Abstract
Herein, the underlying role of disruptor of telomeric silencing 1-like (DOT1L) as a therapeutic target for mixed-lineage leukemia (MLL)-rearranged is comprehensively clarified. DOT1L can be aberrantly recruited by an MLL fusion partner, thereby causing the over-expression, of several leukemia relevant genes and eventually leading to leukemia. As the unique histone methyltransferase (HMT), DOT1L possesses the function to specifically methylate H3K79, which was identified as a hallmark of active transcription. Accordingly, blockading of DOT1L has been recognized as an effective approach for cancer treatment. Currently, nucleoside DOT1L inhibitors have been developed successfully with the only EPZ5676 entering phase I clinical trial in 2013, which was validated as ‘orphan drug’ toward MLL-rearranged leukemia by FDA. In order to find compounds with better pharmacokinetic properties as DOT1L inhibitors, other types of non-nucleoside skeletons have also been reported successively.
Keywords: Epigenetics, post-translational modification of histone, DOT1L, MLL-rearranged leukemia, nucleoside inhibitors, non-nucleoside inhibitors.
Mini-Reviews in Medicinal Chemistry
Title:Nucleoside and Non-Nucleoside DOT1L Inhibitors: Dawn of MLLrearranged Leukemia
Volume: 21 Issue: 11
Author(s): Meng Cao, Tong Li, Yuxiang Chen and Xin Zhai*
Affiliation:
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016,China
Keywords: Epigenetics, post-translational modification of histone, DOT1L, MLL-rearranged leukemia, nucleoside inhibitors, non-nucleoside inhibitors.
Abstract: Herein, the underlying role of disruptor of telomeric silencing 1-like (DOT1L) as a therapeutic target for mixed-lineage leukemia (MLL)-rearranged is comprehensively clarified. DOT1L can be aberrantly recruited by an MLL fusion partner, thereby causing the over-expression, of several leukemia relevant genes and eventually leading to leukemia. As the unique histone methyltransferase (HMT), DOT1L possesses the function to specifically methylate H3K79, which was identified as a hallmark of active transcription. Accordingly, blockading of DOT1L has been recognized as an effective approach for cancer treatment. Currently, nucleoside DOT1L inhibitors have been developed successfully with the only EPZ5676 entering phase I clinical trial in 2013, which was validated as ‘orphan drug’ toward MLL-rearranged leukemia by FDA. In order to find compounds with better pharmacokinetic properties as DOT1L inhibitors, other types of non-nucleoside skeletons have also been reported successively.
Export Options
About this article
Cite this article as:
Cao Meng, Li Tong, Chen Yuxiang and Zhai Xin *, Nucleoside and Non-Nucleoside DOT1L Inhibitors: Dawn of MLLrearranged Leukemia, Mini-Reviews in Medicinal Chemistry 2021; 21 (11) . https://dx.doi.org/10.2174/1389557521666210111144357
DOI https://dx.doi.org/10.2174/1389557521666210111144357 |
Print ISSN 1389-5575 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5607 |
Call for Papers in Thematic Issues
Bioprospecting of Natural Products as Sources of New Multitarget Therapies
According to the Convention on Biological Diversity, bioprospecting is the exploration of biodiversity and indigenous knowledge to develop commercially valuable products for pharmaceutical and other applications. Bioprospecting involves searching for useful organic compounds in plants, fungi, marine organisms, and microorganisms. Natural products traditionally constituted the primary source of more than ...read more
Computational Frontiers in Medicinal Chemistry
The thematic issue "Computational Frontiers in Medicinal Chemistry" provides a robust platform for delving into state-of-the-art computational methodologies and technologies that significantly propel advancements in medicinal chemistry. This edition seeks to amalgamate top-tier reviews spotlighting the latest trends and breakthroughs in the fusion of computational approaches, including artificial intelligence (AI) ...read more
Drugs and Mitochondria
Mitochondria play a central role in the life and death of cells. They are not merely the center for energy metabolism but are also the headquarters for different catabolic and anabolic processes, calcium fluxes, and various signaling pathways. Mitochondria maintain homeostasis in the cell by interacting with reactive oxygen-nitrogen species ...read more
Mitochondria as a Therapeutic Target in Metabolic Disorders
Mitochondria are the primary site of adenosine triphosphate (ATP) production in mammalian cells. Moreover, these organelles are an important source of reactive oxygen and nitrogen species in virtually any nucleated cell type. The modulation of a myriad of cellular signaling pathways depends on the mitochondrial physiology. Mitochondrial dysfunction is observed ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers