Mini-Review Article

Inhibition of Virulence Factors and Biofilm Formation of Acinetobacter Baumannii by Naturally-derived and Synthetic Drugs

Author(s): Nilushi Indika Bamunuarachchi, Fazlurrahman Khan and Young-Mog Kim*

Volume 22, Issue 7, 2021

Published on: 23 October, 2020

Page: [734 - 759] Pages: 26

DOI: 10.2174/1389450121666201023122355

Price: $65

conference banner
Abstract

Acinetobacter baumannii is a gram-negative, aerobic, non-motile, and pleomorphic bacillus. A. baumannii is also a highly-infectious pathogen causing high mortality and morbidity rates in intensive care units. The discovery of novel agents against A. baumannii infections is urgently needed due to the emergence of drug-resistant A. baumannii strains and the limited number of efficacious antibiotics available for treatment. In addition to the production of several virulence factors, A. baumannii forms biofilms on the host cell surface as well. Formation of biofilms occurs through initial surface attachment, microcolony formation, biofilm maturation, and detachment stages, and is one of the major drug resistance mechanisms employed by A. baumannii. Several studies have previously reported the efficacy of naturally-derived and synthetic compounds as anti- biofilm and anti-virulence agents against A. baumannii. Here, inhibition of biofilm formation and virulence factors of A. baumannii using naturally-derived and synthetic compounds are reviewed.

Keywords: Acinetobacter baumannii, anti-biofilm, antivirulence, compounds, multiple drug-resistant, synthetic.

Graphical Abstract
[1]
Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 2012; 3(3): 243-50.
[http://dx.doi.org/10.4161/viru.19700] [PMID: 22546906]
[2]
Montefour K, Frieden J, Hurst S, et al. Acinetobacter baumannii: an emerging multidrug-resistant pathogen in critical care. Crit Care Nurse 2008; 28(1): 15-25.
[http://dx.doi.org/10.4037/ccn2008.28.1.15] [PMID: 18238934]
[3]
Murray CK, Hospenthal DR. Treatment of multidrug resistant Acinetobacter. Curr Opin Infect Dis 2005; 18(6): 502-6.
[http://dx.doi.org/10.1097/01.qco.0000185985.64759.41] [PMID: 16258323]
[4]
Joly-Guillou M-L. Clinical impact and pathogenicity of Acinetobacter. Clin Microbiol Infect 2005; 11(11): 868-73.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01227.x] [PMID: 16216100]
[5]
Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21(3): 538-82.
[http://dx.doi.org/10.1128/CMR.00058-07] [PMID: 18625687]
[6]
Lin MF, Lin YY, Yeh HW, Lan CY. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 2014; 14: 119.
[http://dx.doi.org/10.1186/1471-2180-14-119] [PMID: 24885279]
[7]
Cai B, Echols R, Magee G, et al. Prevalence of Carbapenem-resistant gram-negative infections in the united states predominated by acinetobacter baumannii and pseudomonas aeruginosa. Open Forum Infect Dis 2017; 4(3): ofx176.
[http://dx.doi.org/10.1093/ofid/ofx176] [PMID: 29026867]
[8]
Rafei R, Kempf M, Eveillard M, Dabboussi F, Hamze M, Joly-Guillou M-L. Current molecular methods in epidemiological typing of Acinetobacter baumannii. Future Microbiol 2014; 9(10): 1179-94.
[http://dx.doi.org/10.2217/fmb.14.63] [PMID: 25405887]
[9]
Antunes LC, Imperi F, Carattoli A, Visca P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One 2011; 6(8): e22674.
[http://dx.doi.org/10.1371/journal.pone.0022674] [PMID: 21829642]
[10]
Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018; 16(2): 91-102.
[http://dx.doi.org/10.1038/nrmicro.2017.148] [PMID: 29249812]
[11]
Gaddy JA, Actis LA. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 2009; 4(3): 273-8.
[http://dx.doi.org/10.2217/fmb.09.5] [PMID: 19327114]
[12]
Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 2018; 11: 2277-99.
[http://dx.doi.org/10.2147/IDR.S169894] [PMID: 30532562]
[13]
Choi CH, Hyun SH, Kim J, et al. Nuclear translocation and DNAse I-like enzymatic activity of Acinetobacter baumannii outer membrane protein A. FEMS Microbiol Lett 2008; 288(1): 62-7.
[http://dx.doi.org/10.1111/j.1574-6968.2008.01323.x] [PMID: 18783439]
[14]
Kim SA, Yoo SM, Hyun SH, et al. Global gene expression patterns and induction of innate immune response in human laryngeal epithelial cells in response to Acinetobacter baumannii outer membrane protein A. FEMS Immunol Med Microbiol 2008; 54(1): 45-52.
[http://dx.doi.org/10.1111/j.1574-695X.2008.00446.x] [PMID: 18625015]
[15]
Lee H-W, Koh YM, Kim J, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect 2008; 14(1): 49-54.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01842.x] [PMID: 18005176]
[16]
Flemming H-C, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol 2007; 189(22): 7945-7.
[http://dx.doi.org/10.1128/JB.00858-07] [PMID: 17675377]
[17]
Farrow JM III, Wells G, Pesci EC. Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS One 2018; 13(10): e0205638-.
[http://dx.doi.org/10.1371/journal.pone.0205638] [PMID: 30308034]
[18]
Gayoso CM, Mateos J, Méndez JA, et al. Molecular mechanisms involved in the response to desiccation stress and persistence in Acinetobacter baumannii. J Proteome Res 2014; 13(2): 460-76.
[http://dx.doi.org/10.1021/pr400603f] [PMID: 24299215]
[19]
Rittershaus ESC, Baek S-H, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 2013; 13(6): 643-51.
[http://dx.doi.org/10.1016/j.chom.2013.05.012] [PMID: 23768489]
[20]
Crouzet M, Le Senechal C, Brözel VS, et al. Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol 2014; 14: 253-3.
[http://dx.doi.org/10.1186/s12866-014-0253-z] [PMID: 25266973]
[21]
Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55: 165-99.
[http://dx.doi.org/10.1146/annurev.micro.55.1.165] [PMID: 11544353]
[22]
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015; 7(4): 493-512.
[http://dx.doi.org/10.4155/fmc.15.6] [PMID: 25875875]
[23]
Yang J, Toyofuku M, Sakai R, Nomura N. Influence of the alginate production on cell-to-cell communication in Pseudomonas aeruginosa PAO1. Environ Microbiol Rep 2017; 9(3): 239-49.
[http://dx.doi.org/10.1111/1758-2229.12521] [PMID: 28120378]
[24]
Lu L, Hu W, Tian Z, et al. Developing natural products as potential anti-biofilm agents. Chin Med 2019; 14(1): 11.
[http://dx.doi.org/10.1186/s13020-019-0232-2] [PMID: 30936939]
[25]
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9(1): 522-54.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[26]
Ofek I, Hasty DL, Sharon N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 2003; 38(3): 181-91.
[http://dx.doi.org/10.1016/S0928-8244(03)00228-1] [PMID: 14522453]
[27]
Lachowicz JI, Dalla Torre G, Cappai R, et al. Metal self-assembly mimosine peptides with enhanced antimicrobial activity: towards a new generation of multitasking chelating agents. Dalton Trans 2020; 49(9): 2862-79.
[http://dx.doi.org/10.1039/C9DT04545G] [PMID: 32067003]
[28]
Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[29]
Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 2009; 77(8): 3150-60.
[http://dx.doi.org/10.1128/IAI.00096-09] [PMID: 19470746]
[30]
Saipriya K, Swathi CH, Ratnakar KS, Sritharan V. Quorum-sensing system in Acinetobacter baumannii: a potential target for new drug development. J Appl Microbiol 2020; 128(1): 15-27.
[http://dx.doi.org/10.1111/jam.14330] [PMID: 31102552]
[31]
Goh HM, Beatson SA, Totsika M, et al. Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl Environ Microbiol 2013; 79(21): 6535-43.
[http://dx.doi.org/10.1128/AEM.01402-13] [PMID: 23956398]
[32]
Yang C-H, Su P-W, Moi S-H, Chuang L-Y. Biofilm Formation in Acinetobacter baumannii: Genotype-Phenotype Correlation. Molecules 2019; 24(10): 1849.
[http://dx.doi.org/10.3390/molecules24101849] [PMID: 31091746]
[33]
Fattahian Y, Rasooli I, Mousavi Gargari SL, Rahbar MR, Darvish Alipour Astaneh S, Amani J. Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap). Microb Pathog 2011; 51(6): 402-6.
[http://dx.doi.org/10.1016/j.micpath.2011.09.004] [PMID: 21946278]
[34]
Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 2008; 190(3): 1036-44.
[http://dx.doi.org/10.1128/JB.01416-07] [PMID: 18024522]
[35]
Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004; 64(2): 159-204.
[http://dx.doi.org/10.2165/00003495-200464020-00004] [PMID: 14717618]
[36]
He X, Lu F, Yuan F, et al. Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrob Agents Chemother 2015; 59(8): 4817-25.
[http://dx.doi.org/10.1128/AAC.00877-15] [PMID: 26033730]
[37]
Xiang J, Sun Z, Yang X, Huan J. Changes in expression of gene aba I in biofilm of Acinetobacter baumannii strains isolated from burn patients. Chinese journal of burns 2012; 28(2): 101-5.
[38]
Choi CH, Lee JS, Lee YC, Park TI, Lee JC. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 2008; 8(1): 216.
[http://dx.doi.org/10.1186/1471-2180-8-216] [PMID: 19068136]
[39]
Jin JS, Kwon SO, Moon DC, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PLoS One 2011; 6(2): e17027.
[http://dx.doi.org/10.1371/journal.pone.0017027] [PMID: 21386968]
[40]
Moon DC, Choi CH, Lee JH, et al. Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles. J Microbiol 2012; 50(1): 155-60.
[http://dx.doi.org/10.1007/s12275-012-1589-4] [PMID: 22367951]
[41]
Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature 2017; 551(7680): 313-20.
[http://dx.doi.org/10.1038/nature24624] [PMID: 29144467]
[42]
Kalia VC. Quorum sensing vs quorum quenching: a battle with no end in sight. Springer 2015.
[43]
Anbazhagan D, Mansor M, Yan GOS, Md Yusof MY, Hassan H, Sekaran SD. Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLoS One 2012; 7(7): e36696.
[http://dx.doi.org/10.1371/journal.pone.0036696] [PMID: 22815678]
[44]
Luo LM, Wu LJ, Xiao YL, et al. Enhancing pili assembly and biofilm formation in Acinetobacter baumannii ATCC19606 using non-native acyl-homoserine lactones. BMC Microbiol 2015; 15(1): 62.
[http://dx.doi.org/10.1186/s12866-015-0397-5] [PMID: 25888221]
[45]
Rao RS, Karthika RU, Singh SP, et al. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J Med Microbiol 2008; 26(4): 333-7.
[http://dx.doi.org/10.4103/0255-0857.43566] [PMID: 18974485]
[46]
Bhargava N, Sharma P, Capalash N. Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 2010; 36(4): 349-60.
[http://dx.doi.org/10.3109/1040841X.2010.512269] [PMID: 20846031]
[47]
Niu C, Clemmer KM, Bonomo RA, Rather PN. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. J Bacteriol 2008; 190(9): 3386-92.
[http://dx.doi.org/10.1128/JB.01929-07] [PMID: 18281398]
[48]
Stacy DM, Welsh MA, Rather PN, Blackwell HE. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-Acyl homoserine lactones. ACS Chem Biol 2012; 7(10): 1719-28.
[http://dx.doi.org/10.1021/cb300351x] [PMID: 22853441]
[49]
Nag M, Paul R, Dutta D, Chakraborty D. Antimicrobial agents from natural sources: An overview. Adv Pharm J 2019; 4
[50]
Yang SK, Low L-Y, Yap P, et al. Plant-derived antimicrobials: insights into mitigation of antimicrobial resistance. Rec Nat Prod 2018; 12: 295-396.
[http://dx.doi.org/10.25135/rnp.41.17.09.058]
[51]
Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[52]
Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4): 564-82.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[53]
Bhargava N, Singh SP, Sharma A, Sharma P, Capalash N. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol 2015; 10(12): 1953-68.
[http://dx.doi.org/10.2217/fmb.15.107] [PMID: 26582430]
[54]
Mohamed S, Salem D, Azmy M, Fam N. Antibacterial and antibiofilm activity of cinnamaldehyde against carbapenem-resistant Acinetobacter baumannii in Egypt: In vitro study. J Appl Pharm Sci 2018; 8: 151-6.
[http://dx.doi.org/10.7324/JAPS.2018.81121]
[55]
Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 2006; 43(5): 489-94.
[http://dx.doi.org/10.1111/j.1472-765X.2006.02001.x] [PMID: 17032221]
[56]
Bai AJ, Vittal RR. Quorum sensing inhibitory and anti-biofilm activity of essential oils and their in vivo efficacy in food systems. Food Biotechnol 2014; 28(3): 269-92.
[http://dx.doi.org/10.1080/08905436.2014.932287]
[57]
Tutar U, Çelik C, Karaman İ, Ataş M, Hepokur C. Anti-biofilm and antimicrobial activity of Mentha pulegium L essential oil against multidrug-resistant Acinetobacter baumannii. Trop J Pharm Res 2016; 15(5): 1039-46.
[http://dx.doi.org/10.4314/tjpr.v15i5.20]
[58]
Karunanidhi A, Ghaznavi-Rad E, Hamat RA, et al. Antibacterial and antibiofilm activities of nonpolar extracts of allium stipitatum regel. against multidrug resistant bacteria. BioMed Res Int 2018; 2018: 9845075.
[http://dx.doi.org/10.1155/2018/9845075] [PMID: 30105271]
[59]
Sivaranjani M, Srinivasan R, Aravindraja C, Karutha Pandian S, Veera Ravi A. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms - an in vitro study. Biofouling 2018; 34(5): 579-93.
[http://dx.doi.org/10.1080/08927014.2018.1473387] [PMID: 29869541]
[60]
Raorane CJ, Lee J-H, Kim Y-G, Rajasekharan SK, García-Contreras R, Lee J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front Microbiol 2019; 10: 990-0.
[http://dx.doi.org/10.3389/fmicb.2019.00990] [PMID: 31134028]
[61]
Khadke SK, Lee J-H, Woo J-T, Lee J. Inhibitory effects of honokiol and magnolol on biofilm formation by Acinetobacter baumannii. Biotechnol Bioproc E 2019; 24(2): 359-65.
[http://dx.doi.org/10.1007/s12257-019-0006-9]
[62]
Pradhan AK, Pradhan N, Mall G, et al. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm. Appl Biochem Biotechnol 2013; 171(6): 1362-75.
[http://dx.doi.org/10.1007/s12010-013-0428-3] [PMID: 23955294]
[63]
Xie TT, Zeng H, Ren XP, et al. Antibiofilm activity of three actinomycete strains against Staphylococcus epidermidis. Lett Appl Microbiol 2019; 68(1): 73-80.
[http://dx.doi.org/10.1111/lam.13087] [PMID: 30338533]
[64]
Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 2007; 25(1): 99-121.
[http://dx.doi.org/10.1016/j.biotechadv.2006.10.004] [PMID: 17156965]
[65]
Cameotra SS, Makkar RS, Kaur J, Mehta S. Synthesis of biosurfactants and their advantages to microorganisms and mankind.Biosurfactants. Springer 2010; pp. 261-80.
[http://dx.doi.org/10.1007/978-1-4419-5979-9_20]
[66]
Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol 2014; 14: 197-7.
[http://dx.doi.org/10.1186/1471-2180-14-197] [PMID: 25124936]
[67]
Stowe SD, Richards JJ, Tucker AT, Thompson R, Melander C, Cavanagh J. Anti-biofilm compounds derived from marine sponges. Mar Drugs 2011; 9(10): 2010-35.
[http://dx.doi.org/10.3390/md9102010] [PMID: 22073007]
[68]
Dhahri M, Sioud S, Dridi R, et al. Extraction, characterization, and anticoagulant activity of a sulfated polysaccharide from bursatella leachii viscera. ACS Omega 2020; 5(24): 14786-95.
[http://dx.doi.org/10.1021/acsomega.0c01724] [PMID: 32596616]
[69]
Arachchige NIB, Khan F, Kim YM. Antimicrobial properties of actively purified secondary metabolites isolated from different marine organisms. Curr Pharm Biotechnol 2020.
[http://dx.doi.org/10.2174/1389201021666200730144536] [PMID: 32744964]
[70]
Peters L, König GM, Wright AD, et al. Secondary metabolites of Flustra foliacea and their influence on bacteria. Appl Environ Microbiol 2003; 69(6): 3469-75.
[http://dx.doi.org/10.1128/AEM.69.6.3469-3475.2003] [PMID: 12788752]
[71]
Tseng S-P, Hung W-C, Huang C-Y, et al. 5-5-Episinuleptolide decreases the expression of the extracellular matrix in early biofilm formation of multi-drug resistant Acinetobacter baumannii. Mar Drugs,[Online] 2016.
[72]
Wei W, Yang H, Hu L, Ye Y, Li J. Activity of levofloxacin in combination with colistin against Acinetobacter baumannii: In vitro and in a Galleria mellonella model. J Microbiol Immunol Infect 2017; 50(6): 821-30.
[http://dx.doi.org/10.1016/j.jmii.2015.10.010] [PMID: 26725481]
[73]
Yang YS, Lee Y, Tseng KC, et al. In Vivo and in vitro efficacy of minocycline-based combination therapy for minocycline-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60(7): 4047-54.
[http://dx.doi.org/10.1128/AAC.02994-15] [PMID: 27114274]
[74]
Mueller EA, Schlievert PM. Non-aqueous glycerol monolaurate gel exhibits antibacterial and anti-biofilm activity against Gram-positive and Gram-negative pathogens. PLoS One 2015; 10(3): e0120280.
[http://dx.doi.org/10.1371/journal.pone.0120280] [PMID: 25799455]
[75]
Fu Y-Y, Zhang L, Yang Y, et al. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Acinetobacter baumannii. Int J Nanomedicine 2019; 14: 1805-15.
[http://dx.doi.org/10.2147/IJN.S186571] [PMID: 30880981]
[76]
Lopez-Carrizales M, Mendoza-Mendoza E, Peralta-Rodriguez RD, et al. Characterization, antibiofilm and biocompatibility properties of chitosan hydrogels loaded with silver nanoparticles and ampicillin: an alternative protection to central venous catheters. Colloids Surf B Biointerfaces 2020; 196: 111292.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111292] [PMID: 32777661]
[77]
Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol 2014; 68(5): 635-41.
[http://dx.doi.org/10.1007/s00284-014-0519-6] [PMID: 24445333]
[78]
Irani N, Basardeh E, Samiee F, et al. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog 2018; 121: 310-7.
[http://dx.doi.org/10.1016/j.micpath.2018.05.051] [PMID: 29859290]
[79]
Richards J J, Huigens Iii R W, Ballard T E, Basso A, Cavanagh J, Melander C. Inhibition and dispersion of proteobacterial biofilms. Chem Comm 2008; (14): 1698-700.
[http://dx.doi.org/10.1039/b719802g]
[80]
Huigens RW III, Ma L, Gambino C, et al. Control of bacterial biofilms with marine alkaloid derivatives. Mol Biosyst 2008; 4(6): 614-21.
[http://dx.doi.org/10.1039/b719989a] [PMID: 18493660]
[81]
Richards JJ, Reed CS, Melander C. Effects of N-pyrrole substitution on the anti-biofilm activities of oroidin derivatives against Acinetobacter baumannii. Bioorg Med Chem Lett 2008; 18(15): 4325-7.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.089] [PMID: 18625555]
[82]
Kim MK, Kang N, Ko SJ, et al. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. Int J Mol Sci 2018; 19(10): 3041.
[http://dx.doi.org/10.3390/ijms19103041] [PMID: 30301180]
[83]
Mortari RC, Schwartz MR, Kipnis EF, Junqueira-Kipnis AP. Antimicrobial and antibiofilm effects of peptides from venom of social wasp and scorpion on multidrug-resistant Acinetobacter baumannii. Toxins (Basel) 2019; 11(4)
[84]
Schillaci D, Spanò V, Parrino B, et al. Pharmaceutical approaches to target antibiotic resistance mechanisms. J Med Chem 2017; 60(20): 8268-97.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00215] [PMID: 28594170]
[85]
Parrino B, Schillaci D, Carnevale I, et al. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2019; 161: 154-78.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.036] [PMID: 30347328]
[86]
Chen L, Li H, Wen H, et al. Biofilm formation in Acinetobacter baumannii was inhibited by PAβN while it had no association with antibiotic resistance. Microbiology, Open n/a (n/a) e1063..
[http://dx.doi.org/10.1002/mbo3.1063]
[87]
Feng J, Liu B, Xu J, et al. In vitro effects of N-acetylcysteine alone and combined with tigecycline on planktonic cells and biofilms of Acinetobacter baumannii. J Thorac Dis 2018; 10(1): 212-8.
[http://dx.doi.org/10.21037/jtd.2017.11.130] [PMID: 29600051]
[88]
Ramanathan S, Arunachalam K, Chandran S, Selvaraj R, Shunmugiah KP, Arumugam VR. Biofilm inhibitory efficiency of phytol in combination with cefotaxime against nosocomial pathogen Acinetobacter baumannii. J Appl Microbiol 2018; 125(1): 56-71.
[http://dx.doi.org/10.1111/jam.13741] [PMID: 29473983]
[89]
de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E, Franco OL, Hancock REW. Synthetic antibiofilm peptides. Biochim Biophys Acta 2016; 1858(5): 1061-9.
[http://dx.doi.org/10.1016/j.bbamem.2015.12.015] [PMID: 26724202]
[90]
Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2011; 11(1): 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[91]
Saugar JM, Alarcón T, López-Hernández S, López-Brea M, Andreu D, Rivas L. Activities of polymyxin B and cecropin A-,melittin peptide CA(1-8)M(1-18) against a multiresistant strain of Acinetobacter baumannii. Antimicrob Agents Chemother 2002; 46(3): 875-8.
[http://dx.doi.org/10.1128/AAC.46.3.875-878.2002] [PMID: 11850277]
[92]
Huigens RW III, Rogers SA, Steinhauer AT, Melander C. Inhibition of Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa biofilm formation with a class of TAGE-triazole conjugates. Org Biomol Chem 2009; 7(4): 794-802.
[http://dx.doi.org/10.1039/b817926c] [PMID: 19194596]
[93]
Gopal R, Kim YG, Lee JH, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 2014; 58(3): 1622-9.
[http://dx.doi.org/10.1128/AAC.02473-13] [PMID: 24366740]
[94]
Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 2017; 7(1): 6953.
[http://dx.doi.org/10.1038/s41598-017-07440-0] [PMID: 28761101]
[95]
Rogers SA, Lindsey EA, Whitehead DC, Mullikin T, Melander C. Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents. Bioorg Med Chem Lett 2011; 21(4): 1257-60.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.057] [PMID: 21251823]
[96]
Wang Y, Bao W, Guo N, et al. Antimicrobial activity of the imipenem/rifampicin combination against clinical isolates of Acinetobacter baumannii grown in planktonic and biofilm cultures. World J Microbiol Biotechnol 2014; 30(12): 3015-25.
[http://dx.doi.org/10.1007/s11274-014-1728-7] [PMID: 25298216]
[97]
Stewart PS. Prospects for Anti-Biofilm Pharmaceuticals. Pharmaceuticals (Basel) 2015; 8(3): 504-11.
[http://dx.doi.org/10.3390/ph8030504] [PMID: 26343685]
[98]
Cruz-Muñiz MY, López-Jacome LE, Hernández-Durán M, et al. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections. Int J Antimicrob Agents 2017; 49(1): 88-92.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.08.022] [PMID: 27939675]
[99]
Peng L, DeSousa J, Su Z, et al. Inhibition of Acinetobacter baumannii biofilm formation on a methacrylate polymer containing a 2-aminoimidazole subunit. Chem Commun (Camb) 2011; 47(17): 4896-8.
[http://dx.doi.org/10.1039/c1cc10691k] [PMID: 21442111]
[100]
Nait Chabane Y, Mlouka MB, Alexandre S, et al. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 2014; 14(1): 62.
[http://dx.doi.org/10.1186/1471-2180-14-62] [PMID: 24621315]
[101]
Baptista PV, McCusker MP, Carvalho A, et al. Nano-strategies to fight multidrug resistant bacteria-“a battle of the titans”. Front Microbiol 2018; 9: 1441-1.
[http://dx.doi.org/10.3389/fmicb.2018.01441] [PMID: 30013539]
[102]
Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 2013; 29(6): 651-60.
[http://dx.doi.org/10.1080/08927014.2013.794225] [PMID: 23731460]
[103]
Ramalingam K, Lee V A. Antibiofilm activity of an EDTA-containing nanoemulsion on multidrug-resistant Acinetobacter baumannii. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 737-43.
[104]
Veiga AS, Schneider JP. Antimicrobial hydrogels for the treatment of infection. Biopolymers 2013; 100(6): 637-44.
[http://dx.doi.org/10.1002/bip.22412] [PMID: 24122459]
[105]
Khan A, Xu M, Wang T, et al. Catechol cross-linked antimicrobial peptide hydrogels prevent multidrug-resistant Acinetobacter baumannii infection in burn wounds. Biosci Rep 2019; 39(6): BSR20190504.
[http://dx.doi.org/10.1042/BSR20190504] [PMID: 31138760]
[106]
Yeo CK, Vikhe YS, Li P, et al. Hydrogel effects rapid biofilm debridement with ex situ contact-kill to eliminate multidrug resistant bacteria in vivo. ACS Appl Mater Interfaces 2018; 10(24): 20356-67.
[http://dx.doi.org/10.1021/acsami.8b06262] [PMID: 29806938]
[107]
Wu J, Xu H, Tang W, Kopelman R, Philbert MA, Xi C. Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms. Antimicrob Agents Chemother 2009; 53(7): 3042-8.
[http://dx.doi.org/10.1128/AAC.01604-08] [PMID: 19414585]
[108]
Worthington RJ, Richards JJ, Melander C. Small molecule control of bacterial biofilms. Org Biomol Chem 2012; 10(37): 7457-74.
[http://dx.doi.org/10.1039/c2ob25835h] [PMID: 22733439]
[109]
Park SR, Tripathi A, Wu J, et al. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat Commun 2016; 7(1): 10710.
[http://dx.doi.org/10.1038/ncomms10710] [PMID: 26880271]
[110]
Sarkisian SA, Janssen MJ, Matta H, Henry GE, Laplante KL, Rowley DC. Inhibition of bacterial growth and biofilm production by constituents from Hypericum spp. Phytother Res 2012; 26(7): 1012-6.
[http://dx.doi.org/10.1002/ptr.3675] [PMID: 22170780]
[111]
Lee J-H, Kim Y-G, Khadke SK, Yamano A, Watanabe A, Lee J. Inhibition of Biofilm Formation by Candida albicans and Polymicrobial Microorganisms by Nepodin via Hyphal-Growth Suppression. ACS Infect Dis 2019; 5(7): 1177-87.
[http://dx.doi.org/10.1021/acsinfecdis.9b00033] [PMID: 31055910]
[112]
Tiwari V, Tiwari D, Patel V, Tiwari M. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii. Microb Pathog 2017; 110: 345-51.
[http://dx.doi.org/10.1016/j.micpath.2017.07.013] [PMID: 28705748]
[113]
Shin DS, Eom YB. Antimicrobial and antibiofilm activities of Clostridium butyricum supernatant against Acinetobacter baumannii. Arch Microbiol 2020; 202(5): 1059-68.
[http://dx.doi.org/10.1007/s00203-020-01823-0] [PMID: 32020245]
[114]
Das T, Paino D, Manoharan A, et al. Conditions Under Which Glutathione Disrupts the Biofilms and Improves Antibiotic Efficacy of Both ESKAPE and Non-ESKAPE Species. Front Microbiol 2000; 2019: 10.
[PMID: 31543871]
[115]
Lee J-H, Kim Y-G, Khadke SK, Yamano A, Woo J-T, Lee J. Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Phytomedicine 2019; 63: 153033.
[http://dx.doi.org/10.1016/j.phymed.2019.153033] [PMID: 31352284]
[116]
Peng J, Wu Z, Liu W, et al. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family in Musca domestica. Parasit Vectors 2019; 12(1): 537.
[http://dx.doi.org/10.1186/s13071-019-3793-0] [PMID: 31727142]
[117]
Mohammadi M, Taheri B, Momenzadeh N, et al. Identification and characterization of novel antimicrobial peptide from hippocampus comes by in silico and experimental studies. Mar Biotechnol (NY) 2018; 20(6): 718-28.
[http://dx.doi.org/10.1007/s10126-018-9843-3] [PMID: 30039186]
[118]
Thawal ND, Yele AB, Sahu PK, Chopade BA. Effect of a novel podophage AB7-IBB2 on Acinetobacter baumannii biofilm. Curr Microbiol 2012; 65(1): 66-72.
[http://dx.doi.org/10.1007/s00284-012-0127-2] [PMID: 22535475]
[119]
Hassanshahian. M. In Antimicrobial Properties of Hyssopus Officinalis Extract Against Antibiotic-Resistant Bacteria in Planktonic and Biofilm Form 2018.
[120]
Alejandro H-M, Muñoz-Ortega M, Guevara-Lara F, Antonio G-L, Sanchez E. Inhibition of Acinetobacter baumannii Biofilm Formation by Methanolic Extract of Nothoscordum bivalve. Adv Microbiol 2018; 08: 422-38.
[http://dx.doi.org/10.4236/aim.2018.85028]
[121]
Alves S, Duarte A, Sousa S, Domingues FC. Study of the major essential oil compounds of Coriandrum sativum against Acinetobacter baumannii and the effect of linalool on adhesion, biofilms and quorum sensing. Biofouling 2016; 32(2): 155-65.
[http://dx.doi.org/10.1080/08927014.2015.1133810] [PMID: 26901586]
[122]
Gala VC, John NR, Bhagwat AM, Datar AG, Kharkar PS, Desai KB. Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract & identification of its active constituents. Indian J Med Res 2016; 144(1): 92-103.
[http://dx.doi.org/10.4103/0971-5916.193295] [PMID: 27834332]
[123]
de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW. Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 2014; 10(5): e1004152.
[http://dx.doi.org/10.1371/journal.ppat.1004152] [PMID: 24852171]
[124]
de Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 2018; 10(423): eaan4044.
[http://dx.doi.org/10.1126/scitranslmed.aan4044] [PMID: 29321257]
[125]
Liu W, Wu Z, Mao C, et al. Antimicrobial Peptide Cec4 Eradicates the Bacteria of Clinical Carbapenem-Resistant Acinetobacter baumannii Biofilm. Front Microbiol 2020; 11(1532): 1532.
[http://dx.doi.org/10.3389/fmicb.2020.01532] [PMID: 32849322]
[126]
Jaśkiewicz M, Neubauer D, Kazor K, Bartoszewska S, Kamysz W. Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of Acinetobacter baumannii. Probiotics Antimicrob Proteins 2019; 11(1): 317-24.
[http://dx.doi.org/10.1007/s12602-018-9444-5] [PMID: 30043322]
[127]
Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathog Dis 2018; 76(2)
[http://dx.doi.org/10.1093/femspd/fty007] [PMID: 29370365]
[128]
Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 2013; 49: 131-7.
[http://dx.doi.org/10.1016/j.peptides.2013.09.007] [PMID: 24071034]
[129]
Dolzani L, Milan A, Scocchi M, Lagatolla C, Bressan R, Benincasa M. Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii. J Med Microbiol 2019; 68(8): 1253-65.
[http://dx.doi.org/10.1099/jmm.0.001028] [PMID: 31215857]
[130]
Taheri B, Mohammadi M, Nabipour I, Momenzadeh N, Roozbehani M. Identification of novel antimicrobial peptide from Asian sea bass (Lates calcarifer) by in silico and activity characterization. PLoS One 2018; 13(10): e0206578.
[http://dx.doi.org/10.1371/journal.pone.0206578] [PMID: 30365554]
[131]
Bardbari AM, Arabestani MR, Karami M, et al. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2018; 37(3): 443-54.
[http://dx.doi.org/10.1007/s10096-018-3189-7] [PMID: 29353377]
[132]
Mwangi J, Yin Y, Wang G, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci USA 2019; 116(52): 26516-22.
[http://dx.doi.org/10.1073/pnas.1909585117] [PMID: 31843919]
[133]
Pereira SG, Domingues VS, Theriága J, Chasqueira MJ, Paixão P. Non-antimicrobial drugs: etodolac as a possible antimicrobial or adjuvant agent against ESKAPE Pathogens. Open Microbiol J 2018; 12: 288-96.
[http://dx.doi.org/10.2174/1874285801812010288] [PMID: 30288184]
[134]
Raorane C J, Lee J H, Lee J. Rapid Killing and Biofilm Inhibition of Multidrug-Resistant Acinetobacter baumannii Strains and Other Microbes by Iodoindoles. Biomolecule 2020; 10(8)
[135]
Rogers SA, Huigens RW III, Cavanagh J, Melander C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother 2010; 54(5): 2112-8.
[http://dx.doi.org/10.1128/AAC.01418-09] [PMID: 20211901]
[136]
Milton ME, Minrovic BM, Harris DL, et al. Re-sensitizing multidrug resistant bacteria to antibiotics by targeting bacterial response regulators: characterization and comparison of interactions between 2-aminoimidazoles and the response regulators bfmr from acinetobacter baumannii and qseb from francisella spp. Front Mol Biosci 2018; 5(15): 15.
[http://dx.doi.org/10.3389/fmolb.2018.00015] [PMID: 29487854]
[137]
Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M. Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumannii. Microb Pathog 2018; 116: 263-72.
[http://dx.doi.org/10.1016/j.micpath.2018.01.033] [PMID: 29366864]
[138]
Wintachai P, Paosen S, Yupanqui CT, Voravuthikunchai SP. Silver nanoparticles synthesized with Eucalyptus critriodora ethanol leaf extract stimulate antibacterial activity against clinically multidrug-resistant Acinetobacter baumannii isolated from pneumonia patients. Microb Pathog 2019; 126: 245-57.
[http://dx.doi.org/10.1016/j.micpath.2018.11.018] [PMID: 30445131]
[139]
Ghosh S, Jagtap S, More P, et al. Dioscorea bulbifera mediated synthesis of novel Aucore, Agshell nanoparticles with potent antibiofilm and antileishmanial activity. J Nanomater 2015; 2015: 562938.
[http://dx.doi.org/10.1155/2015/562938]
[140]
Singh R, Vora J, Nadhe SB, Wadhwani SA, Shedbalkar UU, Chopade BA. Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial Acinetobacter baumannii. J Nanosci Nanotechnol 2018; 18(6): 3806-15.
[http://dx.doi.org/10.1166/jnn.2018.15013] [PMID: 29442713]
[141]
Ramachandran R, Sangeetha D. Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates. Pharma Innovation 2017; 6(11, Part A): 36.
[142]
Salunke GR, Ghosh S, Santosh Kumar RJ, et al. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. Int J Nanomedicine 2014; 9: 2635-53.
[PMID: 24920901]
[143]
Muzammil S, Khurshid M, Nawaz I, et al. Aluminium oxide nanoparticles inhibit EPS production, adhesion and biofilm formation by multidrug resistant Acinetobacter baumannii. Biofouling 2020; 36(4): 492-504.
[http://dx.doi.org/10.1080/08927014.2020.1776856] [PMID: 32529892]
[144]
Tiwari V, Tiwari M, Solanki V. Polyvinylpyrrolidone-capped silver nanoparticle inhibits infection of carbapenem-resistant strain of acinetobacter baumannii in the human pulmonary epithelial cell. Front Immunol 2017; 8(973): 973.
[http://dx.doi.org/10.3389/fimmu.2017.00973] [PMID: 28861082]
[145]
Azevedo MM, Ramalho P, Silva AP, Teixeira-Santos R, Pina-Vaz C, Rodrigues AG. Polyethyleneimine and polyethyleneimine-based nanoparticles: novel bacterial and yeast biofilm inhibitors. J Med Microbiol 2014; 63(Pt 9): 1167-73.
[http://dx.doi.org/10.1099/jmm.0.069609-0] [PMID: 24913563]
[146]
Behdad R, Pargol M, Mirzaie A, Karizi SZ, Noorbazargan H, Akbarzadeh I. Efflux pump inhibitory activity of biologically synthesized silver nanoparticles against multidrug-resistant Acinetobacter baumannii clinical isolates. J Basic Microbiol 2020; 60(6): 494-507.
[http://dx.doi.org/10.1002/jobm.201900712] [PMID: 32301139]
[147]
Ebrahimi A, Jafferi H, Habibian S, Lotfalian S. Evaluation of anti biofilm and antibiotic potentiation activities of silver nanoparticles against some nosocomial pathogens. Iran J Pharm Sci 2018; 14(2): 7-14.
[148]
Hoseini-Alfatemi SM, Karimi A, Armin S, Fakharzadeh S, Fallah F, Kalanaky S. Antibacterial and antibiofilm activity of nanochelating based silver nanoparticles against several nosocomial pathogens. Appl Organomet Chem 2018; 32(5): e4327.
[http://dx.doi.org/10.1002/aoc.4327]
[149]
Pourhajibagher M, Hosseini N, Boluki E, Chiniforush N, Bahador A. Photoelimination potential of chitosan nanoparticles-indocyanine green complex against the biological activities of acinetobacter baumannii strains: a preliminary in vitro study in burn wound infections. J Lasers Med Sci 2020; 11(2): 187-92.
[http://dx.doi.org/10.34172/jlms.2020.31] [PMID: 32273961]
[150]
Halicki PCB, Radin V, von Groll A, et al. Antibiofilm potential of arenecarbaldehyde 2-pyridinylhydrazone derivatives against Acinetobacter baumannii. Microb Drug Resist 2019.
[http://dx.doi.org/10.1089/mdr.2019.0185] [PMID: 31770073]
[151]
Ušjak D, Ivković B, Božić DD, Bošković L, Milenković M. Antimicrobial activity of novel chalcones and modulation of virulence factors in hospital strains of Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Pathog 2019; 131: 186-96.
[http://dx.doi.org/10.1016/j.micpath.2019.04.015] [PMID: 30980878]
[152]
Yang G, Cheng C, Xu GB, Tang L, Chua KL, Yang YY. Synthesis and antibiofilm evaluation of 3-hydroxy-2,3-dihydroquinazolin-4(1H)-one derivatives against opportunistic pathogen Acinetobacter baumannii. Bioorg Med Chem 2020; 28(16): 115606.
[http://dx.doi.org/10.1016/j.bmc.2020.115606] [PMID: 32690261]
[153]
Cardile AP, Woodbury RL, Sanchez CJ Jr, et al. Activity of norspermidine on bacterial biofilms of multidrug-resistant clinical isolates associated with persistent extremity wound infections. Adv Exp Med Biol 2017; 973: 53-70.
[http://dx.doi.org/10.1007/5584_2016_93] [PMID: 27864804]
[154]
Moon KH, Weber BS, Feldman MF. Subinhibitory concentrations of trimethoprim and sulfamethoxazole prevent biofilm formation by Acinetobacter baumannii through inhibition of csu pilus expression. Antimicrob Agents Chemother 2017; 61(9): e00778-17.
[http://dx.doi.org/10.1128/AAC.00778-17] [PMID: 28674047]
[155]
Slate AJ, Shalamanova L, Akhidime ID, Whitehead KA. Rhenium and yttrium ions as antimicrobial agents against multidrug resistant Klebsiella pneumoniae and Acinetobacter baumannii biofilms. Lett Appl Microbiol 2019; 69(3): 168-74.
[http://dx.doi.org/10.1111/lam.13154] [PMID: 30929272]
[156]
Chang D, Garcia RA, Akers KS, et al. Activity of gallium meso-and protoporphyrin IX against biofilms of multidrug-resistant Acinetobacter baumannii isolates. Pharmaceuticals 2016; 9(1): 16.
[http://dx.doi.org/10.3390/ph9010016] [PMID: 26999163]
[157]
Runci F, Bonchi C, Frangipani E, Visaggio D, Visca P. Acinetobacter baumannii biofilm formation in human serum and disruption by gallium. Antimicrob Agents Chemother 2016; 61(1): e01563-16.
[PMID: 27799219]
[158]
Moghimi R, Aliahmadi A, Rafati H, Abtahi HR, Amini S, Feizabadi MM. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. J Mol Liq 2018; 265: 765-70.
[http://dx.doi.org/10.1016/j.molliq.2018.07.023]
[159]
Costa EM, Silva S, Vicente S, Veiga M, Tavaria F, Pintado MM. Chitosan as an effective inhibitor of multidrug resistant Acinetobacter baumannii. Carbohydr Polym 2017; 178: 347-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.055] [PMID: 29050604]
[160]
Rogers SA, Whitehead DC, Mullikin T, Melander C. Synthesis and bacterial biofilm inhibition studies of ethyl N-(2-phenethyl) carbamate derivatives. Org Biomol Chem 2010; 8(17): 3857-9.
[http://dx.doi.org/10.1039/c0ob00063a] [PMID: 20617245]
[161]
Ballard TE, Richards JJ, Wolfe AL, Melander C. Synthesis and antibiofilm activity of a second-generation reverse-amide oroidin library: a structure-activity relationship study. Chemistry 2008; 14(34): 10745-61.
[http://dx.doi.org/10.1002/chem.200801419] [PMID: 18942682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy