Krummen, L.; Winkler, M.; Ferrara, N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res., 1997, 57(20), 4593-4599.
[PMID: 9377574]
[310]
Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta, E.; Gorbunova, V.; Bay, J.O.; Bodrogi, I.; Jagiello-Gruszfeld, A.; Moore, N. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet, 2007, 370(9605), 2103-2111.
[http://dx.doi.org/10.1016/S0140-6736(07)61904-7] [PMID: 18156031]
[311]
de Oliveira Dias, J.R.; de Andrade, G.C.; Novais, E.A.; Farah, M.E.; Rodrigues, E.B. Fusion proteins for treatment of retinal diseases: aflibercept, ziv-aflibercept, and conbercept. Int. J. Retina Vitreous, 2016, 2(1), 3.
[http://dx.doi.org/10.1186/s40942-016-0026-y] [PMID: 27847621]
[312]
Thai, H.T.; Veyrat-Follet, C.; Mentré, F.; Comets, E. Population pharmacokinetic analysis of free and bound aflibercept in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2013, 72(1), 167-180.
[http://dx.doi.org/10.1007/s00280-013-2182-1] [PMID: 23673444]
[313]
Clark, J.W.; Eder, J.P.; Ryan, D.; Lathia, C.; Lenz, H.J. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res., 2005, 11(15), 5472-5480.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2658] [PMID: 16061863]
[314]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[315]
Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; Armand, J.P.; Scigalla, P.; Raymond, E. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol., 2006, 24(1), 25-35.
[http://dx.doi.org/10.1200/JCO.2005.02.2194] [PMID: 16314617]
[316]
Atkins, M.; Jones, C.A.; Kirkpatrick, P. Sunitinib maleate. Nat. Rev. Drug Discov., 2006, 5(4), 279-280.
[http://dx.doi.org/10.1038/nrd2012] [PMID: 16628834]
[317]
Keating, G.M. Axitinib: a review in advanced renal cell carcinoma. Drugs, 2015, 75(16), 1903-1913.
[http://dx.doi.org/10.1007/s40265-015-0483-x] [PMID: 26487541]
[318]
Gunnarsson, O.; Pfanzelter, N.R.; Cohen, R.B.; Keefe, S.M. Evaluating the safety and efficacy of axitinib in the treatment of advanced renal cell carcinoma. Cancer Manag. Res., 2015, 7, 65-73.
[http://dx.doi.org/10.2147/CMAR.S74202] [PMID: 25709499]
[319]
Casak, S.J.; Fashoyin-Aje, I.; Lemery, S.J.; Zhang, L.; Jin, R.; Li, H.; Zhao, L.; Zhao, H.; Zhang, H.; Chen, H.; He, K.; Dougherty, M.; Novak, R.; Kennett, S.; Khasar, S.; Helms, W.; Keegan, P.; Pazdur, R. FDA approval summary: ramucirumab for gastric cancer. Clin. Cancer Res., 2015, 21(15), 3372-3376.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0600] [PMID: 26048277]
[320]
Diaz-Serrano, A.; Riesco-Martinez, M.C.; Garcia-Carbonero, R. The safety and efficacy of ramucirumab for the treatment of metastatic colorectal cancer. Expert Rev. Anticancer Ther., 2016, 16(6), 585-595.
[http://dx.doi.org/10.1080/14737140.2016.1182430] [PMID: 27144874]
[321]
Ranieri, G.; Mammì, M.; Donato Di Paola, E.; Russo, E.; Gallelli, L.; Citraro, R.; Gadaleta, C.D.; Marech, I.; Ammendola, M.; De Sarro, G. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit. Rev. Oncol. Hematol., 2014, 89(2), 322-329.
[http://dx.doi.org/10.1016/j.critrevonc.2013.08.012] [PMID: 24041629]
[322]
Sonpavde, G.; Hutson, T.E.; Sternberg, C.N. Pazopanib, a potent orally administered small-molecule multitargeted tyrosine kinase inhibitor for renal cell carcinoma. Expert Opin. Investig. Drugs, 2008, 17(2), 253-261.
[http://dx.doi.org/10.1517/13543784.17.2.253] [PMID: 18230058]
[323]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[324]
Grüllich, C. Cabozantinib: a MET, RET, and VEGFR2 tyrosine kinase inhibitor. Recent Results Cancer Res., 2014, 201, 207-214.
[http://dx.doi.org/10.1007/978-3-642-54490-3_12] [PMID: 24756794]
[325]
Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.; Roth, B.J.; Bjarnason, G.A.; Géczi, L.; Keam, B.; Maroto, P.; Heng, D.Y.; Schmidinger, M.; Kantoff, P.W.; Borgman-Hagey, A.; Hessel, C.; Scheffold, C.; Schwab, G.M.; Tannir, N.M.; Motzer, R.J. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med., 2015, 373(19), 1814-1823.
[http://dx.doi.org/10.1056/NEJMoa1510016] [PMID: 26406150]
[326]
Beaver, J.A.; Park, B.H. The BOLERO-2 trial: the addition of everolimus to exemestane in the treatment of postmenopausal hormone receptor-positive advanced breast cancer. Future Oncol., 2012, 8(6), 651-657.
[327]
Baselga, J.; Campone, M.; Piccart, M.; Burris, H.A., III; Rugo, H.S.; Sahmoud, T.; Noguchi, S.; Gnant, M.; Pritchard, K.I.; Lebrun, F.; Beck, J.T.; Ito, Y.; Yardley, D.; Deleu, I.; Perez, A.; Bachelot, T.; Vittori, L.; Xu, Z.; Mukhopadhyay, P.; Lebwohl, D.; Hortobagyi, G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med., 2012, 366(6), 520-529.
[http://dx.doi.org/10.1056/NEJMoa1109653] [PMID: 22149876]
[328]
Zhu, Y.X.; Kortuem, K.M.; Stewart, A.K. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk. Lymphoma, 2013, 54(4), 683-687.
[http://dx.doi.org/10.3109/10428194.2012.728597] [PMID: 22966948]
[329]
Lu, L.; Payvandi, F.; Wu, L.; Zhang, L.H.; Hariri, R.J.; Man, H.W.; Chen, R.S.; Muller, G.W.; Hughes, C.C.; Stirling, D.I.; Schafer, P.H.; Bartlett, J.B. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc. Res., 2009, 77(2), 78-86.
[http://dx.doi.org/10.1016/j.mvr.2008.08.003] [PMID: 18805433]
[330]
Cabanillas, M.E.; Habra, M.A. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat. Rev., 2016, 42, 47-55.
[http://dx.doi.org/10.1016/j.ctrv.2015.11.003] [PMID: 26678514]
[331]
Scott, L.J. Lenvatinib: first global approval. Drugs, 2015, 75(5), 553-560.
[http://dx.doi.org/10.1007/s40265-015-0383-0] [PMID: 25795101]
[332]
Hotta, K.; Ueyama, J.; Tatsumi, Y.; Tsukiyama, I.; Sugiura, Y.; Saito, H.; Matsuura, K.; Hasegawa, T. Lack of contribution of multidrug resistance-associated protein and organic anion-transporting polypeptide to pharmacokinetics of regorafenib, a novel multi-kinase inhibitor, in rats. Anticancer Res., 2015, 35(9), 4681-4689.
[PMID: 26254357]
[333]
Strumberg, D.; Scheulen, M.E.; Schultheis, B.; Richly, H.; Frost, A.; Büchert, M.; Christensen, O.; Jeffers, M.; Heinig, R.; Boix, O.; Mross, K. Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br. J. Cancer, 2012, 106(11), 1722-1727.
[http://dx.doi.org/10.1038/bjc.2012.153] [PMID: 22568966]
[334]
Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; Badalamenti, G.; Blackstein, M.; Le Cesne, A.; Schöffski, P.; Maki, R.G.; Bauer, S.; Nguyen, B.B.; Xu, J.; Nishida, T.; Chung, J.; Kappeler, C.; Kuss, I.; Laurent, D.; Casali, P.G. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 295-302.
[http://dx.doi.org/10.1016/S0140-6736(12)61857-1] [PMID: 23177515]
[335]
Palumbo, A.; Facon, T.; Sonneveld, P.; Bladè, J.; Offidani, M.; Gay, F.; Moreau, P.; Waage, A.; Spencer, A.; Ludwig, H.; Boccadoro, M.; Harousseau, J.L. Thalidomide for treatment of multiple myeloma: 10 years later. Blood, 2008, 111(8), 3968-3977.
[http://dx.doi.org/10.1182/blood-2007-10-117457] [PMID: 18245666]
[336]
Hjorth, M.; Hjertner, Ø.; Knudsen, L.M.; Gulbrandsen, N.; Holmberg, E.; Pedersen, P.T.; Andersen, N.F.; Andréasson, B.; Billström, R.; Carlson, K.; Carlsson, M.S.; Flogegård, M.; Forsberg, K.; Gimsing, P.; Karlsson, T.; Linder, O.; Nahi, H.; Othzén, A.; Swedin, A. Thalidomide and dexamethasone vs. bortezomib and dexamethasone for melphalan refractory myeloma: a randomized study. Eur. J. Haematol., 2012, 88(6), 485-496.
[http://dx.doi.org/10.1111/j.1600-0609.2012.01775.x] [PMID: 22404182]
[337]
Robinson, B.G.; Paz-Ares, L.; Krebs, A.; Vasselli, J.; Haddad, R. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J. Clin. Endocrinol. Metab., 2010, 95(6), 2664-2671.
[http://dx.doi.org/10.1210/jc.2009-2461] [PMID: 20371662]
[338]
Sathornsumetee, S.; Rich, J.N. Vandetanib, a novel multitargeted kinase inhibitor, in cancer therapy. Drugs Today (Barc), 2006, 42(10), 657-670.
[http://dx.doi.org/10.1358/dot.2006.42.10.1025318] [PMID: 17136225]
[339]
Ragon, B.K.; DiNardo, C.D. Targeting IDH1 and IDH2 mutations in acute myeloid leukemia. Curr. Hematol. Malig. Rep., 2017, 12(6), 537-546.
[http://dx.doi.org/10.1007/s11899-017-0418-6]
[340]
Toplin, J.; Drafahl, K.; Eibl, J.; Fjeld, C.; Yager, T.; McAdams, S. Development and validation of highly sensitive Mrdx BCR-ABL test for monitoring deep molecular response in patients with chronic myeloid leukemia. Blood, 2013, 122(21), 2617-2617.
[http://dx.doi.org/10.1182/blood.V122.21.2617.2617]
[341]
Philippidis, A. 8 companion diagnostic developers making a mark; Clin. Omi, 2019, pp. 34-38.
[342]
Vargas, A.C.; Maclean, F.M.; Sioson, L.; Tran, D.; Bonar, F.; Mahar, A.; Cheah, A.L.; Russell, P.; Grimison, P.; Richardson, L.; Gill, A.J. Prevalence of PD-L1 expression in matched recurrent and/or metastatic sarcoma samples and in a range of selected sarcomas subtypes. PLoS One, 2020, 15(4)e0222551
[http://dx.doi.org/10.1371/journal.pone.0222551] [PMID: 32294103]
[343]
Allegretti, M.; Fabi, A.; Buglioni, S.; Martayan, A.; Conti, L.; Pescarmona, E.; Ciliberto, G.; Giacomini, P. Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations. J. Exp. Clin. Cancer Res., 2018, 37(1), 47.
[http://dx.doi.org/10.1186/s13046-018-0702-x] [PMID: 29506529]
[344]
Wu, H-X.; Wang, Z-X.; Zhao, Q.; Chen, D-L.; He, M-M.; Yang, L-P.; Wang, Y.N.; Jin, Y.; Ren, C.; Luo, H.Y.; Wang, Z.Q.; Wang, F. Tumor mutational and indel burden: a systematic pan-cancer evaluation as prognostic biomarkers. Ann. Transl. Med., 2019, 7(22), 640.
[http://dx.doi.org/10.21037/atm.2019.10.116] [PMID: 31930041]
[345]
Carcinoma, B.; Lung, N.C. Ventana Pd-L1 (Sp142). Assay, 2020, 1, 1-15.
[346]
Vennapusa, B.; Baker, B.; Kowanetz, M.; Boone, J.; Menzl, I.; Bruey, J.M.; Fine, G.; Mariathasan, S.; McCaffery, I.; Mocci, S.; Rost, S.; Smith, D.; Dennis, E.; Tang, S.Y.; Damadzadeh, B.; Walker, E.; Hegde, P.S.; Williams, J.A.; Koeppen, H.; Boyd, Z. Development of a PD-L1 complementary diagnostic immunohistochemistry assay (SP142) for atezolizumab. Appl. Immunohistochem. Mol. Morphol., 2019, 27(2), 92-100.
[http://dx.doi.org/10.1097/PAI.0000000000000594] [PMID: 29346180]
[347]
Hirsch, F.R.; McElhinny, A.; Stanforth, D.; Ranger-Moore, J.; Jansson, M.; Kulangara, K.; Richardson, W.; Towne, P.; Hanks, D.; Vennapusa, B.; Mistry, A.; Kalamegham, R.; Averbuch, S.; Novotny, J.; Rubin, E.; Emancipator, K.; McCaffery, I.; Williams, J.A.; Walker, J.; Longshore, J.; Tsao, M.S.; Kerr, K.M. PD-L1 immunohistochemistry assays for lung cancer: results from Phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol., 2017, 12(2), 208-222.
[http://dx.doi.org/10.1016/j.jtho.2016.11.2228] [PMID: 27913228]
[348]
Ahn, E.R.; Wang, E.; Glück, S. .Is the improved efficacy of trastuzumab and lapatinib combination worth the added toxicity? a discussion of current evidence, recommendations, and ethical issues regarding dual HER2-targeted therapy. Breast Cancer Basic Clin Res, 2012, BCBCR-S9301.,
[349]
Agur, Z.; Elishmereni, M.; Kheifetz, Y. Personalizing oncology treatments by predicting drug efficacy, side-effects, and improved therapy: mathematics, statistics, and their integration. Wiley Interdiscip. Rev. Syst. Biol. Med., 2014, 6(3), 239-253.
[http://dx.doi.org/10.1002/wsbm.1263] [PMID: 24604755]
[350]
Baldock, A.L.; Rockne, R.C.; Boone, A.D.; Neal, M.L.; Hawkins-Daarud, A.; Corwin, D.M.; Bridge, C.A.; Guyman, L.A.; Trister, A.D.; Mrugala, M.M.; Rockhill, J.K.; Swanson, K.R. From patient-specific mathematical neuro-oncology to precision medicine. Front. Oncol., 2013, 3, 62.
[http://dx.doi.org/10.3389/fonc.2013.00062] [PMID: 23565501]
[351]
Kronik, N.; Kogan, Y.; Elishmereni, M.; Halevi-Tobias, K.; Vuk-Pavlović, S.; Agur, Z. Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PLoS One, 2010, 5(12)e15482
[http://dx.doi.org/10.1371/journal.pone.0015482] [PMID: 21151630]
[352]
Beumer, J.H. Without therapeutic drug monitoring, there is no personalized cancer care. Clin. Pharmacol. Ther., 2013, 93(3), 228-230.
[http://dx.doi.org/10.1038/clpt.2012.243] [PMID: 23419487]
[353]
Barbolosi, D.; Ciccolini, J.; Lacarelle, B.; Barlési, F.; André, N. Computational oncology-mathematical modelling of drug regimens for precision medicine. Nat. Rev. Clin. Oncol., 2016, 13(4), 242-254.
[http://dx.doi.org/10.1038/nrclinonc.2015.204] [PMID: 26598946]
[354]
Canal, P.; Chatelut, E.; Guichard, S. Practical treatment guide for dose individualisation in cancer chemotherapy. Drugs, 1998, 56(6), 1019-1038.
[http://dx.doi.org/10.2165/00003495-199856060-00006] [PMID: 9878990]
[355]
Li, J.; Zhao, M.; He, P.; Hidalgo, M.; Baker, S.D. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res., 2007, 13(12), 3731-3737.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0088] [PMID: 17575239]
[356]
Mollard, S.; Benzekry, S.; Giacometti, S.; Faivre, C.; Hubert, F.; Ciccolini, J. Abstract 3677: Model-based optimization of combined antiangiogenic + cytotoxics modalities: application to the bevacizumab-paclitaxel association in breast cancer models. Cancer Res., 2014, 74(19), 3677-3677.
[357]
Chen, R.; Snyder, M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 2013, 5(1), 73-82.
[http://dx.doi.org/10.1002/wsbm.1198] [PMID: 23184638]
[358]
Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated multi-omics analyses in oncology: a review of machine learning methods and tools. Front. Oncol., 2020, 10, 1030.
[http://dx.doi.org/10.3389/fonc.2020.01030] [PMID: 32695678]
[359]
Granja, J.M.; Klemm, S.; McGinnis, L.M.; Kathiria, A.S.; Mezger, A.; Corces, M.R.; Parks, B.; Gars, E.; Liedtke, M.; Zheng, G.X.Y.; Chang, H.Y.; Majeti, R.; Greenleaf, W.J. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol., 2019, 37(12), 1458-1465.
[http://dx.doi.org/10.1038/s41587-019-0332-7] [PMID: 31792411]
[360]
Chen, B.; Wei, W.; Ma, L.; Yang, B.; Gill, R.M.; Chua, M.S.; Butte, A.J.; So, S. Computational discovery of niclosamide ethanolamine, a repurposed drug candidate that reduces growth of hepatocellular carcinoma cells in vitro and in mice by inhibiting cell division cycle 37 signaling. Gastroenterology, 2017, 152(8), 2022-2036.
[http://dx.doi.org/10.1053/j.gastro.2017.02.039] [PMID: 28284560]
[361]
Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci., 2019, 20(19), 4781.
[http://dx.doi.org/10.3390/ijms20194781] [PMID: 31561483]
[362]
Zhang, K.; Wang, H. Cancer Genome Atlas Pan-cancer analysis project.Chinese J. Lung Cancer, 2015, 18(4).,
[363]
Shah, S.P.; Roth, A.; Goya, R.; Oloumi, A.; Ha, G.; Zhao, Y.; Turashvili, G.; Ding, J.; Tse, K.; Haffari, G.; Bashashati, A.; Prentice, L.M.; Khattra, J.; Burleigh, A.; Yap, D.; Bernard, V.; McPherson, A.; Shumansky, K.; Crisan, A.; Giuliany, R.; Heravi-Moussavi, A.; Rosner, J.; Lai, D.; Birol, I.; Varhol, R.; Tam, A.; Dhalla, N.; Zeng, T.; Ma, K.; Chan, S.K.; Griffith, M.; Moradian, A.; Cheng, S.W.; Morin, G.B.; Watson, P.; Gelmon, K.; Chia, S.; Chin, S.F.; Curtis, C.; Rueda, O.M.; Pharoah, P.D.; Damaraju, S.; Mackey, J.; Hoon, K.; Harkins, T.; Tadigotla, V.; Sigaroudinia, M.; Gascard, P.; Tlsty, T.; Costello, J.F.; Meyer, I.M.; Eaves, C.J.; Wasserman, W.W.; Jones, S.; Huntsman, D.; Hirst, M.; Caldas, C.; Marra, M.A.; Aparicio, S. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486(7403), 395-399.
[http://dx.doi.org/10.1038/nature10933] [PMID: 22495314]
[364]
Jain, K.K. Role of pharmacoproteomics in the development of personalized medicine. Pharmacogenomics, 2004, 5(3), 331-336.
[http://dx.doi.org/10.1517/phgs.5.3.331.29830] [PMID: 15102547]
[365]
Ali, M.; Khan, S.A.; Wennerberg, K.; Aittokallio, T. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Bioinformatics, 2018, 34(8), 1353-1362.
[http://dx.doi.org/10.1093/bioinformatics/btx766] [PMID: 29186355]
[366]
Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[367]
Padovani de Souza, K.; Setubal, J.C. Ponce de Leon F de Carvalho, A.C.; Oliveira, G.; Chateau, A.; Alves, R. Machine learning meets genome assembly. Brief. Bioinform., 2019, 20(6), 2116-2129.
[http://dx.doi.org/10.1093/bib/bby072] [PMID: 30137230]
[368]
Bello, G.A.; Dawes, T.J.W.; Duan, J.; Biffi, C.; de Marvao, A.; Howard, L.S.G.E.; Gibbs, J.S.R.; Wilkins, M.R.; Cook, S.A.; Rueckert, D.; O’Regan, D.P. Deep learning cardiac motion analysis for human survival prediction. Nat. Mach. Intell., 2019, 1(2), 95-104.
[http://dx.doi.org/10.1038/s42256-019-0019-2] [PMID: 30801055]
[369]
Chang, P.; Grinband, J.; Weinberg, B.D.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.Y.; Cha, S.; Filippi, C.G.; Bota, D.; Baldi, P.; Poisson, L.M.; Jain, R.; Chow, D. Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am. J. Neuroradiol., 2018, 39(7), 1201-1207.
[http://dx.doi.org/10.3174/ajnr.A5667] [PMID: 29748206]
[370]
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[371]
Strodthoff, N.; Strodthoff, C. Detecting and interpreting myocardial infarction using fully convolutional neural networks. Physiol. Meas., 2019, 40(1)015001
[http://dx.doi.org/10.1088/1361-6579/aaf34d] [PMID: 30523982]
[372]
Boža, V.; Brejová, B.; Vinař, T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One, 2017, 12(6)e0178751
[http://dx.doi.org/10.1371/journal.pone.0178751] [PMID: 28582401]
[373]
Kosmicki, J.A.; Sochat, V.; Duda, M.; Wall, D.P. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl. Psychiatry, 2015, 5(2)e514
[http://dx.doi.org/10.1038/tp.2015.7] [PMID: 25710120]
[374]
Wall, D.P.; Dally, R.; Luyster, R.; Jung, J.Y.; Deluca, T.F. Use of artificial intelligence to shorten the behavioral diagnosis of autism. PLoS One, 2012, 7(8)e43855
[http://dx.doi.org/10.1371/journal.pone.0043855] [PMID: 22952789]
[375]
Bone, D.; Goodwin, M.S.; Black, M.P.; Lee, C.C.; Audhkhasi, K.; Narayanan, S. Applying machine learning to facilitate autism diagnostics: pitfalls and promises. J. Autism Dev. Disord., 2015, 45(5), 1121-1136.
[http://dx.doi.org/10.1007/s10803-014-2268-6] [PMID: 25294649]
[376]
Mazurek, M.O.; Curran, A.; Burnette, C.; Sohl, K. ECHO autism STAT: accelerating early access to autism diagnosis. J. Autism Dev. Disord., 2019, 49(1), 127-137.
[http://dx.doi.org/10.1007/s10803-018-3696-5] [PMID: 30043354]
[377]
Rizzi, R.; Cairo, M.; Makinen, V.; Tomescu, A.I.; Valenzuela, D. Hardness of covering alignment: phase transition in post-sequence genomics. IEEE/ACM Trans. Comput. Biol. Bioinform., 2019, 16(1), 23-30.
[378]
Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; Bird, L.M.; Gripp, K.W. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med., 2019, 25(1), 60-64.
[http://dx.doi.org/10.1038/s41591-018-0279-0] [PMID: 30617323]
[379]
Gagnon, M.P.; Ghandour, K.; Talla, P.K.; Simonyan, D.; Godin, G.; Labrecque, M.; Ouimet, M.; Rousseau, M. Electronic health record acceptance by physicians: testing an integrated theoretical model. J. Biomed. Inform., 2014, 48, 17-27.
[http://dx.doi.org/10.1016/j.jbi.2013.10.010] [PMID: 24184678]
[380]
Verma, M. Epigenome-Wide Association Studies (EWAS) in cancer. Curr. Genomics, 2012, 13(4), 308-313.
[http://dx.doi.org/10.2174/138920212800793294] [PMID: 23204920]
[381]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[382]
Coe, B.P.; Stessman, H.A.F.; Sulovari, A.; Geisheker, M.R.; Bakken, T.E.; Lake, A.M.; Dougherty, J.D.; Lein, E.S.; Hormozdiari, F.; Bernier, R.A.; Eichler, E.E. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet., 2019, 51(1), 106-116.
[http://dx.doi.org/10.1038/s41588-018-0288-4] [PMID: 30559488]
[383]
Wright, C.F.; McRae, J.F.; Clayton, S.; Gallone, G.; Aitken, S.; FitzGerald, T.W.; Jones, P.; Prigmore, E.; Rajan, D.; Lord, J.; Sifrim, A.; Kelsell, R.; Parker, M.J.; Barrett, J.C.; Hurles, M.E.; FitzPatrick, D.R.; Firth, H.V. Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet. Med., 2018, 20(10), 1216-1223.
[http://dx.doi.org/10.1038/gim.2017.246] [PMID: 29323667]
[384]
Xiong, H.Y.; Alipanahi, B.; Lee, L.J.; Bretschneider, H.; Merico, D.; Yuen, R.K.C.; Hua, Y.; Gueroussov, S.; Najafabadi, H.S.; Hughes, T.R.; Morris, Q.; Barash, Y.; Krainer, A.R.; Jojic, N.; Scherer, S.W.; Blencowe, B.J.; Frey, B.J. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science, 2015, 347(6218)1254806
[http://dx.doi.org/10.1126/science.1254806] [PMID: 25525159]
[385]
Zhou, J.; Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods, 2015, 12(10), 931-934.
[http://dx.doi.org/10.1038/nmeth.3547] [PMID: 26301843]
[386]
Kircher, M.F.; Hricak, H.; Larson, S.M. Molecular imaging for personalized cancer care. Mol. Oncol., 2012, 6(2), 182-195.
[http://dx.doi.org/10.1016/j.molonc.2012.02.005] [PMID: 22469618]
[387]
Kurdziel, K.; Ravizzini, G.; Croft, B.; Tatum, J.; Choyke, P.; Kobayashi, H. The evolving role of nuclear molecular imaging in cancer. Expert Opin. Med. Diagn., 2008, 2(7), 829-842.
[http://dx.doi.org/10.1517/17530059.2.7.829] [PMID: 19122861]
[388]
Weiss, S.T.; Shin, M.S. Infrastructure for personalized medicine at partners healthcare. J. Pers. Med., 2016, 6(1), 13.
[http://dx.doi.org/10.3390/jpm6010013] [PMID: 26927187]
[389]
Ahn, B.C. Personalized medicine based on theranostic radioiodine molecular imaging for differentiated thyroid cancer. BioMed Res. Int., 2016, 20161680464
[http://dx.doi.org/10.1155/2016/1680464] [PMID: 27239470]
[390]
Gould, J.; Getz, G.; Monti, S.; Reich, M.; Mesirov, J.P. Comparative gene marker selection suite. Bioinformatics, 2006, 22(15), 1924-1925.
[http://dx.doi.org/10.1093/bioinformatics/btl196] [PMID: 16709585]
[391]
Cavallo, F.; De Giovanni, C.; Nanni, P.; Forni, G.; Lollini, P.L. 2011: the immune hallmarks of cancer. Cancer Immunol. Immunother., 2011, 60(3), 319-326.
[http://dx.doi.org/10.1007/s00262-010-0968-0] [PMID: 21267721]
[392]
Henzler, T.; Fink, C. Functional computed tomography in oncology and cardiovascular imaging: a key player in the era of precision medicine and radiogenomics. Eur. J. Radiol., 2015, 84(12), 2345-2346.
[http://dx.doi.org/10.1016/j.ejrad.2015.11.013] [PMID: 26590851]
[393]
Rutman, A.M.; Kuo, M.D. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur. J. Radiol., 2009, 70(2), 232-241.
[http://dx.doi.org/10.1016/j.ejrad.2009.01.050] [PMID: 19303233]
[394]
Penet, M.F.; Krishnamachary, B.; Chen, Z.; Jin, J.; Bhujwalla, Z.M. Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv. Cancer Res., 2014, 124, 235-256.
[http://dx.doi.org/10.1016/B978-0-12-411638-2.00007-0] [PMID: 25287691]
[395]
Chen, Z.Y.; Wang, Y.X.; Lin, Y.; Zhang, J.S.; Yang, F.; Zhou, Q.L.; Liao, Y.Y. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. BioMed Res. Int., 2014, 2014819324
[http://dx.doi.org/10.1155/2014/819324] [PMID: 24689058]
[396]
James, M.L.; Gambhir, S.S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev., 2012, 92(2), 897-965.
[http://dx.doi.org/10.1152/physrev.00049.2010] [PMID: 22535898]
[397]
Rager, O.; Nkoulou, R.; Exquis, N.; Garibotto, V.; Tabouret-Viaud, C.; Zaidi, H.; Amzalag, G.; Lee-Felker, S.A.; Zilli, T.; Ratib, O. Whole-body SPECT/CT versus planar bone scan with targeted SPECT/CT for metastatic workup. BioMed Res. Int., 2017, 20177039406
[http://dx.doi.org/10.1155/2017/7039406] [PMID: 28812019]
[398]
Miyake, K.; Ogawa, D.; Okada, M.; Hatakeyama, T.; Tamiya, T. Usefulness of positron emission tomographic studies for gliomas. Neurol. Med. Chir. (Tokyo), 2016, 56(7), 396-408.
[http://dx.doi.org/10.2176/nmc.ra.2015-0305]
[399]
Sung, Y.S.; Park, B.; Choi, Y.; Lim, H.S.; Woo, D.C.; Kim, K.W.; Kim, J.K. Dynamic contrast-enhanced MRI for oncology drug development. J. Magn. Reson. Imaging, 2016, 44(2), 251-264.
[http://dx.doi.org/10.1002/jmri.25173] [PMID: 26854494]
[400]
New, S.E.P.; Aikawa, E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res., 2011, 108(11), 1381-1391.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.234146] [PMID: 21617135]
[401]
Hussain, T.; Nguyen, Q.T. Molecular imaging for cancer diagnosis and surgery. Adv. Drug Deliv. Rev., 2014, 66, 90-100.
[http://dx.doi.org/10.1016/j.addr.2013.09.007] [PMID: 24064465]
[402]
Hricak, H. Oncologic imaging: a guiding hand of personalized cancer care. Radiology, 2011, 259(3), 633-640.
[http://dx.doi.org/10.1148/radiol.11110252] [PMID: 21493796]
[403]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl.), S276-S304.
[http://dx.doi.org/10.1016/j.semcancer.2015.09.007] [PMID: 26590477]
[404]
Newman, R.A.; Kondo, Y.; Yokoyama, T.; Dixon, S.; Cartwright, C.; Chan, D.; Johansen, M.; Yang, P. Autophagic cell death of human pancreatic tumor cells mediated by oleandrin, a lipid-soluble cardiac glycoside. Integr. Cancer Ther., 2007, 6(4), 354-364.
[http://dx.doi.org/10.1177/1534735407309623] [PMID: 18048883]
[405]
Grabowski, K.; Baringhaus, K.H.; Schneider, G. Scaffold diversity of natural products: inspiration for combinatorial library design. Nat. Prod. Rep., 2008, 25(5), 892-904.
[http://dx.doi.org/10.1039/b715668p] [PMID: 18820757]
[406]
Toniatti, C.; Jones, P.; Graham, H.; Pagliara, B.; Draetta, G. Oncology drug discovery: planning a turnaround. Cancer Discov., 2014, 4(4), 397-404.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0452] [PMID: 24706659]
[407]
Fang, J.G.; Lu, M.; Chen, Z.H.; Zhu, H.H.; Li, Y.; Yang, L.; Wu, L.M.; Liu, Z.L. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chemistry, 2002, 8(18), 4191-4198.
[http://dx.doi.org/10.1002/1521-3765(20020916)8:18<4191:AID-CHEM4191>3.0.CO;2-S] [PMID: 12298009]
[408]
Silvera, D.; Formenti, S.C.; Schneider, R.J. Translational control in cancer. Nat. Rev. Cancer, 2010, 10(4), 254-266.
[http://dx.doi.org/10.1038/nrc2824] [PMID: 20332778]
[409]
Bhat, M.; Robichaud, N.; Hulea, L.; Sonenberg, N.; Pelletier, J.; Topisirovic, I. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov., 2015, 14(4), 261-278.
[http://dx.doi.org/10.1038/nrd4505] [PMID: 25743081]
[410]
Bordeleau, M.E.; Cencic, R.; Lindqvist, L.; Oberer, M.; Northcote, P.; Wagner, G.; Pelletier, J. RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem. Biol., 2006, 13(12), 1287-1295.
[http://dx.doi.org/10.1016/j.chembiol.2006.10.005] [PMID: 17185224]
[411]
Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol., 2005, 69(6), 903-912.
[http://dx.doi.org/10.1016/j.bcp.2004.12.001] [PMID: 15748702]
[412]
Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med., 2017, 23(9), 1028-1035.
[http://dx.doi.org/10.1038/nm.4389] [PMID: 28886003]
[413]
Galsky, M.D.; Dritselis, A.; Kirkpatrick, P.; Oh, W.K. Cabazitaxel. Nat. Rev. Drug Discov., 2010, 9(9), 677-678.
[414]
Fostier, K.; De Becker, A.; Schots, R. Carfilzomib: a novel treatment in relapsed and refractory multiple myeloma. OncoTargets Ther., 2012, 5, 237-244.
[PMID: 23055749]
[415]
Venditto, V.J.; Simanek, E.E. Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol. Pharm., 2010, 7(2), 307-349.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[416]
Agrawal, K. Dactinomycin. xPharm Compr. Pharmacol. Ref., 2007, 1-4.,
[417]
Côme, M.G.; Skladanowski, A.; Larsen, A.K.; Laurent, G. Dual mechanism of daunorubicin-induced cell death in both sensitive and MDR-resistant HL-60 cells. Br. J. Cancer, 1999, 79(7-8), 1090-1097.
[http://dx.doi.org/10.1038/sj.bjc.6690174] [PMID: 10098741]
[418]
Conte, P.F.; Gennari, A.; Landucci, E.; Orlandini, C. Role of epirubicin in advanced breast cancer. Clin. Breast Cancer, 2000, 1(Suppl. 1), S46-S51.
[http://dx.doi.org/10.3816/CBC.2000.s.009] [PMID: 11970749]
[419]
Baldwin, E.L.; Osheroff, N. Etoposide, topoisomerase II and cancer. Curr. Med. Chem. Anticancer Agents, 2005, 5(4), 363-372.
[http://dx.doi.org/10.2174/1568011054222364] [PMID: 16101488]
[420]
Dybdal-Hargreaves, N.F.; Risinger, A.L.; Mooberry, S.L. Eribulin mesylate: mechanism of action of a unique microtubule-targeting agent. Clin. Cancer Res., 2015, 21(11), 2445-2452.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3252] [PMID: 25838395]
[421]
Lopus, M.; Smiyun, G.; Miller, H.; Oroudjev, E.; Wilson, L.; Jordan, M.A. Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype. Cancer Chemother. Pharmacol., 2015, 76(5), 1013-1024.
[http://dx.doi.org/10.1007/s00280-015-2863-z] [PMID: 26416565]
[422]
Fujita, K.; Kubota, Y.; Ishida, H.; Sasaki, Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol., 2015, 21(43), 12234-12248.
[http://dx.doi.org/10.3748/wjg.v21.i43.12234] [PMID: 26604633]
[423]
Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40.
[http://dx.doi.org/10.1186/s11658-019-0164-y] [PMID: 31223315]
[424]
Grant, C.; Rahman, F.; Piekarz, R.; Peer, C.; Frye, R.; Robey, R.W.; Gardner, E.R.; Figg, W.D.; Bates, S.E. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther., 2010, 10(7), 997-1008.
[http://dx.doi.org/10.1586/era.10.88] [PMID: 20645688]
[425]
Agrawal, K. Vinblastine. xPharm Compr. Pharmacol. Ref., 2007, 1-4.,
[426]
Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, M. Vinca alkaloids. Int. J. Prev. Med., 2013, 4(11), 1231-1235.
[PMID: 24404355]
[427]
Agrawal, K. Vincristine. xPharm Compr. Pharmacol. Ref., 2007, 1-4.,
[428]
D’Incalci, M.; Badri, N.; Galmarini, C.M.; Allavena, P. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br. J. Cancer, 2014, 111(4), 646-650.
[http://dx.doi.org/10.1038/bjc.2014.149] [PMID: 24755886]
[429]
Jiang, L.; Zhao, X.; Xu, J.; Li, C.; Yu, Y.; Wang, W.; Zhu, L. The protective effect of dietary phytosterols on cancer risk: a systematic meta-analysis. J. Oncol., 2019, 20197479518
[http://dx.doi.org/10.1155/2019/7479518] [PMID: 31341477]
[430]
Zhang, C.; Sheng, J.; Li, G.; Zhao, L.; Wang, Y.; Yang, W.; Yao, X.; Sun, L.; Zhang, Z.; Cui, R. Effects of berberine and its derivatives on cancer: a systems pharmacology review. Front. Pharmacol., 2020, 10, 1461.
[http://dx.doi.org/10.3389/fphar.2019.01461] [PMID: 32009943]
[431]
Shen, Y.; Takahashi, M.; Byun, H.M.; Link, A.; Sharma, N.; Balaguer, F.; Leung, H.C.; Boland, C.R.; Goel, A. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol. Ther., 2012, 13(7), 542-552.
[http://dx.doi.org/10.4161/cbt.19604] [PMID: 22415137]
[432]
Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep., 2016, 5(3), 283-288.
[http://dx.doi.org/10.3892/br.2016.720] [PMID: 27602208]
[433]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Mukherjee, T.; Bishayee, A. Molecular targets of celastrol in cancer: recent trends and advancements. Crit. Rev. Oncol. Hematol., 2018, 128, 70-81.
[http://dx.doi.org/10.1016/j.critrevonc.2018.05.019] [PMID: 29958633]
[434]
Siemann, D.W.; Chaplin, D.J.; Walicke, P.A. A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin. Investig. Drugs, 2009, 18(2), 189-197.
[http://dx.doi.org/10.1517/13543780802691068] [PMID: 19236265]
[435]
Shishodia, S.; Chaturvedi, M.M.; Aggarwal, B.B. Role of curcumin in cancer therapy. Curr. Probl. Cancer, 2007, 31(4), 243-305.
[http://dx.doi.org/10.1016/j.currproblcancer.2007.04.001] [PMID: 17645940]
[436]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. (Weinheim), 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[437]
Gayathri, R.; Gunadharini, D.N.; Arunkumar, A.; Senthilkumar, K.; Krishnamoorthy, G.; Banudevi, S.; Vignesh, R.C.; Arunakaran, J. Effects of diallyl disulfide (DADS) on expression of apoptosis associated proteins in androgen independent human prostate cancer cells (PC-3). Mol. Cell. Biochem., 2009, 320(1-2), 197-203.
[http://dx.doi.org/10.1007/s11010-008-9903-5] [PMID: 18759062]
[438]
Gupta, K.; Gupta, S. The chemopreventive and chemotherapeutic potentials of tea polyphenols. Curr. Pharm. Biotechnol., 2011, 13(1), 191-199.
[439]
Kim, S-H.; Kim, C-W.; Jeon, S-Y.; Go, R-E.; Hwang, K-A.; Choi, K-C. Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab. Anim. Res., 2014, 30(4), 143-150.
[http://dx.doi.org/10.5625/lar.2014.30.4.143] [PMID: 25628724]
[440]
Bordeleau, M.E.; Mori, A.; Oberer, M.; Lindqvist, L.; Chard, L.S.; Higa, T.; Belsham, G.J.; Wagner, G.; Tanaka, J.; Pelletier, J. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat. Chem. Biol., 2006, 2(4), 213-220.
[http://dx.doi.org/10.1038/nchembio776] [PMID: 16532013]
[441]
Benhadji, K.A.; Serova, M.; Ghoul, A.; Cvitkovic, E.; Le Tourneau, C.; Ogbourne, S.M.; Lokiec, F.; Calvo, F.; Hammel, P.; Faivre, S.; Raymond, E. Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells. Br. J. Cancer, 2008, 99(11), 1808-1815.
[http://dx.doi.org/10.1038/sj.bjc.6604642] [PMID: 19034280]
[442]
Bodduluru, L.N.; Kasala, E.R.; Thota, N.; Barua, C.C.; Sistla, R. Chemopreventive and therapeutic effects of nimbolide in cancer: the underlying mechanisms. Toxicol. In Vitro, 2014, 28(5), 1026-1035.
[http://dx.doi.org/10.1016/j.tiv.2014.04.011] [PMID: 24759803]
[443]
Samanta, S.K.; Bhattacharya, K.; Mandal, C.; Pal, B.C. Identification and quantification of the active component quercetin 3-O-rutinoside from Barringtonia racemosa, targets mitochondrial apoptotic pathway in acute lymphoblastic leukemia. J. Asian Nat. Prod. Res., 2010, 12(8), 639-648.
[http://dx.doi.org/10.1080/10286020.2010.489040] [PMID: 20706898]
[444]
Athar, M.; Back, J.H.; Tang, X.; Kim, K.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol., 2007, 224(3), 274-283.
[http://dx.doi.org/10.1016/j.taap.2006.12.025] [PMID: 17306316]
[445]
Hsu, J.H.M.; Chang, P.M.H.; Cheng, T.S.; Kuo, Y.L.; Wu, A.T.H.; Tran, T.H.; Yang, Y.H.; Chen, J.M.; Tsai, Y.C.; Chu, Y.S.; Huang, T.H.; Huang, C.F.; Lai, J.M. Identification of withaferin a as a potential candidate for anti-cancer therapy in non-small cell lung cancer. Cancers (Basel), 2019, 11(7), 1003.
[http://dx.doi.org/10.3390/cancers11071003] [PMID: 31319622]
[446]
van’t Veer, L.J.; Bernards, R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature, 2008, 452(7187), 564-570.
[http://dx.doi.org/10.1038/nature06915] [PMID: 18385730]
[447]
Kelloff, G.J.; Sigman, C.C. Cancer biomarkers: selecting the right drug for the right patient. Nat. Rev. Drug Discov., 2012, 11(3), 201-214.
[http://dx.doi.org/10.1038/nrd3651] [PMID: 22322254]
[448]
Cimino, G.D.; Pan, C.X.; Henderson, P.T. Personalized medicine for targeted and platinum-based chemotherapy of lung and bladder cancer. Bioanalysis, 2013, 5(3), 369-391.
[http://dx.doi.org/10.4155/bio.12.325] [PMID: 23394702]
[449]
Farmer, P.B. Metabolism and reactions of alkylating agents. Pharmacol. Ther., 1987, 35(3), 301-358.
[http://dx.doi.org/10.1016/0163-7258(87)90099-4] [PMID: 3324117]
[450]
Povirk, L.F.; Shuker, D.E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat. Res., 1994, 318(3), 205-226.
[http://dx.doi.org/10.1016/0165-1110(94)90015-9] [PMID: 7527485]
[451]
Harris, C.C. Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res., 1991, 51(18)(Suppl.), 5023s-5044s.
[PMID: 1884379]
[452]
Zoppoli, G.; Regairaz, M.; Leo, E.; Reinhold, W.C.; Varma, S.; Ballestrero, A.; Doroshow, J.H.; Pommier, Y. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 15030-15035.
[http://dx.doi.org/10.1073/pnas.1205943109] [PMID: 22927417]
[453]
Sousa, F.G.; Matuo, R.; Tang, S.W.; Rajapakse, V.N.; Luna, A.; Sander, C.; Varma, S.; Simon, P.H.; Doroshow, J.H.; Reinhold, W.C.; Pommier, Y. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst.), 2015, 28, 107-115.
[http://dx.doi.org/10.1016/j.dnarep.2015.01.011] [PMID: 25758781]
[454]
Rees, M.G.; Seashore-Ludlow, B.; Cheah, J.H.; Adams, D.J.; Price, E.V.; Gill, S.; Javaid, S.; Coletti, M.E.; Jones, V.L.; Bodycombe, N.E.; Soule, C.K.; Alexander, B.; Li, A.; Montgomery, P.; Kotz, J.D.; Hon, C.S.; Munoz, B.; Liefeld, T.; Dančík, V.; Haber, D.A.; Clish, C.B.; Bittker, J.A.; Palmer, M.; Wagner, B.K.; Clemons, P.A.; Shamji, A.F.; Schreiber, S.L. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol., 2016, 12(2), 109-116.
[http://dx.doi.org/10.1038/nchembio.1986] [PMID: 26656090]
[455]
Jarvis, I.W.H.; Meczes, E.L.; Thomas, H.D.; Edmondson, R.J.; Veal, G.J.; Boddy, A.V.; Ottley, C.J.; Pearson, D.G.; Tilby, M.J. Therapy-induced carboplatin-DNA adduct levels in human ovarian tumours in relation to assessment of adduct measurement in mouse tissues. Biochem. Pharmacol., 2012, 83(1), 69-77.
[http://dx.doi.org/10.1016/j.bcp.2011.10.005] [PMID: 22015635]
[456]
Bartelink, H.; Begg, A.; Martin, J.C.; van Dijk, M.; van ’t Veer, L.; van der Vaart, P.; Verheij, M. Towards prediction and modulation of treatment response. Radiother. Oncol., 1999, 50(1), 1-11.
[http://dx.doi.org/10.1016/S0167-8140(99)00009-2] [PMID: 10225551]
[457]
Konner, J.A.; Grabon, D.; Pezzulli, S.; Iasonos, A.; Sabbatini, P.; Hensley, M. A phase II study of intravenous (IV) and intraperitoneal (IP) paclitaxel, IP cisplatin, and IV bevacizumab as first-line chemotherapy for optimal stage II or III ovarian, primary peritoneal, and fallopian tube cancer. J. Clin. Oncol., 2009, 27(15_suppl), 5539-5539.,
[458]
Reed, E. Platinum-DNA adduct, nucleotide excision repair and platinum based anti-cancer chemotherapy. Cancer Treat. Rev., 1998, 24(5), 331-344.
[http://dx.doi.org/10.1016/S0305-7372(98)90056-1] [PMID: 9861196]
[459]
Gewirtz, D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol., 1999, 57(7), 727-741.
[http://dx.doi.org/10.1016/S0006-2952(98)00307-4] [PMID: 10075079]
[460]
Tewey, K.M.; Rowe, T.C.; Yang, L.; Halligan, B.D.; Liu, L.F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 1984, 226(4673), 466-468.
[http://dx.doi.org/10.1126/science.6093249] [PMID: 6093249]
[461]
Verma, M. Viral genes and methylation. Ann. N. Y. Acad. Sci., 2003, 983(1), 170-180.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb05972.x] [PMID: 12724222]
[462]
Ellis, L.; Atadja, P.W.; Johnstone, R.W. Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther., 2009, 8(6), 1409-1420.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0860] [PMID: 19509247]
[463]
Verma, M.; Srivastava, S. Epigenetics in cancer: implications for early detection and prevention. Lancet Oncol., 2002, 3(12), 755-763.
[http://dx.doi.org/10.1016/S1470-2045(02)00932-4] [PMID: 12473517]
[464]
Zhang, Y.; Xu, W. Isoform-selective histone deacetylase inhibitors: the trend and promise of disease treatment. Epigenomics, 2015, 7(1), 5-7.
[http://dx.doi.org/10.2217/epi.14.62] [PMID: 25687460]
[465]
Ahrens, T.D.; Timme, S.; Ostendorp, J.; Bogatyreva, L.; Hoeppner, J.; Hopt, U.T.; Hauschke, D.; Werner, M.; Lassmann, S. Response of esophageal cancer cells to epigenetic inhibitors is mediated via altered thioredoxin activity. Lab. Invest., 2016, 96(3), 307-316.
[http://dx.doi.org/10.1038/labinvest.2015.148] [PMID: 26692290]
[466]
Park, H.; Garrido-Laguna, I.; Naing, A.; Fu, S.; Falchook, G.S.; Piha-Paul, S.A.; Wheler, J.J.; Hong, D.S.; Tsimberidou, A.M.; Subbiah, V.; Zinner, R.G.; Kaseb, A.O.; Patel, S.; Fanale, M.A.; Velez-Bravo, V.M.; Meric-Bernstam, F.; Kurzrock, R.; Janku, F. Phase I dose-escalation study of the mTOR inhibitor sirolimus and the HDAC inhibitor vorinostat in patients with advanced malignancy. Oncotarget, 2016, 7(41), 67521-67531.
[http://dx.doi.org/10.18632/oncotarget.11750] [PMID: 27589687]
[467]
Shi, X.; Li, M.; Cui, M.; Niu, C.; Xu, J.; Zhou, L.; Li, W.; Gao, Y.; Kong, W.; Cui, J.; Hu, J.; Jin, H. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. Am. J. Cancer Res., 2016, 6(3), 600-614.
[PMID: 27152238]
[468]
Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; Makarov, V.; Budhu, S.; Slamon, D.J.; Wolchok, J.D.; Pardoll, D.M.; Beckmann, M.W.; Zahnow, C.A.; Merghoub, T.; Chan, T.A.; Baylin, S.B.; Strick, R. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 2015, 162(5), 974-986.
[http://dx.doi.org/10.1016/j.cell.2015.07.011] [PMID: 26317466]
[469]
Tanaka, M.; Roberts, J.M.; Qi, J.; Bradner, J.E. Inhibitors of emerging epigenetic targets for cancer therapy: a patent review (2010-2014). Pharm. Pat. Anal., 2015, 4(4), 261-284.
[http://dx.doi.org/10.4155/ppa.15.16] [PMID: 26174566]
[470]
Mazur, P.K.; Herner, A.; Mello, S.S.; Wirth, M.; Hausmann, S.; Sánchez-Rivera, F.J.; Lofgren, S.M.; Kuschma, T.; Hahn, S.A.; Vangala, D.; Trajkovic-Arsic, M.; Gupta, A.; Heid, I.; Noël, P.B.; Braren, R.; Erkan, M.; Kleeff, J.; Sipos, B.; Sayles, L.C.; Heikenwalder, M.; Heßmann, E.; Ellenrieder, V.; Esposito, I.; Jacks, T.; Bradner, J.E.; Khatri, P.; Sweet-Cordero, E.A.; Attardi, L.D.; Schmid, R.M.; Schneider, G.; Sage, J.; Siveke, J.T. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med., 2015, 21(10), 1163-1171.
[http://dx.doi.org/10.1038/nm.3952] [PMID: 26390243]
[471]
Borodovsky, A.; Salmasi, V.; Turcan, S.; Fabius, A.W.M.; Baia, G.S.; Eberhart, C.G.; Weingart, J.D.; Gallia, G.L.; Baylin, S.B.; Chan, T.A.; Riggins, G.J. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget, 2013, 4(10), 1737-1747.
[http://dx.doi.org/10.18632/oncotarget.1408] [PMID: 24077805]
[472]
Turcan, S.; Rohle, D.; Goenka, A.; Walsh, L.A.; Fang, F.; Yilmaz, E.; Campos, C.; Fabius, A.W.; Lu, C.; Ward, P.S.; Thompson, C.B.; Kaufman, A.; Guryanova, O.; Levine, R.; Heguy, A.; Viale, A.; Morris, L.G.; Huse, J.T.; Mellinghoff, I.K.; Chan, T.A. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature, 2012, 483(7390), 479-483.
[http://dx.doi.org/10.1038/nature10866] [PMID: 22343889]
[473]
Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; Koh, H.; Simms, L.; Barker, M.; Leggett, B.; Levine, J.; Kim, M.; French, A.J.; Thibodeau, S.N.; Jass, J.; Haile, R.; Laird, P.W. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet., 2006, 38(7), 787-793.
[http://dx.doi.org/10.1038/ng1834] [PMID: 16804544]
[474]
Azad, N.; Zahnow, C.A.; Rudin, C.M.; Baylin, S.B. The future of epigenetic therapy in solid tumours-lessons from the past. Nat. Rev. Clin. Oncol., 2013, 10(5), 256-266.
[http://dx.doi.org/10.1038/nrclinonc.2013.42] [PMID: 23546521]
[475]
Yang, A.S.; Doshi, K.D.; Choi, S.W.; Mason, J.B.; Mannari, R.K.; Gharybian, V.; Luna, R.; Rashid, A.; Shen, L.; Estecio, M.R.; Kantarjian, H.M.; Garcia-Manero, G.; Issa, J.P. DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res., 2006, 66(10), 5495-5503.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2385] [PMID: 16707479]
[476]
Wang, Y.; Sun, S.; Zhang, Z.; Shi, D. Nanomaterials for cancer precision medicine. Adv. Mater., 2018, 30(17)e1705660
[http://dx.doi.org/10.1002/adma.201705660] [PMID: 29504159]
[477]
Calabretta, M.M.; Zangheri, M.; Lopreside, A.; Marchegiani, E.; Montali, L.; Simoni, P.; Roda, A. Precision medicine, bioanalytics and nanomaterials: toward a new generation of personalized portable diagnostics. Analyst (Lond.), 2020, 145(8), 2841-2853.
[http://dx.doi.org/10.1039/C9AN02041A] [PMID: 32196042]
[478]
Joo, J.I.; Choi, M.; Jang, S.H.; Choi, S.; Park, S.M.; Shin, D.; Cho, K.H. Realizing cancer precision medicine by integrating systems biology and nanomaterial engineering. Adv. Mater., 2020, 32(35)e1906783
[http://dx.doi.org/10.1002/adma.201906783] [PMID: 32253807]
[479]
Keles, E.; Song, Y.; Du, D.; Dong, W.J.; Lin, Y. Recent progress in nanomaterials for gene delivery applications. Biomater. Sci., 2016, 4(9), 1291-1309.
[http://dx.doi.org/10.1039/C6BM00441E] [PMID: 27480033]
[480]
Tuantranont, A. Applications of Nanomaterials in Sensors and Diagnostics; Springer: Amsterdam, 2013.
[http://dx.doi.org/10.1007/978-3-642-36025-1]
[481]
Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zheng, Z.; Shu, Y.; Wu, X.; Lei, J.; Li, Y.; Zhang, W.; Yang, C.; Wu, K.; Wu, Y.; Ho, S.; Athiviraham, A.; Lee, M.J.; Wolf, J.M.; Reid, R.R.; He, T.C. Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis., 2017, 4(2), 43-63.
[http://dx.doi.org/10.1016/j.gendis.2017.04.001] [PMID: 28944281]
[482]
Duffy, D.J. Problems, challenges and promises: perspectives on precision medicine. Brief. Bioinform., 2016, 17(3), 494-504.
[http://dx.doi.org/10.1093/bib/bbv060] [PMID: 26249224]
[483]
Personalized Medicine: Trends and prospects for the new science of genetic testing and molecular diagnostics. Work Paper, 2012, 7.
[484]
Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; Price, T.J.; Shepherd, L.; Au, H.J.; Langer, C.; Moore, M.J.; Zalcberg, J.R. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med., 2008, 359(17), 1757-1765.
[http://dx.doi.org/10.1056/NEJMoa0804385] [PMID: 18946061]
[485]
De Roock, W.; Claes, B.; Bernasconi, D.; De Schutter, J.; Biesmans, B.; Fountzilas, G.; Kalogeras, K.T.; Kotoula, V.; Papamichael, D.; Laurent-Puig, P.; Penault-Llorca, F.; Rougier, P.; Vincenzi, B.; Santini, D.; Tonini, G.; Cappuzzo, F.; Frattini, M.; Molinari, F.; Saletti, P.; De Dosso, S.; Martini, M.; Bardelli, A.; Siena, S.; Sartore-Bianchi, A.; Tabernero, J.; Macarulla, T.; Di Fiore, F.; Gangloff, A.O.; Ciardiello, F.; Pfeiffer, P.; Qvortrup, C.; Hansen, T.P.; Van Cutsem, E.; Piessevaux, H.; Lambrechts, D.; Delorenzi, M.; Tejpar, S. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol., 2010, 11(8), 753-762.
[http://dx.doi.org/10.1016/S1470-2045(10)70130-3] [PMID: 20619739]
[486]
Seymour, C.W.; Gomez, H.; Chang, C.H.; Clermont, G.; Kellum, J.A.; Kennedy, J.; Yende, S.; Angus, D.C. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit. Care, 2017, 21(1), 257.
[http://dx.doi.org/10.1186/s13054-017-1836-5] [PMID: 29047353]
[487]
Wolkenhauer, O.; Auffray, C.; Brass, O.; Clairambault, J.; Deutsch, A.; Drasdo, D.; Gervasio, F.; Preziosi, L.; Maini, P.; Marciniak-Czochra, A.; Kossow, C.; Kuepfer, L.; Rateitschak, K.; Ramis-Conde, I.; Ribba, B.; Schuppert, A.; Smallwood, R.; Stamatakos, G.; Winter, F.; Byrne, H. Enabling multiscale modeling in systems medicine. Genome Med., 2014, 6(3), 21.
[http://dx.doi.org/10.1186/gm538] [PMID: 25031615]
[488]
Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature, 2015, 526(7571), 68-74.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[489]
Henderson, T.O.; Bhatia, S.; Pinto, N.; London, W.B.; McGrady, P.; Crotty, C.; Sun, C.L.; Cohn, S.L. Racial and ethnic disparities in risk and survival in children with neuroblastoma: a Children’s Oncology Group study. J. Clin. Oncol., 2011, 29(1), 76-82.
[http://dx.doi.org/10.1200/JCO.2010.29.6103] [PMID: 21098321]
[490]
Bierman, A.S.; Tinetti, M.E. Precision medicine to precision care: managing multimorbidity. Lancet, 2016, 388(10061), 2721-2723.
[http://dx.doi.org/10.1016/S0140-6736(16)32232-2] [PMID: 27924764]
[491]
Tinetti, M.E.; Bogardus, S.T., Jr; Agostini, J.V. Potential pitfalls of disease-specific guidelines for patients with multiple conditions. N. Engl. J. Med., 2004, 351(27), 2870-2874.
[http://dx.doi.org/10.1056/NEJMsb042458] [PMID: 15625341]
[492]
Gavan, S.P.; Thompson, A.J.; Payne, K. The economic case for precision medicine. Expert Rev. Precis. Med. Drug Dev., 2018, 3(1), 1-9.
[http://dx.doi.org/10.1080/23808993.2018.1421858] [PMID: 29682615]
[493]
Towse, A.; Garrison, L. Value assessment in precision cancer medicine. J. Cancer Policy, 2017, 11, 48-53.
[http://dx.doi.org/10.1016/j.jcpo.2016.09.003]
[494]
Shin, S.H.; Bode, A.M.; Dong, Z. Addressing the challenges of applying precision oncology. NPJ Precis. Oncol., 2017, 1(1), 28.
[http://dx.doi.org/10.1038/s41698-017-0032-z] [PMID: 29872710]
[495]
Mullard, A. NCI-MATCH trial pushes cancer umbrella trial paradigm. Nat. Rev. Drug Discov., 2015, 14(8), 513-515.
[http://dx.doi.org/10.1038/nrd4694] [PMID: 26228747]
[496]
Dzau, V.J.; Ginsburg, G.S. Realizing the full potential of precision medicine in health and health care. JAMA, 2016, 316(16), 1659-1660.
[http://dx.doi.org/10.1001/jama.2016.14117] [PMID: 27669484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy