Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Bone Disruption and Environmental Pollutants

Author(s): Raffaele Giannattasio*, Giuseppe Lisco, Vito Angelo Giagulli, Silvio Settembrini, Giovanni De Pergola, Edoardo Guastamacchia, Gaetano Lombardi and Vincenzo Triggiani*

Volume 22, Issue 7, 2022

Published on: 18 January, 2021

Page: [704 - 715] Pages: 12

DOI: 10.2174/1871530321666210118163538

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Endocrine Disrupting Chemicals (EDCs) are ubiquitous and may significantly contribute to environmental pollution and contamination in humans and wildlife. Ecological pollutants could interfere with bone homeostasis through different mechanisms, including hormonal imbalance, direct osteoblast toxicity, and enhancement of osteoclasts activity, leading to either osteopenia or osteoporosis. Among these chemicals, bisphenols, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, poly- and perfluoroalkyl, phthalates, parabens, organotins, and cadmium may play a role in the bone disruption.

Methods: Authors searched PubMed/MEDLINE, ISI-web of knowledge, and Google scholar databases for medical subject headings terms and free-text words related to the classes mentioned above of chemicals and bone metabolism and remodeling for better clarifying and understanding the main mechanisms of bone disruption.

Results: Several EDCs act as xeno-estrogens. Considering that estrogens play a significant role in regulating bone remodeling, most of these chemicals generate hormonal imbalance with possible detrimental consequences on bone tissue structure and its mechanical and non-mechanical properties.

Discussion: Much evidence about bone disruptors was obtained from in vitro studies or animal models with equivocal results. Besides, a few data have been acquired from humans, and most of these data focused on the impact of EDCs on bone mineral density without considering their influence on long-term fracture risk. Moreover, humans may be exposed to a mixture of EDCs, and the final effect on bone metabolism might be attributable to either synergistic or antagonist effects. Age of first exposure, cumulative exposure over time, and the usually observed non-monotonic dose-response curve for EDCs should be considered as other essential variables influencing bone metabolism's final effect.

Conclusion: Given these variables, observational studies are needed to analyze this issue for ecological purposes better and preserve bone health.

Keywords: Endocrine-disrupting chemicals, bone turnover, bone metabolism, bisphenol A, cadmium, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, polyfluoroalkyl, perfluoroalkyl, phthalates, parabens, organotins.

[1]
Hotchkiss, A.K.; Rider, C.V.; Blystone, C.R.; Wilson, V.S.; Hartig, P.C.; Ankley, G.T.; Foster, P.M.; Gray, C.L.; Gray, L.E. Fifteen years after “Wingspread”--environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol. Sci., 2008, 105(2), 235-259.
[http://dx.doi.org/10.1093/toxsci/kfn030] [PMID: 18281716]
[2]
Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev., 2009, 30(4), 293-342.
[http://dx.doi.org/10.1210/er.2009-0002] [PMID: 19502515]
[4]
Stefanidou, M.; Maravelias, C.; Spiliopoulou, C. Human exposure to endocrine disruptors and breast milk. Endocr. Metab. Immune Disord. Drug Targets, 2009, 9(3), 269-276.
[http://dx.doi.org/10.2174/187153009789044374] [PMID: 19594415]
[5]
Petersen, S.L.; Krishnan, S.; Hudgens, E.D. The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology, 2006, 147(6)(Suppl.), S33-S42.
[http://dx.doi.org/10.1210/en.2005-1157] [PMID: 16690800]
[6]
Thackaberry, E.A.; Bedrick, E.J.; Goens, M.B.; Danielson, L.; Lund, A.K.; Gabaldon, D.; Smith, S.M.; Walker, M.K. Insulin regulation in AhR-null mice: embryonic cardiac enlargement, neonatal macrosomia, and altered insulin regulation and response in pregnant and aging AhR-null females. Toxicol. Sci., 2003, 76(2), 407-417.
[http://dx.doi.org/10.1093/toxsci/kfg229] [PMID: 12970579]
[7]
Swedenborg, E.; Rüegg, J.; Mäkelä, S.; Pongratz, I. Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J. Mol. Endocrinol., 2009, 43(1), 1-10.
[http://dx.doi.org/10.1677/JME-08-0132] [PMID: 19211731]
[8]
Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol., 2015, 40(1), 241-258.
[http://dx.doi.org/10.1016/j.etap.2015.06.009] [PMID: 26164742]
[9]
Neer, R.M.; Arnaud, C.D.; Zanchetta, J.R.; Prince, R.; Gaich, G.A.; Reginster, J.Y.; Hodsman, A.B.; Eriksen, E.F.; Ish-Shalom, S.; Genant, H.K.; Wang, O.; Mitlak, B.H. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med., 2001, 344(19), 1434-1441.
[http://dx.doi.org/10.1056/NEJM200105103441904] [PMID: 11346808]
[10]
Hodsman, A.B.; Hanley, D.A.; Ettinger, M.P.; Bolognese, M.A.; Fox, J.; Metcalfe, A.J.; Lindsay, R. Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis. J. Clin. Endocrinol. Metab., 2003, 88(11), 5212-5220.
[http://dx.doi.org/10.1210/jc.2003-030768] [PMID: 14602752]
[11]
Spelsberg, T.C.; Subramaniam, M.; Riggs, B.L.; Khosla, S. The actions and interactions of sex steroids and growth factors/cytokines on the skeleton. Mol. Endocrinol., 1999, 13(6), 819-828.
[http://dx.doi.org/10.1210/mend.13.6.0299] [PMID: 10379881]
[12]
Finnilä, M.A.; Zioupos, P.; Herlin, M.; Miettinen, H.M.; Simanainen, U.; Håkansson, H.; Tuukkanen, J.; Viluksela, M.; Jämsä, T. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on bone material properties. J. Biomech., 2010, 43(6), 1097-1103.
[http://dx.doi.org/10.1016/j.jbiomech.2009.12.011] [PMID: 20132933]
[13]
Chin, K.Y.; Pang, K.L.; Mark-Lee, W.F. A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health. Int. J. Med. Sci., 2018, 15(10), 1043-1050.
[http://dx.doi.org/10.7150/ijms.25634] [PMID: 30013446]
[14]
Staples, C.A.; Dorn, P.B.; Klecka, G.M.; O’Block, S.T.; Harris, L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 1998, 36(10), 2149-2173.
[http://dx.doi.org/10.1016/S0045-6535(97)10133-3] [PMID: 9566294]
[15]
Huang, Y.Q.; Wong, C.K.; Zheng, J.S.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M.H.; Bisphenol, A. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ. Int., 2012, 42, 91-99.
[http://dx.doi.org/10.1016/j.envint.2011.04.010] [PMID: 21596439]
[16]
Morgan, M.K.; Nash, M.; Barr, D.B.; Starr, J.M.; Scott Clifton, M.; Sobus, J.R. Distribution, variability, and predictors of urinary bisphenol A levels in 50 North Carolina adults over a six-week monitoring period. Environ. Int., 2018, 112, 85-99.
[http://dx.doi.org/10.1016/j.envint.2017.12.014] [PMID: 29268160]
[17]
Toner, F.; Allan, G.; Dimond, S.S.; Waechter, J.M., Jr; Beyer, D. In vitro percutaneous absorption and metabolism of Bisphenol A (BPA) through fresh human skin. Toxicol. In Vitro, 2018, 47, 147-155.
[http://dx.doi.org/10.1016/j.tiv.2017.11.002] [PMID: 29154941]
[18]
Björnsdotter, M.K.; de Boer, J.; Ballesteros-Gómez, A. Bisphenol A and replacements in thermal paper: A review. Chemosphere, 2017, 182, 691-706.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.070] [PMID: 28528315]
[19]
Jalal, N.; Surendranath, A.R.; Pathak, J.L.; Yu, S.; Chung, C.Y.; Bisphenol, A. Bisphenol A (BPA) the mighty and the mutagenic. Toxicol. Rep., 2017, 5, 76-84.
[http://dx.doi.org/10.1016/j.toxrep.2017.12.013] [PMID: 29854579]
[20]
Thent, Z.C.; Froemming, G.R.A.; Muid, S. Bisphenol A exposure disturbs the bone metabolism: An evolving interest towards an old culprit. Life Sci., 2018, 198, 1-7.
[http://dx.doi.org/10.1016/j.lfs.2018.02.013] [PMID: 29432759]
[21]
Bolli, A.; Galluzzo, P.; Ascenzi, P.; Del Pozzo, G.; Manco, I.; Vietri, M.T.; Mita, L.; Altucci, L.; Mita, D.G.; Marino, M. Laccase treatment impairs bisphenol A-induced cancer cell proliferation affecting estrogen receptor alpha-dependent rapid signals. IUBMB Life, 2008, 60(12), 843-852.
[http://dx.doi.org/10.1002/iub.130] [PMID: 18767177]
[22]
Bolli, A.; Bulzomi, P.; Galluzzo, P.; Acconcia, F.; Marino, M. Bisphenol A impairs estradiol-induced protective effects against DLD-1 colon cancer cell growth. IUBMB Life, 2010, 62(9), 684-687.
[http://dx.doi.org/10.1002/iub.370] [PMID: 20836126]
[23]
Hwang, J.K.; Min, K.H.; Choi, K.H.; Hwang, Y.C.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Chang, J.S. Bisphenol A reduces differentiation and stimulates apoptosis of osteoclasts and osteoblasts. Life Sci., 2013, 93(9-11), 367-372.
[http://dx.doi.org/10.1016/j.lfs.2013.07.020] [PMID: 23900028]
[24]
Suzuki, N.; Hattori, A. Bisphenol A suppresses osteoclastic and osteoblastic activities in the cultured scales of goldfish. Life Sci., 2003, 73(17), 2237-2247.
[http://dx.doi.org/10.1016/S0024-3205(03)00603-9] [PMID: 12927593]
[25]
Akingbemi, B.T.; Sottas, C.M.; Koulova, A.I.; Klinefelter, G.R.; Hardy, M.P. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology, 2004, 145(2), 592-603.
[http://dx.doi.org/10.1210/en.2003-1174] [PMID: 14605012]
[26]
Castro, B.; Sánchez, P.; Torres, J.M.; Preda, O.; del Moral, R.G.; Ortega, E.; Bisphenol, A. Bisphenol A exposure during adulthood alters expression of aromatase and 5α-reductase isozymes in rat prostate. PLoS One, 2013, 8(2), e55905.
[http://dx.doi.org/10.1371/journal.pone.0055905] [PMID: 23405234]
[27]
Kim, J.Y.; Han, E.H.; Kim, H.G.; Oh, K.N.; Kim, S.K.; Lee, K.Y.; Jeong, H.G. Bisphenol A-induced aromatase activation is mediated by cyclooxygenase-2 up-regulation in rat testicular Leydig cells. Toxicol Lett, 2010, 15, 193(2), 200-208.
[28]
Yang, Y.J.; Hong, Y.C.; Oh, S.Y.; Park, M.S.; Kim, H.; Leem, J.H.; Ha, E.H. Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausal women. Environ. Res., 2009, 109(6), 797-801.
[http://dx.doi.org/10.1016/j.envres.2009.04.014] [PMID: 19464675]
[29]
Savastano, S.; Tarantino, G.; D’Esposito, V.; Passaretti, F.; Cabaro, S.; Liotti, A.; Liguoro, D.; Perruolo, G.; Ariemma, F.; Finelli, C.; Beguinot, F.; Formisano, P.; Valentino, R. Bisphenol-A plasma levels are related to inflammatory markers, visceral obesity and insulin-resistance: a cross-sectional study on adult male population. J. Transl. Med., 2015, 13, 169.
[http://dx.doi.org/10.1186/s12967-015-0532-y] [PMID: 26021871]
[30]
Lejonklou, M.H.; Christiansen, S.; Örberg, J.; Shen, L.; Larsson, S.; Boberg, J.; Hass, U.; Lind, P.M. Low-dose developmental exposure to bisphenol A alters the femoral bone geometry in wistar rats. Chemosphere, 2016, 164, 339-346.
[http://dx.doi.org/10.1016/j.chemosphere.2016.08.114] [PMID: 27592323]
[31]
Li, G.; Xu, Z.; Hou, L.; Li, X.; Li, X.; Yuan, W.; Polat, M.; Chang, S. Differential effects of bisphenol A diglicydyl ether on bone quality and marrow adiposity in ovary-intact and ovariectomized rats. Am. J. Physiol. Endocrinol. Metab., 2016, 311(6), E922-E927.
[http://dx.doi.org/10.1152/ajpendo.00267.2016] [PMID: 27756728]
[32]
Kim, J.C.; Shin, H.C.; Cha, S.W.; Koh, W.S.; Chung, M.K.; Han, S.S. Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci., 2001, 69(22), 2611-2625.
[http://dx.doi.org/10.1016/S0024-3205(01)01341-8] [PMID: 11712665]
[33]
Toda, K.; Miyaura, C.; Okada, T.; Shizuta, Y. Dietary bisphenol A prevents ovarian degeneration and bone loss in female mice lacking the aromatase gene (Cyp19 ). Eur. J. Biochem., 2002, 269(8), 2214-2222.
[http://dx.doi.org/10.1046/j.1432-1033.2002.02879.x] [PMID: 11985600]
[34]
Pelch, K.E.; Carleton, S.M.; Phillips, C.L.; Nagel, S.C. Developmental exposure to xenoestrogens at low doses alters femur length and tensile strength in adult mice. Biol. Reprod., 2012, 86(3), 69.
[http://dx.doi.org/10.1095/biolreprod.111.096545] [PMID: 22088916]
[35]
vom Saal, F.S.; Hughes, C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect., 2005, 113(8), 926-933.
[http://dx.doi.org/10.1289/ehp.7713] [PMID: 16079060]
[36]
Vandenberg, L.N. Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study. Dose Response, 2013, 12(2), 259-276.
[PMID: 24910584]
[37]
Kim, D.H.; Oh, C.H.; Hwang, Y.C.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Chang, J.S. Serum bisphenol a concentration in postmenopausal women with osteoporosis. J. Bone Metab., 2012, 19(2), 87-93.
[http://dx.doi.org/10.11005/jbm.2012.19.2.87] [PMID: 24524038]
[38]
Zhao, H.Y.; Bi, Y.F.; Ma, L.Y.; Zhao, L.; Wang, T.G.; Zhang, L.Z.; Tao, B.; Sun, L.H.; Zhao, Y.J.; Wang, W.Q.; Li, X.Y.; Xu, M.Y.; Chen, J.L.; Ning, G.; Liu, J.M. The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin. Biochem., 2012, 45(18), 1602-1606.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.08.024] [PMID: 22981830]
[39]
Kim, S.; An, B.S.; Yang, H.; Jeung, E.B. Effects of octylphenol and bisphenol A on the expression of calcium transport genes in the mouse duodenum and kidney during pregnancy. Toxicology, 2013, 303, 99-106.
[http://dx.doi.org/10.1016/j.tox.2012.10.023] [PMID: 23142789]
[40]
Otsuka, H.; Sugimoto, M.; Ikeda, S.; Kume, S. Effects of bisphenol a administration to pregnant mice on serum Ca and intestinal Ca absorption. Anim. Sci. J., 2012, 83, 232-237.
[41]
Vitku, J.; Kolatorova, L.; Franekova, L.; Blahos, J.; Simkova, M.; Duskova, M.; Skodova, T.; Starka, L. Endocrine disruptors of the bisphenol and paraben families and bone metabolism. Physiol. Res., 2018, 67(Suppl. 3), S455-S464.
[http://dx.doi.org/10.33549/physiolres.934005] [PMID: 30484672]
[42]
Kok-Yong Chin Kok-Lun Pang, Wun Fui Mark-Lee.. A Review on the Effects of Bisphenol A and Its Derivatives on Skeletal Health Int. J. Med. Sci., 2018, 15(10), 1043-1050.
[http://dx.doi.org/10.7150/ijms.25634]
[43]
Pohjanvirta, R.; Tuomisto, J. Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models. Pharmacol. Rev., 1994, 46(4), 483-549.
[PMID: 7899475]
[44]
Jones, K.C.; de Voogt, P. Persistent organic pollutants (POPs): state of the science. Environ. Pollut., 1999, 100(1-3), 209-221.
[http://dx.doi.org/10.1016/S0269-7491(99)00098-6] [PMID: 15093119]
[45]
Tuomisto, J. Are dioxins a health problem in Finland?. Duodecim, 2001, 117(3), 245-246.
[PMID: 12092392]
[46]
Ilvesaro, J.; Pohjanvirta, R.; Tuomisto, J.; Viluksela, M.; Tuukkanen, J. Bone resorption by aryl hydrocarbon receptor-expressing osteoclasts is not disturbed by TCDD in short-term cultures. Life Sci., 2005, 77(12), 1351-1366.
[http://dx.doi.org/10.1016/j.lfs.2005.01.027] [PMID: 15913656]
[47]
Ryan, E.P.; Holz, J.D.; Mulcahey, M.; Sheu, T.J.; Gasiewicz, T.A.; Puzas, J.E. Environmental toxicants may modulate osteoblast differentiation by a mechanism involving the aryl hydrocarbon receptor. J. Bone Miner. Res., 2007, 22(10), 1571-1580.
[http://dx.doi.org/10.1359/jbmr.070615] [PMID: 17576166]
[48]
Okey, A.B. An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci., 2007, 98(1), 5-38.
[http://dx.doi.org/10.1093/toxsci/kfm096] [PMID: 17569696]
[49]
Gierthy, J.F.; Silkworth, J.B.; Tassinari, M.; Stein, G.S.; Lian, J.B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits differentiation of normal diploid rat osteoblasts in vitro. J. Cell. Biochem., 1994, 54(2), 231-238.
[http://dx.doi.org/10.1002/jcb.240540211] [PMID: 8175897]
[50]
Singh, S.U.N.; Casper, R.F.; Fritz, P.C.; Sukhu, B.; Ganss, B.; Girard, B., Jr; Savouret, J.F.; Tenenbaum, H.C. Inhibition of dioxin effects on bone formation in vitro by a newly described aryl hydrocarbon receptor antagonist, resveratrol. J. Endocrinol., 2000, 167(1), 183-195.
[http://dx.doi.org/10.1677/joe.0.1670183] [PMID: 11018766]
[51]
Jämsä, T.; Viluksela, M.; Tuomisto, J.T.; Tuomisto, J.; Tuukkanen, J. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on bone in two rat strains with different aryl hydrocarbon receptor structures. J. Bone Miner. Res., 2001, 16(10), 1812-1820.
[http://dx.doi.org/10.1359/jbmr.2001.16.10.1812] [PMID: 11585345]
[52]
Pohjanvirta, R.; Wong, J.M.Y.; Li, W.; Harper, P.A.; Tuomisto, J.; Okey, A.B. Point mutation in intron sequence causes altered C-terminal structure in the AH receptor of the most TCDD-resistant rat strain. Mol. Pharmacol., 1998, 54, 86-93.
[http://dx.doi.org/10.1124/mol.54.1.86] [PMID: 9658193]
[53]
Pohjanvirta, R.; Viluksela, M.; Tuomisto, J.T.; Unkila, M.; Karasinska, J.; Franc, M.A.; Holowenko, M.; Giannone, J.V.; Harper, P.A.; Tuomisto, J.; Okey, A.B. Physicochemical differences in the AH receptors of the most TCDD-susceptible and the most TCDD-resistant rat strains. Toxicol. Appl. Pharmacol., 1999, 155(1), 82-95.
[http://dx.doi.org/10.1006/taap.1998.8565] [PMID: 10036221]
[54]
Miettinen, H.M.; Pulkkinen, P.; Jämsä, T.; Koistinen, J.; Simanainen, U.; Tuomisto, J.; Tuukkanen, J.; Viluksela, M. Effects of in utero and lactational TCDD exposure on bone development in differentially sensitive rat lines. Toxicol. Sci., 2005, 85(2), 1003-1012.
[http://dx.doi.org/10.1093/toxsci/kfi136] [PMID: 15746008]
[55]
Nishimura, N.; Nishimura, H.; Ito, T.; Miyata, C.; Izumi, K.; Fujimaki, H.; Matsumura, F. Dioxin-induced up-regulation of the active form of vitamin D is the main cause for its inhibitory action on osteoblast activities, leading to developmental bone toxicity. Toxicol. Appl. Pharmacol., 2009, 236(3), 301-309.
[http://dx.doi.org/10.1016/j.taap.2009.01.025] [PMID: 19367694]
[56]
Hermsen, S.A.; Larsson, S.; Arima, A.; Muneoka, A.; Ihara, T.; Sumida, H.; Fukusato, T.; Kubota, S.; Yasuda, M.; Lind, P.M. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhesus monkeys. Toxicology, 2008, 253(1-3), 147-152.
[http://dx.doi.org/10.1016/j.tox.2008.09.005] [PMID: 18835322]
[57]
Eskenazi, B.; Warner, M.; Sirtori, M.; Fuerst, T.; Rauch, S.A.; Brambilla, P.; Mocarelli, P.; Rubinacci, A. Serum dioxin concentrations and bone density and structure in the Seveso Women’s Health Study. Environ. Health Perspect., 2014, 122(1), 51-57.
[http://dx.doi.org/10.1289/ehp.1306788] [PMID: 24240199]
[58]
Rier, S.; Foster, W.G. Environmental dioxins and endometriosis. Toxicol. Sci., 2002, 70(2), 161-170.
[http://dx.doi.org/10.1093/toxsci/70.2.161] [PMID: 12441361]
[59]
TenHave-Opbroek, A.A.W.; Shi, X-B.; Gumerlock, P.H. 3-Methylcholanthrene triggers the differentiation of alveolar tumor cells from canine bronchial basal cells and an altered p53 gene promotes their clonal expansion. Carcinogenesis, 2000, 21(8), 1477-1484.
[http://dx.doi.org/10.1093/carcin/21.8.1477] [PMID: 10910947]
[60]
Naruse, M.; Ishihara, Y.; Miyagawa-Tomita, S.; Koyama, A.; Hagiwara, H. 3-Methylcholanthrene, which binds to the arylhydrocarbon receptor, inhibits proliferation and differentiation of osteoblasts in vitro and ossification in vivo. Endocrinology, 2002, 143(9), 3575-3581.
[http://dx.doi.org/10.1210/en.2002-220003] [PMID: 12193573]
[61]
Naruse, M.; Otsuka, E.; Naruse, M.; Ishihara, Y.; Miyagawa-Tomita, S.; Hagiwara, H. Inhibition of osteoclast formation by 3-methylcholanthrene, a ligand for arylhydrocarbon receptor: suppression of osteoclast differentiation factor in osteogenic cells. Biochem. Pharmacol., 2004, 67(1), 119-127.
[http://dx.doi.org/10.1016/j.bcp.2003.08.038] [PMID: 14667934]
[62]
Culp, S.J.; Warbritton, A.R.; Smith, B.A.; Li, E.E.; Beland, F.A. DNA adduct measurements, cell proliferation and tumor mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene. Carcinogenesis, 2000, 21(7), 1433-1440.
[PMID: 10874023]
[63]
Jeffy, B.D.; Chirnomas, R.B.; Romagnolo, D.F. Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ. Mol. Mutagen., 2002, 39(2-3), 235-244.
[http://dx.doi.org/10.1002/em.10051] [PMID: 11921194]
[64]
Tsai, K.S.; Yang, R.S.; Liu, S.H. Benzo[a]pyrene regulates osteoblast proliferation through an estrogen receptor-related cyclooxygenase-2 pathway. Chem. Res. Toxicol., 2004, 17(5), 679-684.
[http://dx.doi.org/10.1021/tx0499517] [PMID: 15144225]
[65]
Voronov, I.; Heersche, J.N.; Casper, R.F.; Tenenbaum, H.C.; Manolson, M.F. Inhibition of osteoclast differentiation by polycyclic aryl hydrocarbons is dependent on cell density and RANKL concentration. Biochem. Pharmacol., 2005, 70(2), 300-307.
[http://dx.doi.org/10.1016/j.bcp.2005.04.028] [PMID: 15919055]
[66]
Voronov, I.; Li, K.; Tenenbaum, H.C.; Manolson, M.F. Benzo[a]pyrene inhibits osteoclastogenesis by affecting RANKL-induced activation of NF-kappaB. Biochem. Pharmacol., 2008, 75(10), 2034-2044.
[http://dx.doi.org/10.1016/j.bcp.2008.02.025] [PMID: 18396263]
[67]
An, L.; Shi, Q.; Fan, M.; Huang, G.; Zhu, M.; Zhang, M.; Liu, Y.; Weng, Y. Benzo[a]pyrene injures BMP2-induced osteogenic differentiation of mesenchymal stem cells through AhR reducing BMPRII. Ecotoxicol. Environ. Saf., 2020, 203110930
[http://dx.doi.org/10.1016/j.ecoenv.2020.110930] [PMID: 32684523]
[68]
Monnouchi, S.; Maeda, H.; Yuda, A.; Serita, S.; Wada, N.; Tomokiyo, A.; Akamine, A. Benzo[a]pyrene/aryl hydrocarbon receptor signaling inhibits osteoblastic differentiation and collagen synthesis of human periodontal ligament cells. J. Periodontal Res., 2016, 51(6), 779-788.
[http://dx.doi.org/10.1111/jre.12355] [PMID: 26738610]
[69]
Kung, M.H.; Yukata, K.; O’Keefe, R.J.; Zuscik, M.J. Aryl hydrocarbon receptor-mediated impairment of chondrogenesis and fracture healing by cigarette smoke and benzo(a)pyrene. J. Cell. Physiol., 2012, 227(3), 1062-1070.
[http://dx.doi.org/10.1002/jcp.22819] [PMID: 21567390]
[70]
Hansen, L.G. The ortho side of PCBs: occurrence and disposition; Kluwer Academic Publishers: Dordrecht, 1999.
[http://dx.doi.org/10.1007/978-1-4615-5057-0]
[71]
Safe, S. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit. Rev. Toxicol., 1990, 21(1), 51-88.
[http://dx.doi.org/10.3109/10408449009089873] [PMID: 2124811]
[72]
Lind, P.M.; Eriksen, E.F.; Sahlin, L.; Edlund, M.; Orberg, J. Effects of the antiestrogenic environmental pollutant 3,30,4,40,5-pentachlorobiphenyl (PCB c126) in rat bone and uterus: diverging effects in ovariectomized and intact animals. Toxicol. Appl. Pharmacol., 1999, 154, 236-244.
[http://dx.doi.org/10.1006/taap.1998.8568] [PMID: 9931283]
[73]
Lind, P.M.; Larsson, S.; Oxlund, H.; Hakansson, H.; Nyberg, K.; Eklund, T.; Orberg, J. Change of bone tissue composition and impaired bone strength in rats exposed to 3,30, 4,40,5-pentachloro-biphenyl (PCB126). Toxicology, 2000, 150, 43-53.
[http://dx.doi.org/10.1016/S0300-483X(00)00245-6] [PMID: 10996662]
[74]
Alvarez-Lloret, P.; Lind, P.M.; Nyberg, I.; Orberg, J.; Rodrı’guez-Navarro, A.B. Effects of 3,30,4,40,5-pentachlorobiphenyl (PCB126) on vertebral bone mineralization and on thyroxin and vitamin D levels in Sprague-Dawley rats. Toxicol. Lett., 2009, 187, 63-68.
[http://dx.doi.org/10.1016/j.toxlet.2009.01.030] [PMID: 19429246]
[75]
Celotti, F.; Cocchi, D.; Santagostino, A.; Vergoni, M.V. Esposizione a PCB durante lo sviluppo e modificazioni delle funzioni neuroendocrine, metaboliche e del comportamento: uno studio integrato. Istituto Superiore di Sanità. Interferenti endocrini: valutazione e prevenzione dei possibili rischi per la salute umana, Calamandrei G, La Rocca C, Venerosi Pesciolini A, Mantovani A. Rapp. ISTISAN, 09/18, 42-43.
[76]
Nawrot, T.S.; Staessen, J.A.; Den Hond, E.M.; Koppen, G.; Schoeters, G.; Fagard, R.; Thijs, L.; Winneke, G.; Roels, H.A. Host and environmental determinants of polychlorinated aromatic hydrocarbons in serum of adolescents. Environ. Health Perspect., 2002, 110(6), 583-589.
[http://dx.doi.org/10.1289/ehp.02110583] [PMID: 12055049]
[77]
Den Hond, E.; Roels, H.A.; Hoppenbrouwers, K.; Nawrot, T.; Thijs, L.; Vandermeulen, C.; Winneke, G.; Vanderschueren, D.; Staessen, J.A. Sexual maturation in relation to polychlorinated aromatic hydrocarbons: Sharpe and Skakkebaek’s hypothesis revisited. Environ. Health Perspect., 2002, 110(8), 771-776.
[http://dx.doi.org/10.1289/ehp.02110771] [PMID: 12153757]
[78]
Guo, J.; Huang, Y.; Bian, S.; Zhao, C.; Jin, Y.; Yu, D.; Wu, X.; Zhang, D.; Cao, W.; Jing, F.; Chen, G. Associations of urinary polycyclic aromatic hydrocarbons with bone mass density and osteoporosis in U.S. adults, NHANES 2005-2010. Environ. Pollut., 2018, 240, 209-218.
[http://dx.doi.org/10.1016/j.envpol.2018.04.108] [PMID: 29738949]
[79]
Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol. Sci., 2007, 99(2), 366-394.
[http://dx.doi.org/10.1093/toxsci/kfm128.]
[80]
Germaine, M. Buck Louis, Shuyan Zhaic, Melissa M. Smarra, Jagteshwar Grewala, Cuilin Zhangd, Katherine L. Grantzd, Stefanie N. Hinkled, Rajeshwari Sundarame, Sunmi Leef, Masato Hondaf, JungKeun Ohf, and Kurunthachalam Kannanf. Endocrine disruptors and neonatal anthropometry, NICHD Fetal Growth Studies – Singletons. Environ. Int., 2018, 119, 515-526.
[http://dx.doi.org/10.1016/j.envint.2018.07.024]
[81]
Di Nisio, A.; De Rocco Ponce, M.; Giadone, A.; Rocca, M.S.; Guidolin, D.; Foresta, C. Perfluoroalkyl substances and bone health in young men: a pilot study. Endocrine, 2020, 67(3), 678-684.
[http://dx.doi.org/10.1007/s12020-019-02096-4] [PMID: 31565782]
[82]
Mayer, F.L.; Stalling, D.L.; Johnson, J.L. Phthalate esters as environmental contaminants. Nature, 1972, 238(5364), 411-413.
[http://dx.doi.org/10.1038/238411a0] [PMID: 4626399]
[83]
Group, EF Environmental fate and aquatic toxicology studies on phthalate esters. Environ Health Perspect 65:337–340; Sharman M, Read WA, Castle L, Gilbert J (1994) Levels of di-(2- ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit. Contam., 1986, 11, 375-385.
[84]
Jobling, S.; Reynolds, T.; White, R.; Parker, M.G.; Sumpter, J.P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect., 1995, 103(6), 582-587.
[http://dx.doi.org/10.1289/ehp.95103582] [PMID: 7556011]
[85]
Harris, C.A.; Henttu, P.; Parker, M.G.; Sumpter, J.P. The estrogenic activity of phthalate esters in vitro. Environ. Health Perspect., 1997, 105(8), 802-811.
[http://dx.doi.org/10.1289/ehp.97105802] [PMID: 9347895]
[86]
Ema, M.; Itami, T.; Kawasaki, H. Embryolethality and teratogenicity of butyl benzyl phthalate in rats. J. Appl. Toxicol., 1992, 12(3), 179-183.
[http://dx.doi.org/10.1002/jat.2550120305] [PMID: 1629513]
[87]
Ema, M.; Itami, T.; Kawasaki, H. Teratogenic phase specificity of butyl benzyl phthalate in rats. Toxicology, 1993, 79(1), 11-19.
[http://dx.doi.org/10.1016/0300-483X(93)90202-4] [PMID: 8475496]
[88]
Choi, J.I.; Cho, H.H. Effects of Di(2-ethylhexyl)phthalate on Bone Metabolism in Ovariectomized Mice. J. Bone Metab., 2019, 26(3), 169-177.
[http://dx.doi.org/10.11005/jbm.2019.26.3.169] [PMID: 31555614]
[89]
Hurley, M.M.; Abreu, C.; Gronowicz, G.; Kawaguchi, H.; Lorenzo, J. Expression and regulation of basic fibroblast growth factor mRNA levels in mouse osteoblastic MC3T3-E1 cells. J. Biol. Chem., 1994, 269(12), 9392-9396.
[PMID: 8132679]
[90]
Hurley, M.M.; Lee, S.K.; Raisz, L.G.; Bernecker, P.; Lorenzo, J. Basic fibroblast growth factor induces osteoclast formation in murine bone marrow cultures. Bone, 1998, 22(4), 309-316.
[http://dx.doi.org/10.1016/S8756-3282(97)00292-5] [PMID: 9556129]
[91]
Naganawa, T.; Xiao, L.; Abogunde, E.; Sobue, T.; Kalajzic, I.; Sabbieti, M.; Agas, D.; Hurley, M.M. In vivo and in vitro comparison of the effects of FGF-2 null and haplo-insufficiency on bone formation in mice. Biochem. Biophys. Res. Commun., 2006, 339(2), 490-498.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.215] [PMID: 16298332]
[92]
Menghi, G.; Sabbieti, M.G.; Marchetti, L.; Menghi, M.; Materazzi, S.; Hurley, M.M. Phthalate esters influence FGF-2 translocation in Py1a rat osteoblasts. Eur. J. Morphol., 2001, 39(3), 155-162.
[http://dx.doi.org/10.1076/ejom.39.3.155.4672] [PMID: 11910534]
[93]
Sabbieti, M.G.; Marchetti, L.; Gabrielli, M.G.; Menghi, M.; Materazzi, S.; Menghi, G.; Raisz, L.G.; Hurley, M.M. Prostaglandins differently regulate FGF-2 and FGF receptor expression and induce nuclear translocation in osteoblasts via MAPK kinase. Cell Tissue Res., 2005, 319(2), 267-278.
[http://dx.doi.org/10.1007/s00441-004-0981-8] [PMID: 15654655]
[94]
Marchetti, L.; Sabbieti, M.G.; Agas, D.; Menghi, M.; Materazzi, G.; Menghi, G.; Hurley, M.M. PGF2alpha increases FGF-2 and FGFR2 trafficking in Py1a rat osteoblasts via clathrin independent and importin beta dependent pathway. J. Cell. Biochem., 2006, 97(6), 1379-1392.
[http://dx.doi.org/10.1002/jcb.20746] [PMID: 16365892]
[95]
Tanaka-Kamioka, K.; Kamioka, H.; Ris, H.; Lim, S.S. Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J. Bone Miner. Res., 1998, 13(10), 1555-1568.
[http://dx.doi.org/10.1359/jbmr.1998.13.10.1555] [PMID: 9783544]
[96]
Marchetti, L.; Sabbieti, M.G.; Menghi, M.; Materazzi, S.; Hurley, M.M.; Menghi, G. Effects of phthalate esters on actin cytoskeleton of Py1a rat osteoblasts. Histol. Histopathol., 2002, 17(4), 1061-1066.
[PMID: 12371133]
[97]
Gordon, S.R. Microfilament disruption in a noncycling organized tissue, the corneal endothelium, initiates mitosis. Exp. Cell Res., 2002, 272(2), 127-134.
[http://dx.doi.org/10.1006/excr.2001.5407] [PMID: 11777337]
[98]
Agas, D.; Sabbieti, M.G.; Capacchietti, M.; Materazzi, S.; Menghi, G.; Materazzi, G.; Hurley, M.M.; Marchetti, L. Benzyl butyl phthalate influences actin distribution and cell proliferation in rat Py1a osteoblasts. J. Cell. Biochem., 2007, 101(3), 543-551.
[http://dx.doi.org/10.1002/jcb.21212] [PMID: 17171637]
[99]
Fujita, M.; Urano, T.; Horie, K.; Ikeda, K.; Tsukui, T.; Fukuoka, H.; Tsutsumi, O.; Ouchi, Y.; Inoue, S. Estrogen activates cyclin-dependent kinases 4 and 6 through induction of cyclin D in rat primary osteoblasts. Biochem. Biophys. Res. Commun., 2002, 299(2), 222-228.
[http://dx.doi.org/10.1016/S0006-291X(02)02640-2] [PMID: 12437973]
[100]
DeFlorio-Barker, S.A.; Turyk, M.E. Associations between bone mineral density and urinary phthalate metabolites among post-menopausal women: a cross-sectional study of NHANES data 2005-2010. Int. J. Environ. Health Res., 2016, 26(3), 326-345.
[http://dx.doi.org/10.1080/09603123.2015.1111312] [PMID: 26586408]
[101]
Hu, P.; Kennedy, R.C.; Chen, X.; Zhang, J.; Shen, C.L.; Chen, J.; Zhao, L. Differential effects on adiposity and serum marker of bone formation by post-weaning exposure to methylparaben and butylparaben. Environ. Sci. Pollut. Res. Int., 2016, 23(21), 21957-21968.
[http://dx.doi.org/10.1007/s11356-016-7452-0] [PMID: 27535158]
[102]
Fagnant, H.S.; Uzumcu, M.; Buckendahl, P.; Dunn, M.G.; Shupper, P.; Shapses, S.A. Fetal and neonatal exposure to the endocrine disruptor, methoxychlor, reduces lean body mass and bone mineral density and increases cortical porosity. Calcif. Tissue Int., 2014, 95(6), 521-529.
[http://dx.doi.org/10.1007/s00223-014-9916-x] [PMID: 25326143]
[103]
Tahan, G.P.; Santos, N.K.S.; Albuquerque, A.C.; Martins, I. Determination of parabens in serum by liquid chromatography-tandem mass spectrometry: Correlation with lipstick use. Regul. Toxicol. Pharmacol., 2016, 79, 42-48.
[http://dx.doi.org/10.1016/j.yrtph.2016.05.001] [PMID: 27154569]
[104]
Kolatorova Sosvorova, L.; Chlupacova, T.; Vitku, J.; Vlk, M.; Heracek, J.; Starka, L.; Saman, D.; Simkova, M.; Hampl, R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta, 2017, 174, 21-28.
[http://dx.doi.org/10.1016/j.talanta.2017.05.070] [PMID: 28738570]
[105]
Okubo, T.; Yokoyama, Y.; Kano, K.; Kano, I. ER-dependent estrogenic activity of parabens assessed by proliferation of human breast cancer MCF-7 cells and expression of ERalpha and PR. Food Chem. Toxicol., 2001, 39(12), 1225-1232.
[http://dx.doi.org/10.1016/S0278-6915(01)00073-4] [PMID: 11696396]
[106]
Routledge, E.J.; Parker, J.; Odum, J.; Ashby, J.; Sumpter, J.P. Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicol. Appl. Pharmacol., 1998, 153(1), 12-19.
[http://dx.doi.org/10.1006/taap.1998.8544] [PMID: 9875295]
[107]
Sun, F.; Kang, L.; Xiang, X.; Li, H.; Luo, X.; Luo, R.; Lu, C.; Peng, X. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem., 2016, 408(25), 6913-6927.
[http://dx.doi.org/10.1007/s00216-016-9791-6] [PMID: 27485626]
[108]
Watanabe, Y.; Kojima, H.; Takeuchi, S.; Uramaru, N.; Ohta, S.; Kitamura, S. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor. Food Chem. Toxicol., 2013, 57, 227-234.
[http://dx.doi.org/10.1016/j.fct.2013.03.036] [PMID: 23567241]
[109]
Kannan, K.; Corsolini, S.; Focardi, S.; Tanabe, S.; Tatsukawa, R. Accumulation pattern of butyltin compounds in dolphin, tuna, and shark collected from Italian coastal waters. Arch. Environ. Contam. Toxicol., 1996, 31(1), 19-23.
[http://dx.doi.org/10.1007/BF00203903] [PMID: 8687986]
[110]
Harino, H.; Fukushima, M.; Kawai, S. Accumulation of butyltin and phenyltin compounds in various fish species. Arch. Environ. Contam. Toxicol., 2000, 39(1), 13-19.
[http://dx.doi.org/10.1007/s002440010074] [PMID: 10790497]
[111]
Snoeij, N.J.; Penninks, A.H.; Seinen, W. Biological activity of organotin compounds--an overview. Environ. Res., 1987, 44(2), 335-353.
[http://dx.doi.org/10.1016/S0013-9351(87)80242-6] [PMID: 3319574]
[112]
Risk and Policy Analysts limited (RPA). Risk assessment studies on targeted consumer applications of certain organotin compounds. Final Report prepared for and published by the European Commission, DG Enterprise & Industry., 2005.https://ec.europa.eu/smart-regulation/impact/ia_carried_out/docs/ia_2009/sec_2009_0705_2_en.pdf
[113]
Adeeko, A.; Li, D.; Forsyth, D.S.; Casey, V.; Cooke, G.M.; Barthelemy, J.; Cyr, D.G.; Trasler, J.M.; Robaire, B.; Hales, B.F. Effects of in utero tributyltin chloride exposure in the rat on pregnancy outcome. Toxicol. Sci., 2003, 74(2), 407-415.
[http://dx.doi.org/10.1093/toxsci/kfg131] [PMID: 12773765]
[114]
Tsukamoto, Y.; Ishihara, Y.; Miyagawa-Tomita, S.; Hagiwara, H. Inhibition of ossification in vivo and differentiation of osteoblasts in vitro by tributyltin. Biochem. Pharmacol., 2004, 68(4), 739-746.
[http://dx.doi.org/10.1016/j.bcp.2004.04.020] [PMID: 15276081]
[115]
Yonezawa, T.; Hasegawa, S.; Ahn, J.Y.; Cha, B.Y.; Teruya, T.; Hagiwara, H.; Nagai, K.; Woo, J.T. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway. Biochem. Biophys. Res. Commun., 2007, 355(1), 10-15.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.237] [PMID: 17291456]
[116]
Salmela, E.; Sahlberg, C.; Alaluusua, S.; Lukinmaa, P.L. Tributyltin impairs dentin mineralization and enamel formation in cultured mouse embryonic molar teeth. Toxicol. Sci., 2008, 106(1), 214-222.
[http://dx.doi.org/10.1093/toxsci/kfn156] [PMID: 18664551]
[117]
Koskela, A.; Viluksela, M.; Keinänen, M.; Tuukkanen, J.; Korkalainen, M. Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts. Toxicol. Appl. Pharmacol., 2012, 263(2), 210-217.
[http://dx.doi.org/10.1016/j.taap.2012.06.011] [PMID: 22749964]
[118]
Ximenes, C.F.; Rodrigues, S.M.L.; Podratz, P.L.; Merlo, E.; de Araújo, J.F.P.; Rodrigues, L.C.M.; Coitinho, J.B.; Vassallo, D.V.; Graceli, J.B.; Stefanon, I. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats. Environ. Sci. Pollut. Res. Int., 2017, 24(31), 24509-24520.
[http://dx.doi.org/10.1007/s11356-017-0061-8] [PMID: 28900851]
[119]
Bertuloso, B.D.; Podratz, P.L.; Merlo, E.; de Araújo, J.F.P.; Lima, L.C.F.; de Miguel, E.C.; de Souza, L.N.; Gava, A.L.; de Oliveira, M.; Miranda-Alves, L.; Carneiro, M.T.; Nogueira, C.R.; Graceli, J.B. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas. Toxicol. Lett., 2015, 235(1), 45-59.
[http://dx.doi.org/10.1016/j.toxlet.2015.03.009] [PMID: 25819109]
[120]
Sena, G.C.; Freitas-Lima, L.C.; Merlo, E.; Podratz, P.L.; de Araújo, J.F.; Brandão, P.A.; Carneiro, M.T.; Zicker, M.C.; Ferreira, A.V.; Takiya, C.M.; de Lemos Barbosa, C.M.; Morales, M.M.; Santos-Silva, A.P.; Miranda-Alves, L.; Silva, I.V.; Graceli, J.B. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats. Toxicol. Appl. Pharmacol., 2017, 319, 22-38.
[http://dx.doi.org/10.1016/j.taap.2017.01.021] [PMID: 28161095]
[121]
Merlo, E.; Podratz, P.L.; Sena, G.C.; de Araújo, J.F.; Lima, L.C.; Alves, I.S.; Gama-de-Souza, L.N.; Pelição, R.; Rodrigues, L.C.; Brandão, P.A.; Carneiro, M.T.; Pires, R.G.; Martins-Silva, C.; Alarcon, T.A.; Miranda-Alves, L.; Silva, I.V.; Graceli, J.B. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats. Endocrinology, 2016, 157(8), 2978-2995.
[http://dx.doi.org/10.1210/en.2015-1896] [PMID: 27267847]
[122]
Coutinho, J.V.S.; Freitas-Lima, L.C.; Freitas, F.F.; Freitas, F.P.; Podratz, P.L.; Magnago, R.P.; Porto, M.L.; Meyrelles, S.S.; Vasquez, E.C.; Brandão, P.A.; Carneiro, M.T.; Paiva-Melo, F.D.; Miranda-Alves, L.; Silva, I.V.; Gava, A.L.; Graceli, J.B. Tributyltin chloride induces renal dysfunction by inflammation and oxidative stress in female rats. Toxicol. Lett., 2016, 260, 52-69.
[http://dx.doi.org/10.1016/j.toxlet.2016.08.007] [PMID: 27521499]
[123]
Baker, A.H.; Watt, J.; Huang, C.K.; Gerstenfeld, L.C.; Schlezinger, J.J. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells. Chem. Res. Toxicol., 2015, 28(6), 1156-1166.
[http://dx.doi.org/10.1021/tx500433r] [PMID: 25932594]
[124]
Baker, A.H.; Wu, T.H.; Bolt, A.M.; Gerstenfeld, L.C.; Mann, K.K.; Schlezinger, J.J. From the Cover: Tributyltin Alters the Bone Marrow Microenvironment and Suppresses B Cell Development. Toxicol. Sci., 2017, 158(1), 63-75.
[http://dx.doi.org/10.1093/toxsci/kfx067] [PMID: 28398592]
[125]
Sturgeon, C.M.; Sprague, S.; Almond, A.; Cavalier, E.; Fraser, W.D.; Algeciras-Schimnich, A.; Singh, R.; Souberbielle, J.C.; Vesper, H.W. IFCC Working Group for PTH. Perspective and priorities for improvement of parathyroid hormone (PTH) measurement - A view from the IFCC Working Group for PTH. Clin. Chim. Acta, 2017, 467, 42-47.
[http://dx.doi.org/10.1016/j.cca.2016.10.016] [PMID: 27746210]
[126]
Ludmilla Carvalho Rangel Resgala et al. Effects of Tributyltin (TBT) on rat bone and mineral metabolism. Cell. Physiol. Biochem., 2019, 52, 1166-1177.
[http://dx.doi.org/10.33594/000000079] [PMID: 30990586]
[127]
Papa, V.; Bimonte, V.M.; Wannenes, F.; D’Abusco, A.S.; Fittipaldi, S.; Scandurra, R.; Politi, L.; Crescioli, C.; Lenzi, A.; Di Luigi, L.; Migliaccio, S. The endocrine disruptor cadmium alters human osteoblast-like Saos-2 cells homeostasis in vitro by alteration of Wnt/β-catenin pathway and activation of caspases. J. Endocrinol. Invest., 2015, 38(12), 1345-1356.
[http://dx.doi.org/10.1007/s40618-015-0380-x] [PMID: 26335301]
[128]
Brama, M.; Politi, L.; Santini, P.; Migliaccio, S.; Scandurra, R. Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways. J. Endocrinol. Invest., 2012, 35(2), 198-208.
[PMID: 21697648]
[129]
James, K.A.; Meliker, J.R. Environmental cadmium exposure and osteoporosis: a review. Int. J. Public Health, 2013, 58(5), 737-745.
[http://dx.doi.org/10.1007/s00038-013-0488-8] [PMID: 23877535]
[130]
Alsahli, A.; Kiefhaber, K.; Gold, T.; Muluke, M.; Jiang, H.; Cremers, S.; Schulze-Späte, U. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation. Calcif. Tissue Int., 2016, 98(5), 511-519.
[http://dx.doi.org/10.1007/s00223-015-0097-z] [PMID: 26758875]
[131]
Drosatos-Tampakaki, Z.; Drosatos, K.; Siegelin, Y.; Gong, S.; Khan, S.; Van Dyke, T.; Goldberg, I.J.; Schulze, P.C.; Schulze-Späte, U. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J. Bone Miner. Res., 2014, 29(5), 1183-1195.
[http://dx.doi.org/10.1002/jbmr.2150] [PMID: 24272998]
[132]
Prada, D.; López, G.; Solleiro-Villavicencio, H.; Garcia-Cuellar, C.; Baccarelli, A.A. Molecular and cellular mechanisms linking air pollution and bone damage. Environ. Res., 2020, 185, 109465.
[http://dx.doi.org/10.1016/j.envres.2020.109465] [PMID: 32305664]
[133]
Bouchard, P. Endocrine-disrupting chemicals, a multifaceted danger. CR Biol., 2017, 340(9 – 10), 401-402.
[134]
Millar, S.A.; Anderson, S.I.; O’Sullivan, S.E. Osteokines and the vasculature: a review of the in vitro effects of osteocalcin, fibroblast growth factor-23 and lipocalin-2. Peer J., 2019, 7, e7139.
[http://dx.doi.org/10.7717/peerj.7139] [PMID: 31372314]
[135]
Agas, D.; Lacava, G.; Sabbieti, M.G. Bone and bone marrow disruption by endocrine-active substances. J. Cell. Physiol., 2018, 234(1), 192-213.
[http://dx.doi.org/10.1002/jcp.26837] [PMID: 29953590]
[136]
Baker, M.E.; Lathe, R. The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. J. Steroid Biochem. Mol. Biol., 2018, 184, 29-37.
[http://dx.doi.org/10.1016/j.jsbmb.2018.07.001] [PMID: 30009950]
[137]
Beard, J.; Marshall, S.; Jong, K.; Newton, R.; Triplett-McBride, T.; Humphries, B.; Bronks, R. 1,1,1-trichloro-2,2-bis (p-chlorophenyl)-ethane (DDT) and reduced bone mineral density. Arch. Environ. Health, 2000, 55(3), 177-180.
[http://dx.doi.org/10.1080/00039890009603403] [PMID: 10908100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy