Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Therapeutic Agents Against COVID-19 with Clinical Evidence

Author(s): Cheng Tian and Ming Xiang*

Volume 27, Issue 13, 2021

Published on: 14 January, 2021

Page: [1608 - 1617] Pages: 10

DOI: 10.2174/1381612827666210114150951

Price: $65

conference banner
Abstract

Over 57 million people have been confirmed to have coronavirus disease 2019 (COVID-19) worldwide. Although several drugs have shown potential therapeutic effects, there is no specific drug against COVID-19. In this review, we summarized potential therapeutic agents against COVID-19 with clinical evidence, including antiviral agents, anti-cytokine storm syndrome agents, and vaccines, as well as other drugs. In addition, we briefly discussed their effects on COVID-19, which will contribute to developing treatment plans.

Keywords: COVID-19, SARS-CoV-2, therapeutic agents, antiviral agents, anti-inflammatory agents, vaccines, clinical evidence.

[1]
Coronavirus disease 2019 (COVID-19) Dashboard World Health Organization 2019. Available from: https://covid19.who.int/
[2]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[3]
Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[4]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[5]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[6]
Zhang J, Ma X, Yu F, et al. Teicoplanin potently blocks the cell entry of 2019-nCoV. bioRxiv 2020.
[7]
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem 2020; 21(5): 730-8.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[8]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[9]
Chu CM, Cheng VC, Hung IF, et al. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[10]
Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics 2020; 47(2): 119-21.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[11]
Choy KT, Wong AY, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res 2020; 178: 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[12]
Lim J, Jeon S, Shin HY, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. J Korean Med Sci 2020; 35(6): e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[13]
Ye XT, Luo YL, Xia SC, et al. Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. Eur Rev Med Pharmacol Sci 2020; 24(6): 3390-6.
[PMID: 32271456]
[14]
Cheng CY, Lee YL, Chen CP, et al. Lopinavir/ritonavir did not shorten the duration of SARS CoV-2 shedding in patients with mild pneumonia in Taiwan. J Microbiol Immunol Infect 2020; 53(3): 488-92.
[http://dx.doi.org/10.1016/j.jmii.2020.03.032] [PMID: 32331982]
[15]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[16]
Li Y, Xie Z, Lin W, et al. An exploratory randomized controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). medRxiv 2020.
[17]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[18]
Janowitz T, Gablenz E, Pattinson D, et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut 2020; 69(9): 1592-7.
[http://dx.doi.org/10.1136/gutjnl-2020-321852] [PMID: 32499303]
[19]
Freedberg DE, Conigliaro J, Wang TC, Tracey KJ, Callahan MV, Abrams JA. Famotidine Research Group. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology 2020; 159(3): 1129-1131.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.05.053] [PMID: 32446698]
[20]
Cheung KS, Hung IF, Leung WK. Association between famotidine use and COVID-19 severity in Hong Kong: a territory-wide study. Gastroenterology 2020; S0016-5085: 34940-4.
[21]
Haviernik J, Štefánik M, Fojtíková M, et al. Arbidol (umifenovir): a broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses. Viruses 2018; 10(4): 184.
[http://dx.doi.org/10.3390/v10040184] [PMID: 29642580]
[22]
Liu W, Zhu HL, Duan Y. Effective chemicals against novel coronavirus (COVID-19) in China. Curr Top Med Chem 2020; 20(8): 603-5.
[http://dx.doi.org/10.2174/1568026620999200305145032] [PMID: 32133962]
[23]
Yang C, Ke C, Yue D, et al. Effectiveness of arbidol for COVID-19 prevention in health professionals. Front Public Health 2020; 8: 249.
[http://dx.doi.org/10.3389/fpubh.2020.00249] [PMID: 32574310]
[24]
Zhang JN, Wang WJ, Peng B, et al. Potential of arbidol for post-exposure prophylaxis of COVID-19 transmission: a preliminary report of a retrospective cohort study. Curr Med Sci 2020; 40(3): 480-5.
[http://dx.doi.org/10.1007/s11596-020-2203-3] [PMID: 32474860]
[25]
Chen W, Yao M, Fang Z, Lv X, Deng M, Wu Z. A study on clinical effect of Arbidol combined with adjuvant therapy on COVID-19. J Med Virol 2020; 92(11): 2702-8.
[http://dx.doi.org/10.1002/jmv.26142] [PMID: 32510169]
[26]
Zhu Z, Lu Z, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect 2020; 81(1): e21-3.
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
[27]
Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect 2020; 81(1): e1-5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[28]
Liu Q, Fang X, Tian L, et al. The effect of Arbidol Hydrochloride on reducing mortality of Covid-19 patients: a retrospective study of real world date from three hospitals in Wuhan. medRxi 2020.
[29]
Xu P, Huang J, Fan Z, et al. Arbidol/IFN-α2b therapy for patients with corona virus disease 2019: a retrospective multicenter cohort study. Microbes Infect 2020; 22(4-5): 200-5.
[http://dx.doi.org/10.1016/j.micinf.2020.05.012] [PMID: 32445881]
[30]
Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020; 19(3): 149-50.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[31]
Siegel D, Hui HC, Doerffler E, et al. Discovery and synthesis of a phosphoramidate prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the treatment of ebola and emerging viruses. J Med Chem 2017; 60(5): 1648-61.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01594] [PMID: 28124907]
[32]
Humeniuk R, Mathias A, Cao H, et al. Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects. Clin Transl Sci 2020; 13(5): 896-906.
[PMID: 32589775]
[33]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[34]
Holshue ML, DeBolt C, Lindquist S, et al. Washington State 2019-nCoV Case Investigation Team. First case of 2019 Novel Coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[35]
Sanville B, Corbett R, Pidcock W, et al. A community-transmitted case of Severe Acute Respiratory Distress Syndrome (SARS) Due to SARS-CoV-2 in the United States. Clin Infect Dis 2020; 71(16): 2222-6.
[http://dx.doi.org/10.1093/cid/ciaa347] [PMID: 32227197]
[36]
Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 2020; 585(7824): 273-6.
[http://dx.doi.org/10.1038/s41586-020-2423-5] [PMID: 32516797]
[37]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[38]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[39]
Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the treatment of Covid-19 - preliminary report. Reply. N Engl J Med 2020; 383(10): 994.
[PMID: 32649078]
[40]
Nichols BE, Jamieson L, Zhang SRC, et al. The role of remdesivir in South Africa: preventing COVID-19 deaths through increasing ICU capacity. Clin Infect Dis 2020.
[http://dx.doi.org/10.1093/cid/ciaa937]
[41]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering 2020; 6(10): 1192-8.
[42]
Chen C, Zhang Y, Huang J, et al. Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. medRxiv 2020.
[43]
Lou Y, Liu L, Qiu Y. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. medRxiv 2020.
[44]
Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[45]
Trouillet-Assant S, Viel S, Gaymard A, et al. COVID HCL Study group. Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol 2020; 146(1): 206-208.e2.
[http://dx.doi.org/10.1016/j.jaci.2020.04.029] [PMID: 32360285]
[46]
Liu SY, Sanchez DJ, Cheng G. New developments in the induction and antiviral effectors of type I interferon. Curr Opin Immunol 2011; 23(1): 57-64.
[http://dx.doi.org/10.1016/j.coi.2010.11.003] [PMID: 21123041]
[47]
Montoya M, Schiavoni G, Mattei F, et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 2002; 99(9): 3263-71.
[http://dx.doi.org/10.1182/blood.V99.9.3263] [PMID: 11964292]
[48]
Uyangaa E, Kim JH, Patil AM, Choi JY, Kim SB, Eo SK. Distinct upstream role of type I IFN signaling in hematopoietic stem cell-derived and epithelial resident cells for concerted recruitment of Ly-6Chi monocytes and NK cells via CCL2-CCL3 cascade. PLoS Pathog 2015; 11(11): e1005256.
[http://dx.doi.org/10.1371/journal.ppat.1005256] [PMID: 26618488]
[49]
Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res 2020; 179: 104811.
[http://dx.doi.org/10.1016/j.antiviral.2020.104811] [PMID: 32360182]
[50]
Meng Z, Wang T, Li C, et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.11.20061473]
[51]
Zhou Q, Wei X-S, Xiang X, et al. Interferon-a2b treatment for COVID-19. medRxiv 2020.
[52]
Davoudi-Monfared E, Rahmani H, Khalili H, et al. Efficacy and safety of interferon β-1a in treatment of severe COVID-19: A randomized clinical trial. Antimicrob Agents Chemother 2020; 64: e01061-20.
[http://dx.doi.org/10.1128/AAC.01061-20] [PMID: 32661006]
[53]
Nishimoto N, Kishimoto T, Yoshizaki K. Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Ann Rheum Dis 2000; 59(Suppl. 1): i21-7.
[http://dx.doi.org/10.1136/ard.59.suppl_1.i21] [PMID: 11053081]
[54]
Le RQ, Li L, Yuan W, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor t cell-induced severe or life-threatening cytokine release syndrome. Oncologist 2018; 23(8): 943-7.
[http://dx.doi.org/10.1634/theoncologist.2018-0028] [PMID: 29622697]
[55]
Price CC, Altice FL, Shyr Y, et al. Tocilizumab treatment for cytokine release syndrome in hospitalized COVID-19 Patients: Survival and Clinical Outcomes. Chest 2020; S0012-3692: 31670-6.
[56]
Campochiaro C, Della-Torre E, Cavalli G, et al. TOCI-RAF Study Group. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med 2020; 76: 43-9.
[http://dx.doi.org/10.1016/j.ejim.2020.05.021] [PMID: 32482597]
[57]
Somers EC, Eschenauer GA, Troost JP, et al. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin Infect Dis 2020; ciaa954.
[http://dx.doi.org/10.1093/cid/ciaa954]
[58]
Rossotti R, Travi G, Ughi N, et al. Niguarda COVID-19 Working Group. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J Infect 2020; 81(4): e11-7.
[http://dx.doi.org/10.1016/j.jinf.2020.07.008] [PMID: 32652164]
[59]
Knorr JP, Colomy V. Tocilizumab in patients with severe COVID-19: A single-center observational analysis. J Med Virol 2020; 92(20)
[http://dx.doi.org/10.1002/jmv.26191]
[60]
Stern A, Skalsky K, Avni T, Carrara E, Leibovici L, Paul M. Corticosteroids for pneumonia. Cochrane Database Syst Rev 2017; 12: CD007720.
[PMID: 29236286]
[61]
Zhou W, Liu Y, Tian D, et al. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther 2020; 5(1): 18.
[http://dx.doi.org/10.1038/s41392-020-0127-9] [PMID: 32296012]
[62]
Fadel R, Morrison AR, Vahia A, et al. Henry Ford COVID-19 Management task force. Early short-course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis 2020; 71(16): 2114-20.
[http://dx.doi.org/10.1093/cid/ciaa601] [PMID: 32427279]
[63]
Chroboczek T, Lacoste M, Wackenheim C, et al. Beneficial effect of corticosteroids in severe COVID-19 pneumonia: a propensity score matching analysis. medRxiv 2020.
[64]
WHO welcomes preliminary results about dexamethasone use in treating critically ill COVID-19 patients. World Health Organization. Available from: https://www.who.int/news-room/detail/16-06-2020-who-welcomes-preliminary-results-about-dexamethasone-use-in-treating-critically-ill-covid-19-patients
[65]
Wu J, Huang J, Zhu G, et al. Systemic corticosteroids show no benefit in severe and critical COVID-19 patients in Wuhan, China: A retrospective cohort study. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.11.20097709]
[66]
Nasiripour S, Zamani F, Farasatinasab M. Can colchicine as an old anti-inflammatory agent be effective in COVID-19? J Clin Pharmacol 2020; 60(7): 828-9.
[http://dx.doi.org/10.1002/jcph.1645] [PMID: 32445400]
[67]
Della-Torre E, Della-Torre F, Kusanovic M, et al. Treating COVID-19 with colchicine in community healthcare setting. Clin Immunol 2020; 217: 108490.
[http://dx.doi.org/10.1016/j.clim.2020.108490] [PMID: 32492478]
[68]
Deftereos SG, Giannopoulos G, Vrachatis DA, et al. GRECCO-19 investigators. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: The GRECCO-19 randomized clinical trial. JAMA Netw Open 2020; 3(6): e2013136.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13136] [PMID: 32579195]
[69]
Lee SJ, Silverman E, Bargman JM. The role of antimalarial agents in the treatment of SLE and lupus nephritis. Nat Rev Nephrol 2011; 7(12): 718-29.
[http://dx.doi.org/10.1038/nrneph.2011.150] [PMID: 22009248]
[70]
Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Lancet 2018; 391(10130): 1608-21.
[http://dx.doi.org/10.1016/S0140-6736(18)30324-6] [PMID: 29631781]
[71]
Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4): 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[72]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[73]
Huang M, Tang T, Pang P, et al. Treating COVID-19 with Chloroquine. J Mol Cell Biol 2020; 12(4): 322-5.
[http://dx.doi.org/10.1093/jmcb/mjaa014] [PMID: 32236562]
[74]
Borba MGS, Val FFA, Sampaio VS, et al. CloroCovid-19 Team. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 2020; 3(4): e208857.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[75]
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[76]
Gautret P, Lagier JC, Parola P, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Dis 2020; 34: 101663.
[http://dx.doi.org/10.1016/j.tmaid.2020.101663] [PMID: 32289548]
[77]
Million M, Lagier JC, Gautret P, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis 2020; 35: 101738.
[http://dx.doi.org/10.1016/j.tmaid.2020.101738] [PMID: 32387409]
[78]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[79]
Ferreira A, Oliveira ESA, Bettencourt P. Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection. J Med Virol 2020; 93(2): 755-9.
[http://dx.doi.org/10.1002/jmv.26286]
[80]
Arshad S, Kilgore P, Chaudhry ZS, et al. Henry Ford COVID-19 Task Force. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis 2020; 97: 396-403.
[http://dx.doi.org/10.1016/j.ijid.2020.06.099] [PMID: 32623082]
[81]
Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA 2020; 323(24): 2493-502.
[http://dx.doi.org/10.1001/jama.2020.8630] [PMID: 32392282]
[82]
Satlin MJ, Goyal P, Magleby R, et al. Safety, tolerability, and clinical outcomes of hydroxychloroquine for hospitalized patients with coronavirus 2019 disease. PLoS One 2020; 15(7): e0236778.
[http://dx.doi.org/10.1371/journal.pone.0236778] [PMID: 32701969]
[83]
Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in Nonhospitalized adults with early COVID-19: A randomized trial. Ann Intern Med 2020; 173(8): 623-31.
[http://dx.doi.org/10.7326/M20-4207] [PMID: 32673060]
[84]
Lecronier M, Beurton A, Burrel S, et al. Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis. Crit Care 2020; 24(1): 418.
[http://dx.doi.org/10.1186/s13054-020-03117-9] [PMID: 32653015]
[85]
Mitjà O, Corbacho-Monné M, Ubals M, et al. Hydroxychloroquine for early treatment of adults with mild COVID-19: a randomized-controlled Trial. Clin Infect Dis 2020; ciaa1009.
[http://dx.doi.org/10.1093/cid/ciaa1009]
[86]
Kelly M, O'Connor R, Townsend L. Clinical outcomes and adverse events in patients hospitalised with COVID -19, treated with off- label hydroxychloroquine and azithromycin. Br J Clin Pharmacol 2020.
[http://dx.doi.org/10.1111/bcp.14482]
[87]
Cavalcanti AB, Zampieri FG, Rosa RG, et al. Coalition Covid-19 Brazil I Investigators. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med 2020; 383(21): 2041-52.
[http://dx.doi.org/10.1056/NEJMoa2019014] [PMID: 32706953]
[88]
Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020; 50(4): 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[89]
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020; 395(10240): 1845-54.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[90]
Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396(10249): 479-88.
[http://dx.doi.org/10.1016/S0140-6736(20)31605-6] [PMID: 32702299]
[91]
Folegatti PM, Ewer KJ, Aley PK, et al. Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[92]
Mulligan MJ, Lyke KE, Kitchin N, et al. Phase 1/2 study to describe the safety and immunogenicity of a COVID-19 RNA vaccine candidate (BNT162b1) in adults 18 to 55 years of age: Interim Report. medRxiv 2020.
[93]
Lu D, Chatterjee S, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol 2020; 148: 46-9.
[http://dx.doi.org/10.1016/j.yjmcc.2020.08.017] [PMID: 32891636]
[94]
Rossi JJ, Rossi D. Oligonucleotides and the COVID-19 Pandemic: A Perspective. Nucleic Acid Ther 2020; 30(3): 129-32.
[http://dx.doi.org/10.1089/nat.2020.0868] [PMID: 32297843]
[95]
Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol Res 2020; 152: 104609.
[http://dx.doi.org/10.1016/j.phrs.2019.104609] [PMID: 31862477]
[96]
Bekerman E, Neveu G, Shulla A, et al. Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. J Clin Invest 2017; 127(4): 1338-52.
[http://dx.doi.org/10.1172/JCI89857] [PMID: 28240606]
[97]
Pu SY, Xiao F, Schor S, et al. Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment. Antiviral Res 2018; 155: 67-75.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.001] [PMID: 29753658]
[98]
Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020; 20(4): 400-2.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[99]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[100]
Waqas Khan HM, Parikh N, Megala SM, Predeteanu GS. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C. Am J Case Rep 2020; 21: e925521.
[PMID: 32709838]
[101]
Krishnan S, Patel K, Desai R, et al. Clinical comorbidities, characteristics, and outcomes of mechanically ventilated patients in the State of Michigan with SARS-CoV-2 pneumonia. J Clin Anesth 2020; 67: 110005.
[http://dx.doi.org/10.1016/j.jclinane.2020.110005] [PMID: 32707517]
[102]
Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12: 988.
[http://dx.doi.org/10.3390/nu12040988]
[103]
Munshi R, Hussein MH, Toraih EA. Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol 2020; 93(2): 733-40.
[http://dx.doi.org/10.1002/jmv.26360]
[104]
Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J 2020; 287(17): 3693-702.
[http://dx.doi.org/10.1111/febs.15495] [PMID: 32700398]
[105]
Whittemore PB. COVID-19 fatalities, latitude, sunlight, and vitamin D. Am J Infect Control 2020; 48(9): 1042-4.
[http://dx.doi.org/10.1016/j.ajic.2020.06.193] [PMID: 32599103]
[106]
Tuerk MJ, Fazel N. Zinc deficiency. Curr Opin Gastroenterol 2009; 25(2): 136-43.
[http://dx.doi.org/10.1097/MOG.0b013e328321b395] [PMID: 19528881]
[107]
Finzi E. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients. Int J Infect Dis 2020; 99: 307-9.
[http://dx.doi.org/10.1016/j.ijid.2020.06.006] [PMID: 32522597]
[108]
Sattar Y, Connerney M, Rauf H, et al. Three cases of COVID-19 disease with colonic manifestations. Am J Gastroenterol 2020; 115(6): 948-50.
[http://dx.doi.org/10.14309/ajg.0000000000000692] [PMID: 32427677]
[109]
Alexander J, Tinkov A, Strand TA, Alehagen U, Skalny A, Aaseth J. Early nutritional interventions with Zinc, Selenium and Vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients 2020; 12(8): 2358.
[http://dx.doi.org/10.3390/nu12082358] [PMID: 32784601]
[110]
Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020; 111(6): 1297-9.
[http://dx.doi.org/10.1093/ajcn/nqaa095] [PMID: 32342979]
[111]
Moghaddam A, Heller RA, Sun Q, et al. Selenium deficiency is associated with mortality risk from COVID-19. Nutrients 2020; 12(7): 2098.
[http://dx.doi.org/10.3390/nu12072098] [PMID: 32708526]
[112]
van Kempen TA, Deixler E. SARS-CoV-2: Influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP)-metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab 2020.
[http://dx.doi.org/10.1152/ajpendo.00474.2020]
[113]
Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA 2020; 323(16): 1582-9.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[114]
Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 2020; 324(5): 460-70.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[115]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[116]
Bian H, Zheng Z-H, Wei D, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. medRxiv 2020.
[117]
Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis 2020; 79(10): 1381-2.
[http://dx.doi.org/10.1136/annrheumdis-2020-217706] [PMID: 32376597]
[118]
Ma J, Xia P, Zhou Y, et al. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Immunol 2020; 214: 108408.
[http://dx.doi.org/10.1016/j.clim.2020.108408] [PMID: 32247038]
[119]
Zhang XJ, Qin JJ, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab 2020; 32(2): 176-187.e4.
[http://dx.doi.org/10.1016/j.cmet.2020.06.015] [PMID: 32592657]
[120]
De Spiegeleer A, Bronselaer A, Teo JT, et al. The effects of ARBs, ACEis, and statins on clinical outcomes of COVID-19 infection among nursing home residents. J Am Med Dir Assoc 2020; 21(7): 909-914.e2.
[http://dx.doi.org/10.1016/j.jamda.2020.06.018] [PMID: 32674818]
[121]
Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci USA 2020; 117(30): 17720-6.
[http://dx.doi.org/10.1073/pnas.2008410117] [PMID: 32647056]
[122]
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother 2020; 64(6): e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[123]
Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug development and medicinal chemistry efforts toward SARS-Coronavirus and Covid-19 therapeutics. ChemMedChem 2020; 15(11): 907-32.
[http://dx.doi.org/10.1002/cmdc.202000223] [PMID: 32324951]
[124]
Chan KK, Dorosky D, Sharma P, et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 2020; 369(6508): 1261-5.
[http://dx.doi.org/10.1126/science.abc0870] [PMID: 32753553]
[125]
Uddin M, Mustafa F, Rizvi TA, et al. SARS-CoV-2/COVID-19: viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses 2020; 12(5): 526.
[http://dx.doi.org/10.3390/v12050526] [PMID: 32397688]
[126]
Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020; 395(10238): 1695-704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[127]
Weitz JS, Beckett SJ, Coenen AR, et al. Modeling shield immunity to reduce COVID-19 epidemic spread. Nat Med 2020; 26(6): 849-54.
[http://dx.doi.org/10.1038/s41591-020-0895-3] [PMID: 32382154]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy