Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Pituitary Dysfunction as a Cause of Cardiovascular Disease

Author(s): Apostolos I. Gogakos, Tasos Gogakos, Marina Kita and Zoe A. Efstathiadou*

Volume 26, Issue 43, 2020

Page: [5573 - 5583] Pages: 11

DOI: 10.2174/1381612824999201105165351

Price: $65

conference banner
Abstract

The hypothalamic-pituitary axis is responsible for the neuroendocrine control of several organ systems. The anterior pituitary directly affects the functions of the thyroid gland, the adrenal glands, and gonads, and regulates growth and milk production. The posterior hypophysis, through nerve connections with the hypothalamic nuclei, releases vasopressin and oxytocin responsible for water balance and social bonding, sexual reproduction and childbirth, respectively. Pituitary gland hormonal excess or deficiency results in dysregulation of metabolic pathways and mechanisms that are important for the homeostasis of the organism and are associated with increased morbidity and mortality. Cardiovascular (CV) disorders are common in pituitary disease and have a significant impact on survival. Hormonal imbalance is associated with CV complications either through direct effects on the heart structure and function and vasculature or indirectly by altering the metabolic profile. Optimal endocrine control can prevent or reverse CV defects and preserve survival and quality of life. In this review, we discuss the effects of pituitary hormone excess and deficiency on the CV system. Specifically, we assess the impact of Somatotroph, Corticotroph, Gonadotroph, and Lactotroph anterior pituitary axes on the CV system. The effect of posterior pituitary function on the CV system is also explored.

Keywords: Pituitary, pituitary hormone excess, hypopituitarism, posterior pituitary, cardiovascular disease, cardiovascular disorders.

[1]
Rosin JM, Kurrasch DM. Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front Neuroendocrinol 2019; 54: 100748.
[http://dx.doi.org/10.1016/j.yfrne.2019.100748] [PMID: 31059719]
[2]
Reiss AB, Glass DS, Lam E, Glass AD, De Leon J, Kasselman LJ. Oxytocin: Potential to mitigate cardiovascular risk. Peptides 2019; 117: 170089.
[http://dx.doi.org/10.1016/j.peptides.2019.05.001] [PMID: 31112739]
[3]
Hong GK, Payne SC, Jane JAJ Jr. Anatomy, Physiology, and Laboratory Evaluation of the Pituitary Gland. Otolaryngol Clin North Am 2016; 49(1): 21-32.
[http://dx.doi.org/10.1016/j.otc.2015.09.002] [PMID: 26614827]
[4]
Melmed S. Medical progress: Acromegaly. N Engl J Med 2006; 355(24): 2558-73.
[http://dx.doi.org/10.1056/NEJMra062453] [PMID: 17167139]
[5]
Pivonello R, Auriemma RS, Grasso LFS, et al. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary 2017; 20(1): 46-62.
[http://dx.doi.org/10.1007/s11102-017-0797-7] [PMID: 28224405]
[6]
Colao A, Grasso LFS, Di Somma C, Pivonello R. Acromegaly and Heart Failure. Heart Fail Clin 2019; 15(3): 399-408.
[http://dx.doi.org/10.1016/j.hfc.2019.03.001] [PMID: 31079698]
[7]
Ramos-Leví AM, Marazuela M. Cardiovascular comorbidities in acromegaly: an update on their diagnosis and management. Endocrine 2017; 55(2): 346-59.
[http://dx.doi.org/10.1007/s12020-016-1191-3] [PMID: 28042644]
[8]
Colao A, Marzullo P, Di Somma C, Lombardi G. Growth hormone and the heart. Clin Endocrinol (Oxf) 2001; 54(2): 137-54.
[http://dx.doi.org/10.1046/j.1365-2265.2001.01218.x] [PMID: 11207626]
[9]
Colao A, Spinelli L, Marzullo P, et al. High prevalence of cardiac valve disease in acromegaly: an observational, analytical, case-control study. J Clin Endocrinol Metab 2003; 88(7): 3196-201.
[http://dx.doi.org/10.1210/jc.2002-021099] [PMID: 12843165]
[10]
Pereira AM, van Thiel SW, Lindner JR, et al. Increased prevalence of regurgitant valvular heart disease in acromegaly. J Clin Endocrinol Metab 2004; 89(1): 71-5.
[http://dx.doi.org/10.1210/jc.2003-030849] [PMID: 14715829]
[11]
Maison P, Tropeano A-I, Macquin-Mavier I, Giustina A, Chanson P. Impact of somatostatin analogs on the heart in acromegaly: a metaanalysis. J Clin Endocrinol Metab 2007; 92(5): 1743-7.
[http://dx.doi.org/10.1210/jc.2006-2547] [PMID: 17311857]
[12]
van der Klaauw AA, Bax JJ, Smit JWA, et al. Increased aortic root diameters in patients with acromegaly. Eur J Endocrinol 2008; 159(2): 97-103.
[http://dx.doi.org/10.1530/EJE-08-0138] [PMID: 18495693]
[13]
Akutsu H, Kreutzer J, Wasmeier G, et al. Acromegaly per se does not increase the risk for coronary artery disease. Eur J Endocrinol 2010; 162(5): 879-86.
[http://dx.doi.org/10.1530/EJE-09-0945] [PMID: 20145047]
[14]
Berg C, Petersenn S, Lahner H, et al. Investigative Group of the Heinz Nixdorf Recall Study and the German Pegvisomant Observational Study Board and Investigators. Cardiovascular risk factors in patients with uncontrolled and long-term acromegaly: comparison with matched data from the general population and the effect of disease control. J Clin Endocrinol Metab 2010; 95(8): 3648-56.
[http://dx.doi.org/10.1210/jc.2009-2570] [PMID: 20463098]
[15]
Andersson IJ, Johansson ME, Wickman A, et al. Endothelial dysfunction in growth hormone transgenic mice. Clin Sci (Lond) 2006; 110(2): 217-25.
[http://dx.doi.org/10.1042/CS20050281] [PMID: 16185195]
[16]
Anagnostis P, Efstathiadou ZA, Gougoura S, et al. Oxidative stress and reduced antioxidative status, along with endothelial dysfunction in acromegaly. Horm Metab Res 2013; 45(4): 314-8.
[PMID: 23093460]
[17]
Kirilov G, Zacharieva S, Alexandrov AS, Lozanov V, Mitev V. Increased plasma endothelin level as an endothelial marker of cardiovascular risk in patients with active acromegaly: a comparison with plasma homocysteine. Methods Find Exp Clin Pharmacol 2009; 31(7): 457-61.
[http://dx.doi.org/10.1358/mf.2009.31.7.1415895] [PMID: 19907721]
[18]
Castellano G, Affuso F, Conza PD, Fazio S. The GH/IGF-1 Axis and Heart Failure. Curr Cardiol Rev 2009; 5(3): 203-15.
[http://dx.doi.org/10.2174/157340309788970306] [PMID: 20676279]
[19]
Anagnostis P, Efstathiadou ZA, Polyzos SA, et al. Acromegaly: presentation, morbidity and treatment outcomes at a single centre. Int J Clin Pract 2011; 65(8): 896-902.
[http://dx.doi.org/10.1111/j.1742-1241.2011.02682.x] [PMID: 21679284]
[20]
Qi W, Li Q, Liew CW, et al. SHP-1 activation inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in a rodent model of insulin resistance and diabetes. Diabetologia 2017; 60(3): 585-96.
[http://dx.doi.org/10.1007/s00125-016-4159-1] [PMID: 27933336]
[21]
Attal P, Chanson P. Endocrine aspects of obstructive sleep apnea. J Clin Endocrinol Metab 2010; 95(2): 483-95.
[http://dx.doi.org/10.1210/jc.2009-1912] [PMID: 20061419]
[22]
Isgaard J, Arcopinto M, Karason K, Cittadini A. GH and the cardiovascular system: an update on a topic at heart. Endocrine 2015; 48(1): 25-35.
[http://dx.doi.org/10.1007/s12020-014-0327-6] [PMID: 24972804]
[23]
Colao A, Ferone D, Marzullo P, Lombardi G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 2004; 25(1): 102-52.
[http://dx.doi.org/10.1210/er.2002-0022] [PMID: 14769829]
[24]
Mosca S, Paolillo S, Colao A, et al. Cardiovascular involvement in patients affected by acromegaly: an appraisal. Int J Cardiol 2013; 167(5): 1712-8.
[http://dx.doi.org/10.1016/j.ijcard.2012.11.109] [PMID: 23219077]
[25]
Sardella C, Cappellani D, Urbani C, et al. Disease activity and lifestyle influence comorbidities and cardiovascular events in patients with acromegaly. Eur J Endocrinol 2016; 175(5): 443-53.
[http://dx.doi.org/10.1530/EJE-16-0562] [PMID: 27528501]
[26]
Kasayama S, Otsuki M, Takagi M, et al. Impaired beta-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin Endocrinol (Oxf) 2000; 52(5): 549-55.
[http://dx.doi.org/10.1046/j.1365-2265.2000.00986.x] [PMID: 10792333]
[27]
Møller N, Jørgensen JOL. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 2009; 30(2): 152-77.
[http://dx.doi.org/10.1210/er.2008-0027] [PMID: 19240267]
[28]
Dal J, List EO, Jørgensen JOL, Berryman DE. Glucose and Fat Metabolism in Acromegaly: From Mice Models to Patient Care. Neuroendocrinology 2016; 103(1): 96-105.
[http://dx.doi.org/10.1159/000430819] [PMID: 25925240]
[29]
Koutsou-Tassopoulou A, Papapostoli-Sklavounou I, Krawczyk M, et al. Hepatic steatosis in patients with acromegaly. Endocrinol Diabetes Metab 2019; 2(4): e00090.
[http://dx.doi.org/10.1002/edm2.90] [PMID: 31592448]
[30]
Athyros VG, Alexandrides TK, Bilianou H, et al. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71: 17-32.
[http://dx.doi.org/10.1016/j.metabol.2017.02.014] [PMID: 28521870]
[31]
Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest 2009; 119(11): 3189-202.
[http://dx.doi.org/10.1172/JCI39375] [PMID: 19884662]
[32]
Abreu A, Tovar AP, Castellanos R, et al. Challenges in the diagnosis and management of acromegaly: a focus on comorbidities. Pituitary 2016; 19(4): 448-57.
[http://dx.doi.org/10.1007/s11102-016-0725-2] [PMID: 27279011]
[33]
Colao A, Grasso LFS, Giustina A, et al. Acromegaly. Nat Rev Dis Primers 2019; 5(1): 20.
[http://dx.doi.org/10.1038/s41572-019-0071-6] [PMID: 30899019]
[34]
Toulis KA, Robbins T, Reddy N, et al. Males with prolactinoma are at increased risk of incident cardiovascular disease. Clin Endocrinol (Oxf) 2018; 88(1): 71-6.
[http://dx.doi.org/10.1111/cen.13498] [PMID: 29044586]
[35]
Ozdemir ED, Caglar GS, Akgul E, Cengiz SD, Tombak G. The association between prolactin, high-sensitivity C-reactive protein and Framingham risk score in menopause. Gynecol Obstet Invest 2014; 78(2): 119-23.
[http://dx.doi.org/10.1159/000362550] [PMID: 24861467]
[36]
Haring R, Friedrich N, Völzke H, et al. Positive association of serum prolactin concentrations with all-cause and cardiovascular mortality. Eur Heart J 2014; 35(18): 1215-21.
[http://dx.doi.org/10.1093/eurheartj/ehs233] [PMID: 22843444]
[37]
Samperi I, Lithgow K, Karavitaki N. Hyperprolactinaemia. J Clin Med 2019; 8(12): E2203.
[http://dx.doi.org/10.3390/jcm8122203] [PMID: 31847209]
[38]
Zhang L, Curhan GC, Forman JP. Plasma prolactin level and risk of incident hypertension in postmenopausal women. J Hypertens 2010; 28(7): 1400-5.
[http://dx.doi.org/10.1097/HJH.0b013e328339f254] [PMID: 20453663]
[39]
dos Santos Silva CM, Barbosa FRP, Lima GAB, et al. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring) 2011; 19(4): 800-5.
[http://dx.doi.org/10.1038/oby.2010.150] [PMID: 20559294]
[40]
Ben-Jonathan N, Hugo E. Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol 2015; 846: 1-35.
[http://dx.doi.org/10.1007/978-3-319-12114-7_1] [PMID: 25472532]
[41]
Carré N, Binart N. Prolactin and adipose tissue. Biochimie 2014; 97: 16-21.
[http://dx.doi.org/10.1016/j.biochi.2013.09.023] [PMID: 24120689]
[42]
Erem C, Kocak M, Nuhoglu I, Yılmaz M, Ucuncu O. Blood coagulation, fibrinolysis and lipid profile in patients with prolactinoma. Clin Endocrinol (Oxf) 2010; 73(4): 502-7.
[PMID: 20039901]
[43]
Auriemma RS, Granieri L, Galdiero M, et al. Effect of cabergoline on metabolism in prolactinomas. Neuroendocrinology 2013; 98(4): 299-310.
[http://dx.doi.org/10.1159/000357810] [PMID: 24355865]
[44]
Andersen M, Glintborg D. Metabolic Syndrome in Hyperprolactinemia. Front Horm Res 2018; 49: 29-47.
[http://dx.doi.org/10.1159/000486000] [PMID: 29894997]
[45]
Nieman LK, Biller BMK, Findling JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2008; 93(5): 1526-40.
[http://dx.doi.org/10.1210/jc.2008-0125] [PMID: 18334580]
[46]
Lacroix A, Feelders RA, Stratakis CA, Nieman LK. Cushing’s syndrome. Lancet 2015; 386(9996): 913-27.
[http://dx.doi.org/10.1016/S0140-6736(14)61375-1] [PMID: 26004339]
[47]
Clayton RN, Raskauskiene D, Reulen RC, Jones PW. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 2011; 96(3): 632-42.
[http://dx.doi.org/10.1210/jc.2010-1942] [PMID: 21193542]
[48]
Pivonello R, Faggiano A, Lombardi G, Colao A. The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol Metab Clin North Am 2005; 34(2): 327-339, viii.
[http://dx.doi.org/10.1016/j.ecl.2005.01.010] [PMID: 15850845]
[49]
Geer EB, Shen W, Gallagher D, et al. MRI assessment of lean and adipose tissue distribution in female patients with Cushing’s disease. Clin Endocrinol (Oxf) 2010; 73(4): 469-75.
[http://dx.doi.org/10.1111/j.1365-2265.2010.03829.x] [PMID: 20550536]
[50]
Veilleux A, Laberge PY, Morency J, Noël S, Luu-The V, Tchernof A. Expression of genes related to glucocorticoid action in human subcutaneous and omental adipose tissue. J Steroid Biochem Mol Biol 2010; 122(1-3): 28-34.
[http://dx.doi.org/10.1016/j.jsbmb.2010.02.024] [PMID: 20206259]
[51]
Pivonello R, De Leo M, Vitale P, et al. Pathophysiology of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 2010; 92(Suppl. 1): 77-81.
[http://dx.doi.org/10.1159/000314319] [PMID: 20829623]
[52]
Barahona M-J, Sucunza N, Resmini E, et al. Persistent body fat mass and inflammatory marker increases after long-term cure of Cushing’s syndrome. J Clin Endocrinol Metab 2009; 94(9): 3365-71.
[http://dx.doi.org/10.1210/jc.2009-0766] [PMID: 19509101]
[53]
Munir A, Newell-Price J. Management of diabetes mellitus in Cushing’s syndrome. Neuroendocrinology 2010; 92(Suppl. 1): 82-5.
[http://dx.doi.org/10.1159/000314316] [PMID: 20829624]
[54]
Pivonello R, De Martino MC, De Leo M, Lombardi G, Colao A. Cushing’s Syndrome. Endocrinol Metab Clin North Am 2008; 37(1): 135-149, ix.
[http://dx.doi.org/10.1016/j.ecl.2007.10.010] [PMID: 18226734]
[55]
Attanasio AF, Mo D, Erfurth EM, et al. International Hypopituitary Control Complications Study Advisory Board. Prevalence of metabolic syndrome in adult hypopituitary growth hormone (GH)-deficient patients before and after GH replacement. J Clin Endocrinol Metab 2010; 95(1): 74-81.
[http://dx.doi.org/10.1210/jc.2009-1326] [PMID: 19897679]
[56]
De Leo M, Pivonello R, Auriemma RS, et al. Cardiovascular disease in Cushing’s syndrome: heart versus vasculature. Neuroendocrinology 2010; 92(Suppl. 1): 50-4.
[http://dx.doi.org/10.1159/000318566] [PMID: 20829618]
[57]
Arnaldi G, Scandali VM, Trementino L, Cardinaletti M, Appolloni G, Boscaro M. Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology 2010; 92(Suppl. 1): 86-90.
[http://dx.doi.org/10.1159/000314213] [PMID: 20829625]
[58]
Isidori AM, Graziadio C, Paragliola RM, et al. ABC Study Group. The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J Hypertens 2015; 33(1): 44-60.
[http://dx.doi.org/10.1097/HJH.0000000000000415] [PMID: 25415766]
[59]
Pecori Giraldi F, Toja PM, De Martin M, et al. Circadian blood pressure profile in patients with active Cushing’s disease and after long-term cure. Horm Metab Res 2007; 39(12): 908-14.
[http://dx.doi.org/10.1055/s-2007-992813]
[60]
Shibata H, Suzuki H, Maruyama T, Saruta T. Gene expression of angiotensin II receptor in blood cells of Cushing’s syndrome. Hypertens (Dallas, Tex 1979) 1995; 6(1): 1003.
[http://dx.doi.org/10.1161/01.HYP.26.6.1003]
[61]
Nieman LK. Hypertension and Cardiovascular Mortality in Patients with Cushing Syndrome. Endocrinol Metab Clin North Am 2019; 48(4): 717-25.
[http://dx.doi.org/10.1016/j.ecl.2019.08.005] [PMID: 31655772]
[62]
Lindholm J, Juul S, Jørgensen JO, et al. Incidence and late prognosis of cushing’s syndrome: a population-based study. J Clin Endocrinol Metab 2001; 86(1): 117-23.
[http://dx.doi.org/10.1210/jc.86.1.117] [PMID: 11231987]
[63]
Faggiano A, Pivonello R, Spiezia S, et al. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 2003; 88(6): 2527-33.
[http://dx.doi.org/10.1210/jc.2002-021558] [PMID: 12788849]
[64]
Fallo F, Famoso G, Capizzi D, et al. Coronary microvascular function in patients with Cushing’s syndrome. Endocrine 2013; 43(1): 206-13.
[http://dx.doi.org/10.1007/s12020-012-9764-2] [PMID: 22851333]
[65]
Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet 2006; 367(9522): 1605-17.
[http://dx.doi.org/10.1016/S0140-6736(06)68699-6] [PMID: 16698415]
[66]
Toja PM, Branzi G, Ciambellotti F, et al. Clinical relevance of cardiac structure and function abnormalities in patients with Cushing’s syndrome before and after cure. Clin Endocrinol (Oxf) 2012; 76(3): 332-8.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04206.x] [PMID: 21854405]
[67]
Pereira AM, Delgado V, Romijn JA, Smit JWA, Bax JJ, Feelders RA. Cardiac dysfunction is reversed upon successful treatment of Cushing’s syndrome. Eur J Endocrinol 2010; 162(2): 331-40.
[http://dx.doi.org/10.1530/EJE-09-0621] [PMID: 19933822]
[68]
Kamenický P, Redheuil A, Roux C, et al. Cardiac structure and function in Cushing’s syndrome: a cardiac magnetic resonance imaging study. J Clin Endocrinol Metab 2014; 99(11): E2144-53.
[http://dx.doi.org/10.1210/jc.2014-1783] [PMID: 25093618]
[69]
Arnaldi G, Angeli A, Atkinson AB, et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003; 88(12): 5593-602.
[http://dx.doi.org/10.1210/jc.2003-030871] [PMID: 14671138]
[70]
Van Zaane B, Nur E, Squizzato A, et al. Hypercoagulable state in Cushing’s syndrome: a systematic review. J Clin Endocrinol Metab 2009; 94(8): 2743-50.
[http://dx.doi.org/10.1210/jc.2009-0290] [PMID: 19454584]
[71]
Patrassi GM, Sartori MT, Viero ML, Scarano L, Boscaro M, Girolami A. The fibrinolytic potential in patients with Cushing’s disease: a clue to their hypercoagulable state. Blood Coagul fibrinolysis. Int J Haemost Thromb 1992; 3(6): 789-93.
[72]
Terzolo M, Allasino B, Bosio S, et al. Hyperhomocysteinemia in patients with Cushing’s syndrome. J Clin Endocrinol Metab 2004; 89(8): 3745-51.
[http://dx.doi.org/10.1210/jc.2004-0079] [PMID: 15292300]
[73]
Colao A, Pivonello R, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 1999; 84(8): 2664-72.
[PMID: 10443657]
[74]
van Haalen FM, Broersen LHA, Jorgensen JO, Pereira AM, Dekkers OM. Management of endocrine disease: Mortality remains increased in Cushing’s disease despite biochemical remission: a systematic review and meta-analysis. Eur J Endocrinol 2015; 172(4): R143-9.
[http://dx.doi.org/10.1530/EJE-14-0556] [PMID: 25722097]
[75]
Regal M, Páramo C, Sierra SM, Garcia-Mayor RV. Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol (Oxf) 2001; 55(6): 735-40.
[http://dx.doi.org/10.1046/j.1365-2265.2001.01406.x] [PMID: 11895214]
[76]
Higham CE, Johannsson G, Shalet SM. Hypopituitarism. Lancet 2016; 388(10058): 2403-15.
[http://dx.doi.org/10.1016/S0140-6736(16)30053-8] [PMID: 27041067]
[77]
O’Reilly MW, Reulen RC, Gupta S, et al. ACTH and gonadotropin deficiencies predict mortality in patients treated for nonfunctioning pituitary adenoma: long-term follow-up of 519 patients in two large European centres. Clin Endocrinol (Oxf) 2016; 85(5): 748-56.
[http://dx.doi.org/10.1111/cen.13141] [PMID: 27327840]
[78]
Bülow B, Hagmar L, Mikoczy Z, Nordström CH, Erfurth EM. Increased cerebrovascular mortality in patients with hypopituitarism. Clin Endocrinol (Oxf) 1997; 46(1): 75-81.
[http://dx.doi.org/10.1046/j.1365-2265.1997.d01-1749.x] [PMID: 9059561]
[79]
Lanes R. Cardiovascular Risk in Growth Hormone Deficiency: Beneficial Effects of Growth Hormone Replacement Therapy. Endocrinol Metab Clin North Am 2016; 45(2): 405-18.
[http://dx.doi.org/10.1016/j.ecl.2016.01.005] [PMID: 27241971]
[80]
Andreassen M, Faber J, Kjaer A, Petersen CL, Kristensen LØ. Cardiac function in growth hormone deficient patients before and after 1 year with replacement therapy: a magnetic resonance imaging study. Pituitary 2011; 14(1): 1-10.
[http://dx.doi.org/10.1007/s11102-010-0250-7] [PMID: 20730514]
[81]
Tanriverdi F, Eryol NK, Atmaca H, et al. The effects of 12 months of growth hormone replacement therapy on cardiac autonomic tone in adults with growth hormone deficiency. Clin Endocrinol (Oxf) 2005; 62(6): 706-12.
[http://dx.doi.org/10.1111/j.1365-2265.2005.02283.x] [PMID: 15943833]
[82]
Sanmartí A, Lucas A, Hawkins F, Webb SM, Ulied A. Collaborative ODA (Observational GH Deficiency in Adults) Group. Observational study in adult hypopituitary patients with untreated growth hormone deficiency (ODA study). Socio-economic impact and health status. Eur J Endocrinol 1999; 141(5): 481-9.
[http://dx.doi.org/10.1530/eje.0.1410481] [PMID: 10576764]
[83]
Colao A, Di Somma C, Cuocolo A, et al. The severity of growth hormone deficiency correlates with the severity of cardiac impairment in 100 adult patients with hypopituitarism: an observational, case-control study. J Clin Endocrinol Metab 2004; 89(12): 5998-6004.
[http://dx.doi.org/10.1210/jc.2004-1042] [PMID: 15579750]
[84]
Krzyzanowska K, Mittermayer F, Schnack C, Hofer M, Wolzt M, Schernthaner G. Circulating ADMA concentrations are elevated in hypopituitary adults with and without growth hormone deficiency. Eur J Clin Invest 2005; 35(3): 208-13.
[http://dx.doi.org/10.1111/j.1365-2362.2005.01474.x] [PMID: 15733076]
[85]
Colao A, Di Somma C, Spiezia S, et al. Growth hormone treatment on atherosclerosis: results of a 5-year open, prospective, controlled study in male patients with severe growth hormone deficiency. J Clin Endocrinol Metab 2008; 93(9): 3416-24.
[http://dx.doi.org/10.1210/jc.2007-2810] [PMID: 18593773]
[86]
Robinson JG, Wang S, Jacobson TA. Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhigh-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials. Am J Cardiol 2012; 110(10): 1468-76.
[http://dx.doi.org/10.1016/j.amjcard.2012.07.007] [PMID: 22906895]
[87]
Gazzaruso C, Coppola A, Montalcini T, et al. Lipoprotein(a) and homocysteine as genetic risk factors for vascular and neuropathic diabetic foot in type 2 diabetes mellitus. Endocrine 2012; 41(1): 89-95.
[http://dx.doi.org/10.1007/s12020-011-9544-4] [PMID: 21986921]
[88]
Ukropec J, Penesová A, Skopková M, et al. Adipokine protein expression pattern in growth hormone deficiency predisposes to the increased fat cell size and the whole body metabolic derangements. J Clin Endocrinol Metab 2008; 93(6): 2255-62.
[http://dx.doi.org/10.1210/jc.2007-2188] [PMID: 18334583]
[89]
Cakir I, Tanriverdi F, Karaca Z, et al. Evaluation of coagulation and fibrinolytic parameters in adult onset GH deficiency and the effects of GH replacement therapy: a placebo controlled study. Growth Horm IGF Res 2012; 22(1): 17-21.
[http://dx.doi.org/10.1016/j.ghir.2011.12.001] [PMID: 22226996]
[90]
Nikolopoulou A, Kadoglou NPE. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther 2012; 10(7): 933-9.
[http://dx.doi.org/10.1586/erc.12.74] [PMID: 22908926]
[91]
Abs R, Feldt-Rasmussen U, Mattsson AF, et al. Determinants of cardiovascular risk in 2589 hypopituitary GH-deficient adults - a KIMS database analysis. Eur J Endocrinol 2006; 155(1): 79-90.
[http://dx.doi.org/10.1530/eje.1.02179] [PMID: 16793953]
[92]
Pappachan JM, Raskauskiene D, Kutty VR, Clayton RN. Excess mortality associated with hypopituitarism in adults: a meta-analysis of observational studies. J Clin Endocrinol Metab 2015; 100(4): 1405-11.
[http://dx.doi.org/10.1210/jc.2014-3787] [PMID: 25658016]
[93]
Topaloglu AK, Kotan LD. Genetics of Hypogonadotropic Hypogonadism. Endocr Dev 2016; 29: 36-49.
[http://dx.doi.org/10.1159/000438841] [PMID: 26680571]
[94]
Raivio T, Miettinen PJ. Constitutional delay of puberty versus congenital hypogonadotropic hypogonadism: Genetics, management and updates. Best Pract Res Clin Endocrinol Metab 2019; 33(3): 101316.
[http://dx.doi.org/10.1016/j.beem.2019.101316] [PMID: 31522908]
[95]
Jasim S, Alahdab F, Ahmed AT, et al. Mortality in adults with hypopituitarism: a systematic review and meta-analysis. Endocrine 2017; 56(1): 33-42.
[http://dx.doi.org/10.1007/s12020-016-1159-3] [PMID: 27817141]
[96]
Tomlinson JW, Holden N, Hills RK, et al. West Midlands Prospective Hypopituitary Study Group. Association between premature mortality and hypopituitarism. Lancet 2001; 357(9254): 425-31.
[http://dx.doi.org/10.1016/S0140-6736(00)04006-X] [PMID: 11273062]
[97]
Levine GN, D’Amico AV, Berger P, et al. American Heart Association Council on Clinical Cardiology and Council on Epidemiology and Prevention, the American Cancer Society, and the American Urological Association. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation 2010; 121(6): 833-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192695] [PMID: 20124128]
[98]
Rocca WA, Grossardt BR, Miller VM, Shuster LT, Brown RDJ Jr. Premature menopause or early menopause and risk of ischemic stroke. Menopause 2012; 19(3): 272-7.
[http://dx.doi.org/10.1097/gme.0b013e31822a9937] [PMID: 21993082]
[99]
Rivera CM, Grossardt BR, Rhodes DJ, et al. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause 2009; 16(1): 15-23.
[http://dx.doi.org/10.1097/gme.0b013e31818888f7] [PMID: 19034050]
[100]
Yialamas MA, Dwyer AA, Hanley E, Lee H, Pitteloud N, Hayes FJ. Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 2007; 92(11): 4254-9.
[http://dx.doi.org/10.1210/jc.2007-0454] [PMID: 17726076]
[101]
Patel TP, Rawal K, Bagchi AK, et al. Insulin resistance: An additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 2016; 21(1): 11-23.
[http://dx.doi.org/10.1007/s10741-015-9515-6] [PMID: 26542377]
[102]
Srinath R, Hill Golden S, Carson KA, Dobs A. Endogenous testosterone and its relationship to preclinical and clinical measures of cardiovascular disease in the atherosclerosis risk in communities study. J Clin Endocrinol Metab 2015; 100(4): 1602-8.
[http://dx.doi.org/10.1210/jc.2014-3934] [PMID: 25584720]
[103]
Khazai B, Golden SH, Colangelo LA, et al. Association of endogenous testosterone with subclinical atherosclerosis in men: The multi-ethnic study of atherosclerosis. Clin Endocrinol (Oxf) 2016; 84(5): 700-7.
[http://dx.doi.org/10.1111/cen.12997] [PMID: 26663365]
[104]
Araujo AB, Dixon JM, Suarez EA, Murad MH, Guey LT, Wittert GA. Clinical review: Endogenous testosterone and mortality in men: A systematic review and meta-analysis. J Clin Endocrinol Metab 2011; 96(10): 3007-19.
[http://dx.doi.org/10.1210/jc.2011-1137] [PMID: 21816776]
[105]
Khaw K-T, Dowsett M, Folkerd E, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation 2007; 116(23): 2694-701.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.719005] [PMID: 18040028]
[106]
Chew K-K, Finn J, Stuckey B, et al. Erectile dysfunction as a predictor for subsequent atherosclerotic cardiovascular events: Findings from a linked-data study. J Sex Med 2010; 7(1 Pt 1): 192-202.
[http://dx.doi.org/10.1111/j.1743-6109.2009.01576.x] [PMID: 19912508]
[107]
Selvin E, Feinleib M, Zhang L, et al. Androgens and diabetes in men: Results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007; 30(2): 234-8.
[http://dx.doi.org/10.2337/dc06-1579] [PMID: 17259487]
[108]
Laaksonen DE, Niskanen L, Punnonen K, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 2004; 27(5): 1036-41.
[http://dx.doi.org/10.2337/diacare.27.5.1036] [PMID: 15111517]
[109]
Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 2006; 91(3): 843-50.
[http://dx.doi.org/10.1210/jc.2005-1326] [PMID: 16394089]
[110]
Sherlock M, Reulen RC, Alonso AA, et al. ACTH deficiency, higher doses of hydrocortisone replacement, and radiotherapy are independent predictors of mortality in patients with acromegaly. J Clin Endocrinol Metab 2009; 94(11): 4216-23.
[http://dx.doi.org/10.1210/jc.2009-1097] [PMID: 19808848]
[111]
Zueger T, Kirchner P, Herren C, et al. Glucocorticoid replacement and mortality in patients with nonfunctioning pituitary adenoma. J Clin Endocrinol Metab 2012; 97(10): E1938-42.
[http://dx.doi.org/10.1210/jc.2012-2432] [PMID: 22872686]
[112]
Ding C, Magkos F. Oxytocin and Vasopressin Systems in Obesity and Metabolic Health: Mechanisms and Perspectives. Curr Obes Rep 2019; 8(3): 301-16.
[http://dx.doi.org/10.1007/s13679-019-00355-z] [PMID: 31240613]
[113]
Zhu F-X, Wu H-L, Tu K-S, Chen J-X, Zhang M, Shi C. Serum levels of copeptin are associated with type 2 diabetes and diabetic complications in Chinese population. J Diabetes Complications 2016; 30(8): 1566-70.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.017] [PMID: 27497684]
[114]
Enhörning S, Leosdottir M, Wallström P, et al. Relation between human vasopressin 1a gene variance, fat intake, and diabetes. Am J Clin Nutr 2009; 89(1): 400-6.
[http://dx.doi.org/10.3945/ajcn.2008.26382] [PMID: 19056558]
[115]
Voors AA, von Haehling S, Anker SD, et al. OPTIMAAL Investigators. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from the OPTIMAAL study. Eur Heart J 2009; 30(10): 1187-94.
[http://dx.doi.org/10.1093/eurheartj/ehp098] [PMID: 19346228]
[116]
Nakamura T, Funayama H, Yoshimura A, et al. Possible vascular role of increased plasma arginine vasopressin in congestive heart failure. Int J Cardiol 2006; 106(2): 191-5.
[http://dx.doi.org/10.1016/j.ijcard.2005.01.043] [PMID: 16321691]
[117]
Fan Y-H, Zhao L-Y, Zheng Q-S, Dong H, Wang H-C, Yang X-D. Arginine vasopressin increases iNOS-NO system activity in cardiac fibroblasts through NF-kappaB activation and its relation with myocardial fibrosis. Life Sci 2007; 81(4): 327-35.
[http://dx.doi.org/10.1016/j.lfs.2007.05.018] [PMID: 17604059]
[118]
Yalta K, Sıvrı N, Yalta T, Geyik B, Aksoy Y, Yetkın E. Copeptin (C-terminal provasopressin): a promising marker of arrhythmogenesis in arrhythmia prone subjects? Inter J Cardiol 2011; 148: 105.
[119]
Yalta K, Yalta T, Sivri N, Yetkin E. Copeptin and cardiovascular disease: A review of a novel neurohormone. Int J Cardiol 2013; 167(5): 1750-9.
[http://dx.doi.org/10.1016/j.ijcard.2012.12.039] [PMID: 23298558]
[120]
Pivonello R, Faggiano A, Arrichiello P, et al. Central diabetes insipidus and heart: Effect of acute arginine vasopressin deficiency and replacement treatment with desmopressin on cardiac performance. Clin Endocrinol (Oxf) 2001; 54(1): 97-106.
[http://dx.doi.org/10.1046/j.1365-2265.2001.01207.x] [PMID: 11167932]
[121]
Jankowski M, Hajjar F, Kawas SA, et al. Rat heart: A site of oxytocin production and action. Proc Natl Acad Sci USA 1998; 95(24): 14558-63.
[http://dx.doi.org/10.1073/pnas.95.24.14558] [PMID: 9826739]
[122]
Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol 2013; 11(2): 218-30.
[http://dx.doi.org/10.2174/1570159X11311020008] [PMID: 23997756]
[123]
Yi KJ, So KH, Hata Y, et al. The regulation of oxytocin receptor gene expression during adipogenesis. J Neuroendocrinol 2015; 27(5): 335-42.
[http://dx.doi.org/10.1111/jne.12268] [PMID: 25702774]
[124]
Gutkowska J, Jankowski M, Lambert C, Mukaddam-Daher S, Zingg HH, McCann SM. Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc Natl Acad Sci USA 1997; 94(21): 11704-9.
[http://dx.doi.org/10.1073/pnas.94.21.11704] [PMID: 9326674]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy