Generic placeholder image

Current Respiratory Medicine Reviews

Editor-in-Chief

ISSN (Print): 1573-398X
ISSN (Online): 1875-6387

Systematic Review Article

Effectiveness of Antiviral and Immunomodulatory Agents in the Treatment of COVID-19: A Systematic Review

Author(s): Rozita Khodashahi, Hamidreza Naderi, Amin Bojdy and Mandana Khodashahi*

Volume 16, Issue 3, 2020

Page: [165 - 183] Pages: 19

DOI: 10.2174/1573398X16999201202121247

Price: $65

conference banner
Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a severe threat to global health. Therefore, new findings on effective treatment for symptomatic patients with COVID-19 are considered among emergency issues. This systematic review investigated the effectiveness of pharmacologic interventions in the management of patients with COVID-19. All the articles published in three electronic databases, including Google Scholar, PubMed, and Web of Science, were searched from September 15 to September 30, 2020. Eventually, 24 papers published till September 30 remained to be included in this review. The effectiveness of immunomodulatory and antiviral agents in the treatment of patients with COVID-19 was assessed in this review. The obtained results of the current review rejected the potential of HCQ for the treatment of COVID; however, there was a clinical improvement in patients treated with ruxolitinib in comparison to that reported for the control group. Methylprednisolone, dexamethasone, and calcifediol were suggested as beneficial treatments for patients with COVID-19. The potential efficacy of these antiviral drugs against the SARS-CoV-2 virus is controversial; nevertheless, the triple combination of antiviral and immunomodulatory agents is effective in suppressing the shedding of SARS-CoV-2. There have been no supportive data on the superiority of favipiravir and LPV/r to standard care in the treatment of COVID-19. In addition, no difference was observed between favipiravir and arbidol for the treatment of these patients. There was an association between remdesivir treatment and a reduction of 5 days in clinical improvement among COVID-19 patients. It is required to carry out further RCTs with an in-depth research basis on COVID-19.

Keywords: Antiviral therapy, coronavirus, cytokine storm, immunomodulatory, favipiravir, arbidol.

Graphical Abstract
[1]
Mahase E. China coronavirus: WHO declares international emergency as death toll exceeds 200. BMJ 2020; 368: m408.
[http://dx.doi.org/10.1136/bmj.m408] [PMID: 32005727]
[2]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[3]
WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020. Geneva, Switzerland 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on- covid-19-11-march-2020
[4]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648]
[5]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[6]
Chan JF-W, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person- to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[7]
Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020; 55(3): 105923.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[8]
Colson P. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents 2020; 55(4): 105932.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105932] [PMID: 32145363]
[9]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro . Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[10]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[11]
Chen C, et al. Favipiravir versus Arbidol for COVID-19: a randomized clinical trial MedRxiv. 2020.
[12]
Green S, Higgins J. Cochrane handbook for systematic reviews of interventions Version 2005. Available from: https://training.cochrane.org/handbook/archive/v4.2.6
[13]
Higgins J. Cochrane handbook for systematic reviews of interventions 2011. Available from: www. cochrane-handbook. org
[14]
Chen Z. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial MedRxiv. 2020.
[http://dx.doi.org/10.1101/2020.03.22.20040758]
[15]
Tang W. Hydroxychloroquine in patients with COVID-19: an open-label, randomized, controlled trial MedRxiv. 2020.
[http://dx.doi.org/10.1101/2020.04.10.20060558]
[16]
Cavalcanti AB, Zampieri FG, Rosa RG, et al. Coalition covid-19 Brazil I investigators. Hydroxychloroquine with or without azithromycin in mild-to-moderate covid-19. N Engl J Med 2020.
[http://dx.doi.org/10.1056/NEJMoa2019014] [PMID: 32706953]
[17]
Horby P. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial MedRxiv. 2020.
[http://dx.doi.org/10.1101/2020.07.15.20151852]
[18]
Mitjà O, Corbacho-Monné M, Ubals M, et al. BCN PEP-CoV-2 Research Group. Hydroxychloroquine for early treatment of adults with mild Covid-19: a randomized-controlled trial. Clin Infect Dis 2020.
[http://dx.doi.org/10.1093/cid/ciaa1009] [PMID: 32674126]
[19]
Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med 2020; 173(8): 623-31.
[http://dx.doi.org/10.7326/M20-4207] [PMID: 32673060]
[20]
Borba MGS, Val FFA, Sampaio VS, et al. CloroCovid-19 Team. Effect of high vs. low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open 2020; 3(4): e208857-7.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.8857] [PMID: 32330277]
[21]
Hung IF-N, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet 2020; 395(10238): 1695-704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[22]
Lou Y, Liu L, Qiu Y. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. Eur J Pharm Sci 2020; 157105631
[http://dx.doi.org/10.1016%2Fj.ejps.2020.105631] [PMID: 33115675]
[23]
Li Y. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI) MedRxiv. 2020.
[http://dx.doi.org/10.1101/2020.03.19.20038984]
[24]
Tomazini BM, Maia IS, Cavalcanti AB, et al. COALITION COVID-19 Brazil III Investigators. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX Randomized Clinical Trial. JAMA 2020; 324(13): 1307-16.
[http://dx.doi.org/10.1001/jama.2020.17021] [PMID: 32876695]
[25]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[26]
Goldman JD, Lye DCB, Hui DS, et al. GS-US-540-5773 investigators. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med 2020.
[http://dx.doi.org/10.1056/NEJMoa2015301] [PMID: 32459919]
[27]
Jeronimo CMP. Methylprednisolone as adjunctive therapy for patients hospitalized with COVID-19 (Metcovid): a randomised, double-blind, Phase IIb, placebo-controlled trial. 2020.
[http://dx.doi.org/10.1093/cid/ciaa1177]
[28]
Beigel JH. Remdesivir for the treatment of Covid-19-preliminary report. N Engl J Med 2020.
[http://dx.doi.org/10.1056/NEJMoa2007764]
[29]
Spinner CD, Gottlieb RL, Criner GJ, et al. GS-US-540-5774 Investigators. Effect of remdesivir vs. standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 2020; 324(11): 1048-57.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[30]
Angus DC, Derde L, Al-Beidh F, et al. Writing Committee for the REMAP-CAP Investigators. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 Corticosteroid Domain randomized clinical trial. JAMA 2020; 324(13): 1317-29.
[http://dx.doi.org/10.1001/jama.2020.17022] [PMID: 32876697]
[31]
Rahmani H, Davoudi-Monfared E, Nourian A, et al. Interferon β-1b in treatment of severe COVID-19: A randomized clinical trial. Int Immunopharmacol 2020.88106903
[http://dx.doi.org/10.1016/j.intimp.2020.106903] [PMID: 32862111]
[32]
Dequin P-F, Heming N, Meziani F, et al. CAPE COVID Trial Group and the CRICS-TriGGERSep Network. Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: a randomized clinical trial. JAMA 2020; 324(13): 1298-306.
[http://dx.doi.org/10.1001/jama.2020.16761] [PMID: 32876689]
[33]
Deftereos SG, Giannopoulos G, Vrachatis DA, et al. GRECCO-19 investigators. Effect of colchicine vs. standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. JAMA Netw Open 2020; 3(6)e2013136
[http://dx.doi.org/10.1001/jamanetworkopen.2020.13136] [PMID: 32579195]
[34]
Entrenas CM, Entrenas CLM, Vaquero BJM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J Steroid Biochem Mol Biol 2020.203105751
[http://dx.doi.org/10.1016/j.jsbmb.2020.105751] [PMID: 32871238]
[35]
Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 2020; 146(1): 137-146.e3.
[http://dx.doi.org/10.1016/j.jaci.2020.05.019] [PMID: 32470486]
[36]
Edalatifard M, Akhtari M, Salehi M, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J 2020; 2002808.
[http://dx.doi.org/10.1183/13993003.02808-2020] [PMID: 32943404]
[37]
Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 2015; 23(5): 231-69.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[38]
Gordon C, Amissah-Arthur MB, Gayed M, et al. British Society for Rheumatology Standards, Audit and Guidelines Working Group. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology (Oxford) 2018; 57(1): e1-e45.
[http://dx.doi.org/10.1093/rheumatology/kex286] [PMID: 29029350]
[39]
Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct 2016; 34(4): 191-6.
[http://dx.doi.org/10.1002/cbf.3182] [PMID: 27001679]
[40]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[41]
Al-Bari MAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70(6): 1608-21.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[42]
Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF. American Academy of Ophthalmology. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology 2016; 123(6): 1386-94.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.058] [PMID: 26992838]
[43]
Yao X, Ye F, Zhang M, et al. in vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[44]
Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006; 49(9): 2845-9.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[45]
Coronavirus (COVID-19) Update: FDA Continues to Facilitate Development of Treatments. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-continues-facilitate-development-treatments
[46]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[47]
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS- CoV-2 infected patients. EBioMedicine 2020.55102763
[http://dx.doi.org/10.1016/j.ebiom.2020.102763] [PMID: 32361250]
[48]
Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34(2): 327-31.
[PMID: 32171193]
[49]
Zha L, Li S, Pan L, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust 2020; 212(9): 416-20.
[http://dx.doi.org/10.5694/mja2.50577] [PMID: 32266987]
[50]
Raoult D, Houpikian P, Tissot Dupont H, Riss JM, Arditi-Djiane J, Brouqui P. Treatment of Q fever endocarditis: comparison of 2 regimens containing doxycycline and ofloxacin or hydroxychloroquine. Arch Intern Med 1999; 159(2): 167-73.
[http://dx.doi.org/10.1001/archinte.159.2.167] [PMID: 9927100]
[51]
Proano C, Kimball GP. Hydroxychloroquine Retinal Toxicity. N Engl J Med 2019; 380(17)e27
[http://dx.doi.org/10.1056/NEJMicm1304542] [PMID: 31018072]
[52]
Radke JB, Kingery JM, Maakestad J, Krasowski MD. Diagnostic pitfalls and laboratory test interference after hydroxychloroquine intoxication: A case report. Toxicol Rep 2019; 6: 1040-6.
[http://dx.doi.org/10.1016/j.toxrep.2019.10.006] [PMID: 31673506]
[53]
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16(3): 155-66.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[54]
Blum CA, Nigro N, Briel M, et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015; 385(9977): 1511-8.
[http://dx.doi.org/10.1016/S0140-6736(14)62447-8] [PMID: 25608756]
[55]
Siemieniuk RA, Meade MO, Alonso-Coello P, et al. Corticosteroid therapy for patients hospitalized with communityacquired pneumonia: a systematic review and meta-analysis. Ann Intern Med 2015; 163(7): 519-28.
[http://dx.doi.org/10.7326/M15-0715] [PMID: 26258555]
[56]
Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med 2006; 3(9)e343
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[57]
Arabi YM, Mandourah Y, Al-Hameed F, et al. Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am J Respir Crit Care Med 2018; 197(6): 757-67.
[http://dx.doi.org/10.1164/rccm.201706-1172OC] [PMID: 29161116]
[58]
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395(10223): 473-5.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[59]
Steinberg KP, Hudson LD, Goodman RB, et al. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354(16): 1671-84.
[http://dx.doi.org/10.1056/NEJMoa051693] [PMID: 16625008]
[60]
Villar J, Ferrando C, Martínez D, et al. dexamethasone in ARDS network. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med 2020; 8(3): 267-76.
[http://dx.doi.org/10.1016/S2213-2600(19)30417-5] [PMID: 32043986]
[61]
Group RC. Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med 2020.
[62]
Siemieniuk RA. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ 2020; 370
[http://dx.doi.org/10.1136/bmj.m2980]
[63]
Marik P. EVMS critical care COVID-19 management protocol 2020. Available from: https://www. evms. edu/media/evms_public/departments
[64]
Bikdeli B, Madhavan MV, Jimenez D, et al. Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75(23): 2950-73.
[http://dx.doi.org/10.1016/j.jacc.2020.04.031] [PMID: 32311448]
[65]
Tardif J-C, Kouz S, Waters DD, et al. Efficacy and safety of low- dose colchicine after myocardial infarction. N Engl J Med 2019; 381(26): 2497-505.
[http://dx.doi.org/10.1056/NEJMoa1912388] [PMID: 31733140]
[66]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[67]
Chen L, Li X, Chen M, Feng Y, Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116(6): 1097-100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[68]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[69]
Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis 2020; 20(4): 400-2.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[70]
Shi C-S, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019; 5(1): 101.
[http://dx.doi.org/10.1038/s41420-019-0181-7] [PMID: 31231549]
[71]
Siu KL, Yuen KS, Castaño-Rodriguez C, et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J 2019; 33(8): 8865-77.
[http://dx.doi.org/10.1096/fj.201802418R] [PMID: 31034780]
[72]
Chen I-Y, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10: 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[73]
Quesada-Gomez JM, Entrenas-Castillo M, Bouillon R. Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS-CoV-2 infections: Revised Ms SBMB 2020_166. J Steroid Biochem Mol Biol 2020.202105719
[http://dx.doi.org/10.1016/j.jsbmb.2020.105719] [PMID: 32535032]
[74]
Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunninghake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 2008; 181(10): 7090-9.
[http://dx.doi.org/10.4049/jimmunol.181.10.7090] [PMID: 18981129]
[75]
Shi YY, Liu TJ, Fu JH, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide-induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep 2016; 13(2): 1186-94.
[http://dx.doi.org/10.3892/mmr.2015.4685] [PMID: 26675943]
[76]
Kiladjian J-J, Zachee P, Hino M, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (response): 5-year follow up of a phase 3 study. Lancet Haematol 2020; 7(3): e226-37.
[http://dx.doi.org/10.1016/S2352-3026(19)30207-8] [PMID: 31982039]
[77]
Yao X. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua bing li xue za zhi 2020; 49(5): 411-7.
[http://dx.doi.org/10.3760/cma.j.cn112151-20200312-00193]
[78]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[79]
Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol 2019; 15(8): 813-22.
[http://dx.doi.org/10.1080/1744666X.2019.1629904] [PMID: 31219357]
[80]
Chen H, Wang F, Zhang P, et al. Management of cytokine release syndrome related to CAR-T cell therapy. Front Med 2019; 13(5): 610-7.
[http://dx.doi.org/10.1007/s11684-019-0714-8] [PMID: 31571160]
[81]
Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol 2019; 10: 119.
[http://dx.doi.org/10.3389/fimmu.2019.00119] [PMID: 30774631]
[82]
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol 2016; 34: 203-42.
[http://dx.doi.org/10.1146/annurev-immunol-041015-055649] [PMID: 26907216]
[83]
Cooper AM, Khader SA. IL-12p40: an inherently agonistic cytokine. Trends Immunol 2007; 28(1): 33-8.
[http://dx.doi.org/10.1016/j.it.2006.11.002] [PMID: 17126601]
[84]
Menten P, Wuyts A, Van Damme J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 2002; 13(6): 455-81.
[http://dx.doi.org/10.1016/S1359-6101(02)00045-X] [PMID: 12401480]
[85]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396)eaal3653
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[86]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[87]
Hayden FG, Sugaya N, Hirotsu N, et al. Marboxil Investigators Group. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med 2018; 379(10): 913-23.
[http://dx.doi.org/10.1056/NEJMoa1716197] [PMID: 30184455]
[88]
Hayden FG, Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis 2019; 32(2): 176-86.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[89]
Madelain V, Oestereich L, Graw F, et al. Ebola virus dynamics in mice treated with favipiravir. Antiviral Res 2015; 123: 70-7.
[http://dx.doi.org/10.1016/j.antiviral.2015.08.015] [PMID: 26343011]
[90]
Brooks MJ, Burtseva EI, Ellery PJ, et al. Antiviral activity of arbidol, a broad-spectrum drug for use against respiratory viruses, varies according to test conditions. J Med Virol 2012; 84(1): 170-81.
[http://dx.doi.org/10.1002/jmv.22234] [PMID: 22028179]
[91]
Popov A. Time course of changes in cytokines (IFN-γ, IFN-α, IL-18, TNF-α) in the treatment of moderate influenza A (H1N1) pdm09 (2013-2016) with oseltamivir (Tamiflu) and umifenovir (Arbidol) alone and in combination with Kagocel. Therapeutic archive 2017; 89(10): 66-70.
[92]
Khamitov RA, Loginova SIa, Shchukina VN, Borisevich SV, Maksimov VA, Shuster AM. [Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures Vopr Virusol 2008; 53(4): 9-13.
[PMID: 18756809]
[93]
Pshenichnaya NY, et al. Clinical efficacy of umifenovir in influenza and ARVI (study ARBITR). Therapeutic archive 2019; 91(3): 56-63.
[94]
Shi L, Xiong H, He J, et al. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch Virol 2007; 152(8): 1447-55.
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[95]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[96]
Mangum EM, Graham KK. Lopinavir-Ritonavir: a new protease inhibitor. Pharmacotherapy 2001; 21(11): 1352-63.
[http://dx.doi.org/10.1592/phco.21.17.1352.34419] [PMID: 11714208]
[97]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[98]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[99]
Muthuri SG, Venkatesan S, Myles PR, et al. PRIDE Consortium Investigators. Effectiveness of neuraminidase inhibitors in reducing mortality in patients admitted to hospital with influenza A H1N1pdm09 virus infection: a meta-analysis of individual participant data. Lancet Respir Med 2014; 2(5): 395-404.
[http://dx.doi.org/10.1016/S2213-2600(14)70041-4] [PMID: 24815805]
[100]
Louie JK, Yang S, Acosta M, et al. Treatment with neuraminidase inhibitors for critically ill patients with influenza A (H1N1)pdm09. Clin Infect Dis 2012; 55(9): 1198-204.
[http://dx.doi.org/10.1093/cid/cis636] [PMID: 22843781]
[101]
Katzen J, Kohn R, Houk JL, Ison MG. Early oseltamivir after hospital admission is associated with shortened hospitalization: a 5-year analysis of oseltamivir timing and clinical outcomes. Clin Infect Dis 2019; 69(1): 52-8.
[http://dx.doi.org/10.1093/cid/ciy860] [PMID: 30304487]
[102]
Chen J, et al. Efficacies of lopinavir/ritonavir and abidol in the treatment of novel coronavirus pneumonia. Chin J Infect Dis 2020; 38(0)E008
[103]
Arabi YM, Shalhoub S, Mandourah Y, et al. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: a multicenter observational study. Clin Infect Dis 2020; 70(9): 1837-44.
[http://dx.doi.org/10.1093/cid/ciz544] [PMID: 31925415]
[104]
Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020; 71(6): 1400-9.
[http://dx.doi.org/10.1093/cid/ciaa410] [PMID: 32270184]
[105]
Luckhardt TR, Coomes SM, Trujillo G, et al. TLR9-induced interferon β is associated with protection from gammaherpesvirus-induced exacerbation of lung fibrosis. Fibrogenesis Tissue Repair 2011; 4(1): 18.
[http://dx.doi.org/10.1186/1755-1536-4-18] [PMID: 21810214]
[106]
Chu CM, Cheng VC, Hung IF, et al. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[107]
de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother 2014; 58(8): 4875-84.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[108]
Tan EL, Ooi EE, Lin CY, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 2004; 10(4): 581-6.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[109]
Chan JF, Chan KH, Kao RY, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infect 2013; 67(6): 606-16.
[http://dx.doi.org/10.1016/j.jinf.2013.09.029] [PMID: 24096239]
[110]
Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA 2016; 113(50): 14408-13.
[http://dx.doi.org/10.1073/pnas.1618029113] [PMID: 27911847]
[111]
Madrid PB, Panchal RG, Warren TK, et al. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect Dis 2015; 1(7): 317-26.
[http://dx.doi.org/10.1021/acsinfecdis.5b00030] [PMID: 27622822]
[112]
Bosseboeuf E. Azithromycin Inhibits the Replication of Zika Virus. J Antivir Antiretrovir 2018; 10: 6-11.
[http://dx.doi.org/10.4172/1948-5964.1000173]
[113]
Bacharier LB, Guilbert TW, Mauger DT, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA 2015; 314(19): 2034-44.
[http://dx.doi.org/10.1001/jama.2015.13896] [PMID: 26575060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy