Abstract
Background: Diabetic nephropathy-related osteoporosis (DNOP) is the most common comorbid bone metabolic disorder associated with diabetes mellitus (DM). The Liuwei Dihuang Pill (LWD) is a traditional Chinese herbal medicine widely used to treat diabetic complications, including diabetic nephropathy (DN). This study aimed to identify the biomarkers of the mechanisms of DNOP in LWD with systems biology approaches.
Methods: Herein, we performed an integrated analysis of the GSE51674 and GSE63446 datasets from the GEO database via weighted gene co-expression network and network pharmacology (WGCNA) analysis. In addition, a network pharmacology approach, including bioactive compounds, was used with oral bioavailability (OB) and drug-likeness (DL) evaluation. Next, target prediction, functional enrichment analysis, network analysis, and virtual docking were used to investigate the mechanisms of LWD in DNOP.
Results: WGCNA successfully identified 63 DNOP-related miRNAs. Among them, miR-574 was significantly upregulated in DN and OP samples. A total of 117 targets of 22 components associated with LWD in DNOP were obtained. The cellular response to nitrogen compounds, the AGERAGE signaling pathway in diabetic complications, and the MAPK signaling pathway were related to the main targets. Network analysis showed that kaempferol and quercetin were the most significant components. MAPK1 was identified as a potential target of miR-574 and the hub genes in the protein-protein interaction (PPI) network. The docking models demonstrated that kaempferol and quercetin had a strong binding affinity for Asp 167 of MAPK1.
Conclusion: This study demonstrated that miR-574 may play important roles in DNOP, and the therapeutic effects of kaempferol and quercetin on LWD in DNOP might be mediated by miR-574 by targeting MAPK1. Our results provide new perspectives for further studies on the anti-DNOP mechanism of LWD.
Keywords: Liuwei Dihuang, diabetic nephropathies, osteoporosis, WGCNA, network pharmacology, diabetes mellitus.
[PMID: 30179212]
[http://dx.doi.org/10.3892/ijo.2019.4800] [PMID: 31115579]
[http://dx.doi.org/10.1016/j.biopha.2018.09.007] [PMID: 30212710]
[http://dx.doi.org/10.1016/j.biopha.2018.11.032] [PMID: 30551413]
[http://dx.doi.org/10.1016/j.ejphar.2019.172805] [PMID: 31756333]
[http://dx.doi.org/10.1210/jc.2017-00042] [PMID: 28938433]
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[http://dx.doi.org/10.1016/j.abb.2020.108331] [PMID: 32151564]
[http://dx.doi.org/10.1097/MD.0000000000016225] [PMID: 31277135]
[http://dx.doi.org/10.1089/cmb.2019.0182] [PMID: 31356112]
[http://dx.doi.org/10.18632/aging.103223] [PMID: 32427128]
[http://dx.doi.org/10.1007/s11626-019-00405-9] [PMID: 31732956]
[http://dx.doi.org/10.7717/peerj.8907] [PMID: 32280568]
[http://dx.doi.org/10.3892/mmr.2019.10570] [PMID: 31432133]
[http://dx.doi.org/10.1155/2015/905749] [PMID: 25861268]
[http://dx.doi.org/10.1155/2016/1509063] [PMID: 26997962]
[http://dx.doi.org/10.3389/fendo.2019.00100] [PMID: 30873118]
[http://dx.doi.org/10.1007/s11655-016-2744-2] [PMID: 28028720]
[http://dx.doi.org/10.1155/2020/5947304] [PMID: 32215271]
[http://dx.doi.org/10.1038/s41598-019-47778-1] [PMID: 31388051]
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[http://dx.doi.org/10.1093/bioinformatics/btm254] [PMID: 17496320]
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[http://dx.doi.org/10.1186/1472-6882-14-430] [PMID: 25366653]
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[http://dx.doi.org/10.1093/nar/gkw1118] [PMID: 27899599]
[http://dx.doi.org/10.1093/nar/gkv1072] [PMID: 26481362]
[http://dx.doi.org/10.1093/nar/gku477]
[PMID: 31680165]
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[http://dx.doi.org/10.1016/j.phrs.2019.01.043] [PMID: 30695734]
[http://dx.doi.org/10.1007/s00223-019-00643-9] [PMID: 31858161]
[http://dx.doi.org/10.18632/aging.101962] [PMID: 31102503]
[http://dx.doi.org/10.1016/j.yexmp.2019.104282] [PMID: 31301305]
[http://dx.doi.org/10.1371/journal.pone.0062582] [PMID: 23626837]
[http://dx.doi.org/10.1055/a-0636-3883] [PMID: 30049003]
[http://dx.doi.org/10.1042/BSR20180696] [PMID: 30413613]
[http://dx.doi.org/10.2174/1874467213666200116113945] [PMID: 31951177]
[http://dx.doi.org/10.1142/S0192415X19500496] [PMID: 31248265]
[http://dx.doi.org/10.1155/2016/9340637] [PMID: 28003714]
[http://dx.doi.org/10.1016/j.phrs.2015.06.006] [PMID: 26151815]
[http://dx.doi.org/10.1016/j.biopha.2018.10.195] [PMID: 30551415]
[http://dx.doi.org/10.1016/j.phrs.2019.104320] [PMID: 31220559]
[http://dx.doi.org/10.2147/DDDT.S227738] [PMID: 31631974]
[http://dx.doi.org/10.3892/mmr.2019.10747] [PMID: 31638215]
[PMID: 30662673]
[http://dx.doi.org/10.1002/jcp.30087] [PMID: 33030247]
[http://dx.doi.org/10.1042/CS20160571] [PMID: 28053239]
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107240] [PMID: 32126522]