Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Phyto-Phospholipid Complexation as a Novel Drug Delivery System for Management of Cancer with Better Bioavailability: Current Perspectives and Future Prospects

Author(s): Ram K. Sahu*, Wael M. Aboulthana and Dinesh K. Mehta

Volume 21, Issue 11, 2021

Published on: 10 November, 2020

Page: [1403 - 1412] Pages: 10

DOI: 10.2174/1871520620999201110191741

Price: $65

conference banner
Abstract

Cancer is the foremost cause of death, and it supports the need for the identification of novel anticancer drugs to improve the efficacy of current-therapy. While the synthetic anticancer drug is associated with numerous side effects. Hence the plant active or phytoconstituents are in high demand for the treatment of cancer due to minimum side effects. But the polar nature of phytoconstituents hindered the absorption of the drug and lowered the therapeutic efficacy. The plant activity incorporated into Phyto-phospholipid Complexation can enhance bioavailability and improved therapeutic efficacy. In this review article, advantages, limitation and application of Phyto-phospholipid complexes have been illustrated. The article highlights the application of Phyto-phospholipid complexes as a promising drug carrier system to treat cancer.

Keywords: Phyto-phospholipid complexes, cancer, bioavailability, plant active, application, limitation.

Graphical Abstract
[1]
Lin, L.; Yan, L.; Liu, Y.; Yuan, F.; Li, H.; Ni, J. Incidence and death in 29 cancer groups in 2017 and trend analysis from 1990 to 2017 from the Global Burden of Disease Study. J. Hematol. Oncol., 2019, 12(1), 96.
[http://dx.doi.org/10.1186/s13045-019-0783-9] [PMID: 31511035]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[4]
Veness, M.J.; Delishaj, D.; Barnes, E.A.; Bezugly, A.; Rembielak, A. Current role of radiotherapy in non-melanoma skin. Clin. Oncol. (R. Coll. Radiol.), 2019, 31(11), 749-758.
[http://dx.doi.org/10.1016/j.clon.2019.08.004] [PMID: 31447088]
[5]
Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: A 25-year study. Asian Pac. J. Cancer Prev., 2019, 20(7), 2015-2020.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2015] [PMID: 31350959]
[6]
Suphavanich, K.; Maitarad, P.; Hannongbua, S.; Sudta, P.; Suksamrarn, S.; Tantirungrotechai, Y.; Limtrakul, J. CoMFA and CoMSIA studies on a new series of xanthone derivatives against the oral human epidermoid carcinoma (KB) cancer cell line. Monatsh. Chem., 2009, 140, 273-280.
[http://dx.doi.org/10.1007/s00706-008-0014-5]
[7]
Huang, R.; Xiang, J.; Zhou, P. Vitamin D, gut microbiota, and radiation-related resistance: A love-hate triangle. J. Exp. Clin. Cancer Res., 2019, 38(1), 493.
[http://dx.doi.org/10.1186/s13046-019-1499-y] [PMID: 31843023]
[8]
Liu, J.; Kuang, F.; Kang, R.; Tang, D. Alkaliptosis: A new weapon for cancer therapy. Cancer Gene Ther., 2020, 27(5), 267-269.
[http://dx.doi.org/10.1038/s41417-019-0134-6] [PMID: 31467365]
[9]
Ryu, H.S.; Kim, J.H.; Kim, H.S. Effect of a plant water extract mixture (Ixeris sonchifolia Hance, Oenanthe javanica, Fagopyrum esculentum Moench, Hizikia fusiforme, Zingiber officinale Roscoe) on mouse immune cell activation. Korean J. Food Nutr., 2007, 20, 74-78.
[http://dx.doi.org/10.1096/fasebj.21.5.A375-a]
[10]
Sahin, K.; Sahin, N.; Kucuk, O. Lycopene and chemotherapy toxicity. Nutr. Cancer, 2010, 62(7), 988-995.
[http://dx.doi.org/10.1080/01635581.2010.509838] [PMID: 20924974]
[11]
Prajkta, C.; Vinal, P.; Vineeta, J.; Rani, A.R. A review on therapeutic applications of phytosomes. J. Drug Deliv. Ther., 2017, 7(5), 17-21.
[12]
Gnananath, K.; Sri Nataraj, K.; Ganga Rao, B. Phospholipid complex technique for superior bioavailability of phytoconstituents. Adv. Pharm. Bull., 2017, 7(1), 35-42.
[http://dx.doi.org/10.15171/apb.2017.005] [PMID: 28507935]
[13]
Khan, J.; Alexander, A. Ajazuddin; Saraf, S.; Saraf, S. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J. Control. Release, 2013, 168(1), 50-60.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.025] [PMID: 23474031]
[14]
Amit, P.; Tanwar, Y.S.; Rakesh, S.; Poojan, P. Phytosome: Phytolipid drug delivery system for improving bioavailability of herbal drug. J. Pharm. Sci. Biosci. Res., 2013, 3(2), 51-57.
[15]
Pawar, H.A.; Bhangale, B.D. Phytosome as a novel biomedicine: A microencapsulated drug delivery system. J. Bioanal. Biomed., 2015, 7, 6-12.
[16]
Goda, T.; Goto, Y.; Ishihara, K. Cell-penetrating macromolecules: Direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials, 2010, 31(8), 2380-2387.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.095] [PMID: 20004016]
[17]
Semalty, A.; Semalty, M.; Rawat, M.S.M.; Franceschi, F. Supramolecular phospholipids-polyphenolics interactions: The PHYTOSOME strategy to improve the bioavailability of phytochemicals. Fitoterapia, 2010, 81(5), 306-314.
[http://dx.doi.org/10.1016/j.fitote.2009.11.001] [PMID: 19919847]
[18]
Guler Em Demir, B.; Guler, B.; Demirkol, D.O.; Timur, S. BiofuNctionalized nanomaterials for targeting cancer cells. Nanostructures for Cancer Therapy; Micro and Nano Technologies; Elsevier: Netherlands, 2017, pp. 51-86.
[19]
Kuche, K.; Bhargavi, N.; Dora, C.P.; Jain, S. Drug-phospholipid complex-a go through strategy for enhanced oral bioavailability. AAPS PharmSciTech, 2019, 20(2), 43.
[http://dx.doi.org/10.1208/s12249-018-1252-4] [PMID: 30610392]
[20]
Khan, J.; Saraf, S.; Saraf, S. Preparation and evaluation of luteolin-phospholipid complex as an effective drug delivery tool against GalN/LPS induced liver damage. Pharm. Dev. Technol., 2016, 21(4), 475-486.
[PMID: 25831424]
[21]
Raju, T.P.; Reddy, M.S.; Reddy, V.P. Phytosomes: A novel phyto-phospholipid carriers for herbal drug delivery. IRJP, 2011, 2(6), 28-33.
[22]
Babu, S.K.; Nair, S.K.; Krishnakumar, K. Phytosome and its therapeutic aspects. World J. Pharm. Sci., 2019, 7(7), 12-19.
[23]
Yanyu, X.; Yunmei, S.; Zhipeng, C.; Qineng, P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm., 2006, 307(1), 77-82.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.001] [PMID: 16300915]
[24]
Tedesco, D.; Steidler, S.; Galletti, S.; Tameni, M.; Sonzogni, O.; Ravarotto, L. Efficacy of silymarin-phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. Poult. Sci., 2004, 83(11), 1839-1843.
[http://dx.doi.org/10.1093/ps/83.11.1839] [PMID: 15554059]
[25]
Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech, 2013, 3(6), 439-459.
[26]
Gándola, Y.B.; Pérez, S.E.; Irene, P.E.; Sotelo, A.I.; Miquet, J.G.; Corradi, G.R.; Carlucci, A.M.; Lorena, G. Mitogenic effects of phosphatidylcholine nanoparticles on MCF-7 breast cancer cells. BioMed Res. Int., 2014, 2014, Article ID 687037.
[27]
Ghanbarzadeh, B.; Babazadeh, A.; Hamishehkar, H. Nano-phytosome as a potential food-grade delivery system. Food Biosci., 2016, 5, 126-135.
[http://dx.doi.org/10.1016/j.fbio.2016.07.006]
[28]
Babazadeh, A.; Zeinali, M.; Hamishehkar, H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets, 2018, 19(2), 170-180.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[29]
Hou, Z.; Li, Y.; Huang, Y.; Zhou, C.; Lin, J.; Wang, Y.; Cui, F.; Zhou, S.; Jia, M.; Ye, S.; Zhang, Q. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol. Pharm., 2013, 10(1), 90-101.
[http://dx.doi.org/10.1021/mp300489p] [PMID: 23194396]
[30]
Maramaldi, G.; Togni, S.; Pagin, I.; Giacomelli, L.; Cattaneo, R.; Eggenhöffner, R.; Burastero, S.E. Soothing and anti-itch effect of quercetin phytosome in human subjects: A single-blind study. Clin. Cosmet. Investig. Dermatol., 2016, 9, 55-62.
[http://dx.doi.org/10.2147/CCID.S98890] [PMID: 27013898]
[31]
Ramakrishnan, G.; Raghavendran, H.R.; Vinodhkumar, R.; Devaki, T. Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chem. Biol. Interact., 2006, 161(2), 104-114.
[http://dx.doi.org/10.1016/j.cbi.2006.03.007] [PMID: 16643877]
[32]
Thummar, V.R.; Parasuraman, S.; Basu, D.; Raveendran, R. Evaluation of in vivo antitumor activity of cleistanthin B in Swiss albino mice. J. Tradit. Complement. Med., 2015, 6(4), 383-388.
[http://dx.doi.org/10.1016/j.jtcme.2015.08.004] [PMID: 27774423]
[33]
Kumar, R.B.S.; Kar, B.; Dolai, N.; Karmakar, I.; Bhattacharya, S.; Haldar, P.K. Antitumor activity and antioxidant status of Streblus asper bark against Dalton’s ascitic lymphoma in mice. Interdiscip. Toxicol., 2015, 8(3), 125-130.
[http://dx.doi.org/10.1515/intox-2015-0019] [PMID: 27486371]
[34]
Sundaraganapathy, L.P.N. Development and evaluation of anti-cancer activity of phytosome formulated from the root extract of Clerodendron paniculatum Linn. Int. J. Pharmacog. Phytochem. Res., 2016, 8(11), 1778-1781.
[35]
Dhase, A.S.; Saboo, S.S. Preparation and evaluation of phytosomes containing methanolic extract of leaves of Aegle marmelos (Bael). Int. J. Pharm. Tech. Res., 2015, 8(6), 231-240.
[36]
Sharma, S.; Roy, R.K.; Shrivastava, B. Antiproliferative effect of Phytosome complex of methanolic extact of Terminalia arjuna bark on human breast cancer cell lines (MCF-7). Int. J. Drug Dev. Res., 2015, 7(1), 173-182.
[37]
Farshori, N.N.; Al-Sheddi, E.S.; Al-Oqail, M.M.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells. Asian Pac. J. Cancer Prev., 2013, 14(10), 5719-5723.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5719] [PMID: 24289568]
[38]
Rattanaburee, T.; Thongpanchang, T.; Wongma, K.; Tedasen, A.; Sukpondma, Y.; Graidist, P. Anticancer activity of synthetic (±)-kusunokinin and its derivative (±)-bursehernin on human cancer cell lines. Biomed. Pharmacother., 2019, 117, 109115.
[http://dx.doi.org/10.1016/j.biopha.2019.109115] [PMID: 31220743]
[39]
Rattanaburee, T.; Tipmanee, V.; Tedasen, A.; Thongpanchang, T.; Graidist, P. Inhibition of CSF1R and AKT by (±)-kusunokinin hinders breast cancer cell proliferation. Biomed. Pharmacother., 2020, 129, 110361.
[http://dx.doi.org/10.1016/j.biopha.2020.110361] [PMID: 32535390]
[40]
Panieri, E.; Saso, L. Potential applications of NRF2 inhibitors in cancer therapy. Oxid. Med. Cell. Longev., 2019, 2019, 8592348.
[http://dx.doi.org/10.1155/2019/8592348] [PMID: 31097977]
[41]
Lou, Y.; Guo, Z.; Zhu, Y.; Zhang, G.; Wang, Y.; Qi, X.; Lu, L.; Liu, Z.; Wu, J. Astragali radix and its main bioactive compounds activate the Nrf2-mediated signaling pathway to induce P-glycoprotein and breast cancer resistance protein. J. Ethnopharmacol., 2019, 228, 82-91.
[http://dx.doi.org/10.1016/j.jep.2018.09.026] [PMID: 30243825]
[42]
Mahmoodi, N.; Motamed, N.; Paylakhi, S.H. The comparison of the effects of silybin and silybin-phosphatidylcholine on viability and ESR expression in human breast cancer T47D cell line. Cell J., 2014, 16(3), 299-308.
[PMID: 24611152]
[43]
Gallo, D.; Giacomelli, S.; Ferlini, C.; Raspaglio, G.; Apollonio, P.; Prislei, S.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Scambia, G. Antitumour activity of the silybin-phosphatidylcholine complex, IdB 1016, against human ovarian cancer. Eur. J. Cancer, 2003, 39(16), 2403-2410.
[http://dx.doi.org/10.1016/S0959-8049(03)00624-5] [PMID: 14556934]
[44]
Tunjung, W.A.S.; Sayekti, P.R. Apoptosis induction on human breast cancer T47D cell line by extracts of Ancorina sp. F1000 Res., 2019, 8, 168.
[http://dx.doi.org/10.12688/f1000research.17584.2] [PMID: 31031969]
[45]
Coşkun, G.P.; Djikic, T.; Hayal, T.B.; Türkel, N.; Yelekçi, K.; Şahin, F.; Küçükgüzel, S.G. Synthesis, molecular docking and anticancer activity of diflunisal derivatives as cyclooxygenase enzyme inhibitors. Molecules, 2018, 23(8), 1969.
[http://dx.doi.org/10.3390/molecules23081969] [PMID: 30082676]
[46]
Abu-rish, E.Y.; Kasabri, V.N.; Hudaib, M.M.; Mashalla, S.H.; AlAlawi, L.H.; Tawaha, K.A.; Mohammad, M.K.; Mohamed, Y.S.; Bustanji, Y.K. Evaluation of antiproliferative activity of some traditional anticancer herbal remedies from Jordan. Tropical J. Pharmaceut Res., March;2016 15(3), 469-474.
[http://dx.doi.org/10.4314/tjpr.v15i3.6]
[47]
Suharty, N.; Wahyuni, F.S. Dachriyanus. Cytotoxic activity of ethanol extract of arbuscular Mycorrhizal fungi induced ginger rhizome on T47D breast cancer cell lines. Pharmacogn. J., 2018, 10(6), 1133-1136.
[http://dx.doi.org/10.5530/pj.2018.6.193]
[48]
Hashemzehi, M.; Behnam-Rassouli, R.; Hassanian, S.M.; Moradi-Binabaj, M.; Moradi-Marjaneh, R.; Rahmani, F.; Fiuji, H.; Jamili, M.; Mirahmadi, M.; Boromand, N.; Piran, M.; Jafari, M.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal-curcumin antagonizes cell growth and migration, induced by thrombin through AMP-Kinase in breast cancer. J. Cell. Biochem., 2018, 119(7), 5996-6007.
[http://dx.doi.org/10.1002/jcb.26796] [PMID: 29600521]
[49]
Marjaneh, R.M.; Rahmani, F.; Hassanian, S.M.; Rezaei, N.; Hashemzehi, M.; Bahrami, A.; Ariakia, F.; Fiuji, H.; Sahebkar, A.; Avan, A.; Khazaei, M. Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J. Cell. Physiol., 2018, 233(10), 6785-6798.
[http://dx.doi.org/10.1002/jcp.26538] [PMID: 29737515]
[50]
Jang, W.J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.H. Anticancer activity of paroxetine in human colon cancer cells: Involvement of MET and ERBB3. J. Cell. Mol. Med., 2019, 23(2), 1106-1115.
[http://dx.doi.org/10.1111/jcmm.14011] [PMID: 30421568]
[51]
Kubota, M.; Shimizu, M.; Sakai, H.; Yasuda, Y.; Terakura, D.; Baba, A.; Ohno, T.; Tsurumi, H.; Tanaka, T.; Moriwaki, H. Preventive effects of curcumin on the development of azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db obese mice. Nutr. Cancer, 2012, 64(1), 72-79.
[http://dx.doi.org/10.1080/01635581.2012.630554] [PMID: 22172229]
[52]
Tong, W.; Wang, Q.; Sun, D.; Suo, J. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9. Oncol. Lett., 2016, 12(5), 4139-4146.
[http://dx.doi.org/10.3892/ol.2016.5148] [PMID: 27895783]
[53]
Li, D.D.; Wang, L.L.; Deng, R.; Tang, J.; Shen, Y.; Guo, J.F.; Wang, Y.; Xia, L.P.; Feng, G.K.; Liu, Q.Q.; Huang, W.L.; Zeng, Y.X.; Zhu, X.F. The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene, 2009, 28(6), 886-898.
[http://dx.doi.org/10.1038/onc.2008.441] [PMID: 19060920]
[54]
Femia, A.P.; Soares, P.V.; Luceri, C.; Lodovici, M.; Giannini, A.; Caderni, G. And curcumin reduce carcinogenesis in the Pirc rat, an Apcdriven model of colon carcinogenesis. BMC Cancer, 2015, 15(1), 611.
[http://dx.doi.org/10.1186/s12885-015-1627-9] [PMID: 26335331]
[55]
Xu, L.; Xu, D.; Li, Z.; Gao, Y.; Chen, H. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. Beilstein J. Nanotechnol., 2019, 10, 1933-1942.
[http://dx.doi.org/10.3762/bjnano.10.189] [PMID: 31598460]
[56]
Alhakamy, N.A.; Fahmy, U.; Badr-Eldin, S.M.; Ahmed, O.A.A.; Asfour, H.Z.; Aldawsari, H.M.; Algandaby, M.M.; Eid, B.G.; Abdel-Naim, A.B.; Awan, Z.A.; Alruwaili, N.K.; Mohamed, A.I. Optimized icariin phytosomes exhibit enhanced cytotoxicity and apoptosis-inducing activities in ovarian cancer cells. Pharmaceutics, 2020, 12(4), 346.
[http://dx.doi.org/10.3390/pharmaceutics12040346] [PMID: 32290412]
[57]
Rupp, C.; Steckel, H.; Müller, B.W. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int. J. Pharm., 2010, 395(1-2), 272-280.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.025] [PMID: 20580793]
[58]
Yusuf, A.; Brophy, A.; Gorey, B.; Casey, A. Liposomal encapsulation of silver nanoparticles enhances cytotoxicity and causes induction of reactive oxygen species-independent apoptosis. J. Appl. Toxicol., 2018, 38(5), 616-627.
[http://dx.doi.org/10.1002/jat.3566] [PMID: 29181855]
[59]
Sakamuru, S.; Attene-Ramos, M.S.; Xia, M. Mitochondrial membrane potential assay. Methods Mol. Biol., 2016, 1473, 17-22.
[http://dx.doi.org/10.1007/978-1-4939-6346-1_2] [PMID: 27518619]
[60]
Xue, Y.; Chen, Q.; Ding, T.; Sun, J. SiO2 nanoparticle-induced impairment of mitochondrial energy metabolism in hepatocytes directly and through a Kupffer cell-mediated pathway in vitro. Int. J. Nanomedicine, 2014, 9, 2891-2903.
[PMID: 24959077]
[61]
Singh, R.P.; Narke, R. Preparation and evaluation of phytosome of lawsone. Int. J. Pharm. Sci. Res., 2015, 6(12), 2320-5148.
[62]
Rani, A.; Arora, S.; Goyal, A. Citrullus colosynthis phytosomes: Development and physiochemical characterization. Int. J. Pharm. Sci. Res., 2019, 10(10), 4568-4573.
[63]
Udapurkar, P.P.; Bhusnure, O.G.; Kamble, S.R. Development and characterization of Citrus limon phospholipid complex as an effective phytoconstituent delivery system. Int. J. Life Sci. Pharmaceut. Res., 2018, 8(1), 29-41.
[64]
Patil, S.; Ayare, P. Carica papaya: Formulation and evaluation of new dosage form design. Int. J. Pharm. Sci. Res., 2019, 10(4), 1677-1685.
[65]
Allam, A.H.; Komeil, A.H.; Abdallah, O.Y. Curcumine phytosomal soft gel formulation: Development, optimization and physiochemical characterization. Acta Pharmaceut. J., 2015, 65, 285-297.
[66]
Hooresfand, Z.; Ghanbarzadeh, S.; Hamishekhar, H. Preparation and characterization of Rutin loaded nanophytosome. Pharm. Sci., 2015, 21(1), 145-151.
[http://dx.doi.org/10.15171/PS.2015.29]
[67]
Khan, T.; Ali, M.; Khan, A.; Nisar, P.; Jan, S.A.; Afridi, S.; Shinwari, Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 2019, 10(1), 47.
[http://dx.doi.org/10.3390/biom10010047] [PMID: 31892257]
[68]
Ryu, J.H.; Lee, S.J.; Kim, M.J.; Shin, J.H.; Kang, S.K.; Cho, K.M.; Sung, N.J. Antioxidant and anticancer activities of Artemisia annua L. and determination of functional compounds. J. Korean Soc. Food Sci. Nutr., 2011, 40, 509-516.
[http://dx.doi.org/10.3746/jkfn.2011.40.4.509]
[69]
Waheed, A.; Barker, J.; Barton, S.J.; Owen, C.P.; Ahmed, S.; Carew, M.A. A novel steroidal saponin glycoside from Fagonia indica induces cell-selective apoptosis or necrosis in cancer cells. Eur. J. Pharm. Sci., 2012, 47(2), 464-473.
[http://dx.doi.org/10.1016/j.ejps.2012.07.004] [PMID: 22800968]
[70]
Li, P. AnandhiSenthilkumar, H.; Wu, S.B.; Liu, B.; Guo, Z.Y.; Fata, J.E.; Kennelly, E.J.; Long, C.L. Comparative UPLC-QTOF-MS-based metabolomics and bioactivities analyses of Garcinia oblongifolia. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1011, 179-195.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.061] [PMID: 26773895]
[71]
Pan, M.H.; Chang, W.L.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J. Agric. Food Chem., 2001, 49(3), 1464-1474.
[http://dx.doi.org/10.1021/jf001129v] [PMID: 11312881]
[72]
Liu, Z.; Liu, M.; Liu, M.; Li, J. Methylanthraquinone from Hedyotis diffusa WILLD induces Ca(2+)-mediated apoptosis in human breast cancer cells. Toxicol. In Vitro, 2010, 24(1), 142-147.
[http://dx.doi.org/10.1016/j.tiv.2009.08.002] [PMID: 19686834]
[73]
Chon, S.U.; Kim, Y.M.; Park, Y.J.; Heo, B.G.; Park, Y.S.; Gorinstein, S. Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant (Morus alba L.). Eur. Food Res. Technol., 2009, 230, 231-237.
[http://dx.doi.org/10.1007/s00217-009-1165-2]
[74]
Sun, J.; Liu, B.R.; Hu, W.J.; Yu, L.X.; Qian, X.P. In vitro anticancer activity of aqueous extracts and ethanol extracts of fifteen traditional Chinese medicines on human digestive tumor cell lines. Phytother. Res., 2007, 21(11), 1102-1104.
[http://dx.doi.org/10.1002/ptr.2196] [PMID: 17639550]
[75]
Lee, K.J.; Hwang, S.J.; Choi, J.H.; Jeong, H.G. Saponins derived from the roots of Platycodon grandiflorum inhibit HT-1080 cell invasion and MMPs activities: Regulation of NF-kappaB activation via ROS signal pathway. Cancer Lett., 2008, 268(2), 233-243.
[http://dx.doi.org/10.1016/j.canlet.2008.03.058] [PMID: 18499341]
[76]
Yu, J.S.; Kim, A.K. Platycodin D induces apoptosis in MCF-7 human breast cancer cells. J. Med. Food, 2010, 13(2), 298-305.
[http://dx.doi.org/10.1089/jmf.2009.1226] [PMID: 20412017]
[77]
Bao, R.; Shu, Y.; Wu, X.; Weng, H.; Ding, Q.; Cao, Y.; Li, M.; Mu, J.; Wu, W.; Ding, Q.; Tan, Z.; Liu, T.; Jiang, L.; Hu, Y.; Gu, J.; Liu, Y. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway. BMC Cancer, 2014, 14, 217.
[http://dx.doi.org/10.1186/1471-2407-14-217] [PMID: 24655726]
[78]
Wang, S.; Zhong, Z.; Wan, J.; Tan, W.; Wu, G.; Chen, M.; Wang, Y. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am. J. Chin. Med., 2013, 41(1), 177-196.
[http://dx.doi.org/10.1142/S0192415X13500134] [PMID: 23336515]
[79]
Androutsopoulos, V.P.; Ruparelia, K.; Arroo, R.R.; Tsatsakis, A.M.; Spandidos, D.A. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells. Toxicology, 2009, 264(3), 162-170.
[http://dx.doi.org/10.1016/j.tox.2009.07.023] [PMID: 19666078]
[80]
He, M.F.; Huang, Y.H.; Wu, L.W.; Ge, W.; Shaw, P.C.; But, P.P.H. Triptolide functions as a potent angiogenesis inhibitor. Int. J. Cancer, 2010, 126(1), 266-278.
[http://dx.doi.org/10.1002/ijc.24694] [PMID: 19569053]
[81]
Lee, M.R.; Cha, M.R.; Jo, K.J.; Yoon, M.Y.; Park, H.R. Cytotoxic and apoptotic activities of Tussilago farfara extract in HT-29 human colon cancer cells. Food Sci. Biotechnol., 2008, 17, 308-312.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy