Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Engineering “Antimicrobial Peptides” and Other Peptides to Modulate Protein-Protein Interactions in Cancer

Author(s): Samuel J.S. Rubin and Nir Qvit*

Volume 20, Issue 32, 2020

Page: [2970 - 2983] Pages: 14

DOI: 10.2174/1568026620666201021141401

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Antimicrobial peptides (AMPs) are a class of peptides found across a wide array of organisms that play key roles in host defense. AMPs induce selective death in target cells and orchestrate specific or nonspecific immune responses. Many AMPs exhibit native anticancer activity in addition to antibacterial activity, and others have been engineered as antineoplastic agents. We discuss the use of AMPs in the detection and treatment of cancer as well as mechanisms of AMP-induced cell death. We present key examples of cathelicidins and transferrins, which are major AMP families. Further, we discuss the critical roles of protein-protein interactions (PPIs) in cancer and how AMPs are well-suited to target PPIs based on their unique drug-like properties not exhibited by small molecules or antibodies. While peptides, including AMPs, can have limited stability and bioavailability, these issues can be overcome by peptide backbone modification or cyclization (e.g., stapling) and by the use of delivery systems such as cellpenetrating peptides (CPPs), respectively. We discuss approaches for optimizing drug properties of peptide and peptidomimetic leads (modified peptides), providing examples of promising techniques that may be applied to AMPs. These molecules represent an exciting resource as anticancer agents with unique therapeutic advantages that can target challenging mechanisms involving PPIs. Indeed, AMPs are suitable drug leads for further development of cancer therapeutics, and many studies to this end are underway.

Keywords: Cyclization, Peptides, Peptidomimetics, Protein-protein interactions, Therapeutic, Cancer, Antimicrobial peptides.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
Stewart, L. Implanting beef cattle.UGA Cooperative Extension Bulletin; University of Georgia: Athens, 2010.
[4]
Whiteside, T.L. Emerging opportunities and challenges in cancer immunotherapy. Clin. Cancer Res., 2016, 22, 1845-1855.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0049]
[5]
Palumbo, M.O.; Kavan, P.; Miller, W.H., Jr; Panasci, L.; Assouline, S.; Johnson, N.; Cohen, V.; Patenaude, F.; Pollak, M.; Jagoe, R.T.; Batist, G. Systemic cancer therapy: achievements and challenges that lie ahead. Front. Pharmacol., 2013, 4, 57.
[http://dx.doi.org/10.3389/fphar.2013.00057] [PMID: 23675348]
[6]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[7]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[8]
Landsdowne, L. The role of phenotypic screening in drug discovery. Drug Discovery; Technology Networks Limited: Sudbury, 2017.
[9]
Vassilev, L.T.; Vu, B.T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E.A. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 2004, 303(5659), 844-848.
[http://dx.doi.org/10.1126/science.1092472] [PMID: 14704432]
[10]
Erlanson, D.A.; Wells, J.A.; Braisted, A.C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 199-223.
[http://dx.doi.org/10.1146/annurev.biophys.33.110502.140409] [PMID: 15139811]
[11]
Bruncko, M.; Oost, T.K.; Belli, B.A.; Ding, H.; Joseph, M.K.; Kunzer, A.; Martineau, D.; McClellan, W.J.; Mitten, M.; Ng, S.C.; Nimmer, P.M.; Oltersdorf, T.; Park, C.M.; Petros, A.M.; Shoemaker, A.R.; Song, X.; Wang, X.; Wendt, M.D.; Zhang, H.; Fesik, S.W.; Rosenberg, S.H.; Elmore, S.W. Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J. Med. Chem., 2007, 50(4), 641-662.
[http://dx.doi.org/10.1021/jm061152t] [PMID: 17256834]
[12]
González-Ruiz, D.; Gohlke, H. Targeting protein-protein interactions with small molecules: challenges and perspectives for computational binding epitope detection and ligand finding. Curr. Med. Chem., 2006, 13(22), 2607-2625.
[http://dx.doi.org/10.2174/092986706778201530] [PMID: 17017914]
[13]
Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R.S.; Qiu, S.; Nikolovska-Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.; Shah, R.B.; Pienta, K.J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3933-3938.
[http://dx.doi.org/10.1073/pnas.0708917105] [PMID: 18316739]
[14]
Barnard, A.; Long, K.; Martin, H.L.; Miles, J.A.; Edwards, T.A.; Tomlinson, D.C.; Macdonald, A.; Wilson, A.J. Selective and potent proteomimetic inhibitors of intracellular protein-protein interactions. Angew. Chem. Int. Ed. Engl., 2015, 54(10), 2960-2965.
[http://dx.doi.org/10.1002/anie.201410810] [PMID: 25651514]
[15]
Kroboth, P.D.; Bertz, R.J.; Smith, R.B. Acute tolerance to triazolam during continuous and step infusions: estimation of the effect offset rate constant. J. Pharmacol. Exp. Ther., 1993, 264(3), 1047-1055.
[PMID: 8450449]
[16]
Thomas, D.W.; Burns, J.; Audette, J.; Carroll, A.; Dow-Hygelund, C.; Hay, M. Clinical development success rates 2006-2015; BIO Industry Analysis, 2016, pp. 1-26.
[17]
Kaplon, H.; Reichert, J.M. Antibodies to watch in 2019. MAbs, 2019, 11(2), 219-238.
[http://dx.doi.org/10.1080/19420862.2018.1556465] [PMID: 30516432]
[18]
Arkin, M.R.; Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov., 2004, 3(4), 301-317.
[http://dx.doi.org/10.1038/nrd1343] [PMID: 15060526]
[19]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[20]
Bakail, M.; Ochsenbein, F. Targeting protein-protein interactions, a wide open field for drug design. C. R. Chim., 2016, 19, 19-27.
[http://dx.doi.org/10.1016/j.crci.2015.12.004]
[21]
Adessi, C.; Soto, C. Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr. Med. Chem., 2002, 9(9), 963-978.
[http://dx.doi.org/10.2174/0929867024606731] [PMID: 11966456]
[22]
Vagner, J.; Qu, H.; Hruby, V.J. Peptidomimetics, a synthetic tool of drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 292-296.
[http://dx.doi.org/10.1016/j.cbpa.2008.03.009] [PMID: 18423417]
[23]
Cunningham, A.D.; Qvit, N.; Mochly-Rosen, D. Peptides and peptidomimetics as regulators of protein-protein interactions. Curr. Opin. Struct. Biol., 2017, 44, 59-66.
[http://dx.doi.org/10.1016/j.sbi.2016.12.009] [PMID: 28063303]
[24]
Rubin, S.J.S.; Qvit, N. Backbone-cyclized peptides: a critical review. Curr. Top. Med. Chem., 2018, 18(7), 526-555.
[http://dx.doi.org/10.2174/1568026618666180518092333] [PMID: 29773062]
[25]
Park, S.E.; Sajid, M.I.; Parang, K.; Tiwari, R.K. Cyclic cell-penetrating peptides as efficient intracellular drug delivery tools. Mol. Pharm., 2019, 16(9), 3727-3743.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00633] [PMID: 31329448]
[26]
Gallo, M.; Defaus, S.; Andreu, D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch. Biochem. Biophys., 2019, 661, 74-86.
[http://dx.doi.org/10.1016/j.abb.2018.11.010] [PMID: 30447207]
[27]
Stumpf, M.P.; Thorne, T.; de Silva, E.; Stewart, R.; An, H.J.; Lappe, M.; Wiuf, C. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6959-6964.
[http://dx.doi.org/10.1073/pnas.0708078105] [PMID: 18474861]
[28]
Mabonga, L.; Kappo, A.P. Peptidomimetics: a synthetic tool for inhibiting protein-protein interactions in cancer. Int. J. Pept. Res. Ther., 2019, 26, 225-241.
[29]
Qvit, N.; Schechtman, D.; Pena, D.A.; Berti, D.A.; Soares, C.O.; Miao, Q.; Liang, L.A.; Baron, L.A.; Teh-Poot, C.; Martínez-Vega, P.; Ramirez-Sierra, M.J.; Churchill, E.; Cunningham, A.D.; Malkovskiy, A.V.; Federspiel, N.A.; Gozzo, F.C.; Torrecilhas, A.C.; Manso Alves, M.J.; Jardim, A.; Momar, N.; Dumonteil, E.; Mochly-Rosen, D. Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors. Int. J. Parasitol. Drugs Drug Resist., 2016, 6(1), 74-84.
[http://dx.doi.org/10.1016/j.ijpddr.2016.02.003] [PMID: 27054066]
[30]
Dawidowski, M.; Emmanouilidis, L.; Kalel, V.C.; Tripsianes, K.; Schorpp, K.; Hadian, K.; Kaiser, M.; Mäser, P.; Kolonko, M.; Tanghe, S.; Rodriguez, A.; Schliebs, W.; Erdmann, R.; Sattler, M.; Popowicz, G.M. Inhibitors of PEX14 disrupt protein import into glycosomes and kill Trypanosoma parasites. Science, 2017, 355(6332), 1416-1420.
[http://dx.doi.org/10.1126/science.aal1807] [PMID: 28360328]
[31]
Hayes, M.P.; Soto-Velasquez, M.; Fowler, C.A.; Watts, V.J.; Roman, D.L. Identification of fda-approved small molecules capable of disrupting the calmodulin-adenylyl cyclase 8 interaction through direct binding to calmodulin. ACS Chem. Neurosci., 2018, 9(2), 346-357.
[http://dx.doi.org/10.1021/acschemneuro.7b00349] [PMID: 28968502]
[32]
Anand, P.; Brown, J.D.; Lin, C.Y.; Qi, J.; Zhang, R.; Artero, P.C.; Alaiti, M.A.; Bullard, J.; Alazem, K.; Margulies, K.B.; Cappola, T.P.; Lemieux, M.; Plutzky, J.; Bradner, J.E.; Haldar, S.M. BET bromodomains mediate transcriptional pause release in heart failure. Cell, 2013, 154(3), 569-582.
[http://dx.doi.org/10.1016/j.cell.2013.07.013] [PMID: 23911322]
[33]
Lu, M-C.; Tan, S.J.; Ji, J.A.; Chen, Z.Y.; Yuan, Z.W.; You, Q.D.; Jiang, Z.Y. Polar recognition group study of Keap1-Nrf2 protein-protein interaction inhibitors. ACS Med. Chem. Lett., 2016, 7(9), 835-840.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00407] [PMID: 27660687]
[34]
Nero, T.L.; Morton, C.J.; Holien, J.K.; Wielens, J.; Parker, M.W. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer, 2014, 14(4), 248-262.
[http://dx.doi.org/10.1038/nrc3690] [PMID: 24622521]
[35]
Li, Q.; Quan, L.; Lyu, J.; He, Z.; Wang, X.; Meng, J.; Zhao, Z.; Zhu, L.; Liu, X.; Li, H. Discovery of peptide inhibitors targeting human programmed death 1 (PD-1) receptor. Oncotarget, 2016, 7(40), 64967-64976.
[http://dx.doi.org/10.18632/oncotarget.11274] [PMID: 27533458]
[36]
Li, Z.; Ivanov, A.A.; Su, R.; Gonzalez-Pecchi, V.; Qi, Q.; Liu, S.; Webber, P.; McMillan, E.; Rusnak, L.; Pham, C.; Chen, X.; Mo, X.; Revennaugh, B.; Zhou, W.; Marcus, A.; Harati, S.; Chen, X.; Johns, M.A.; White, M.A.; Moreno, C.; Cooper, L.A.; Du, Y.; Khuri, F.R.; Fu, H. The OncoPPi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies. Nat. Commun., 2017, 8, 14356.
[http://dx.doi.org/10.1038/ncomms14356] [PMID: 28205554]
[37]
Finan, C.; Gaulton, A.; Kruger, F.A.; Lumbers, R.T.; Shah, T.; Engmann, J.; Galver, L.; Kelley, R.; Karlsson, A.; Santos, R.; Overington, J.P.; Hingorani, A.D.; Casas, J.P. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med., 2017, 9(383), 9.
[http://dx.doi.org/10.1126/scitranslmed.aag1166] [PMID: 28356508]
[38]
Rolland, T.; Taşan, M.; Charloteaux, B.; Pevzner, S.J.; Zhong, Q.; Sahni, N.; Yi, S.; Lemmens, I.; Fontanillo, C.; Mosca, R.; Kamburov, A.; Ghiassian, S.D.; Yang, X.; Ghamsari, L.; Balcha, D.; Begg, B.E.; Braun, P.; Brehme, M.; Broly, M.P.; Carvunis, A.R.; Convery-Zupan, D.; Corominas, R.; Coulombe-Huntington, J.; Dann, E.; Dreze, M.; Dricot, A.; Fan, C.; Franzosa, E.; Gebreab, F.; Gutierrez, B.J.; Hardy, M.F.; Jin, M.; Kang, S.; Kiros, R.; Lin, G.N.; Luck, K.; MacWilliams, A.; Menche, J.; Murray, R.R.; Palagi, A.; Poulin, M.M.; Rambout, X.; Rasla, J.; Reichert, P.; Romero, V.; Ruyssinck, E.; Sahalie, J.M.; Scholz, A.; Shah, A.A.; Sharma, A.; Shen, Y.; Spirohn, K.; Tam, S.; Tejeda, A.O.; Trigg, S.A.; Twizere, J.C.; Vega, K.; Walsh, J.; Cusick, M.E.; Xia, Y.; Barabási, A.L.; Iakoucheva, L.M.; Aloy, P.; De Las Rivas, J.; Tavernier, J.; Calderwood, M.A.; Hill, D.E.; Hao, T.; Roth, F.P.; Vidal, M. A proteome-scale map of the human interactome network. Cell, 2014, 159(5), 1212-1226.
[http://dx.doi.org/10.1016/j.cell.2014.10.050] [PMID: 25416956]
[39]
Fontaine, F.; Overman, J.; François, M. Pharmacological manipulation of transcription factor protein-protein interactions: opportunities and obstacles. Cell Regen. (Lond.), 2015, 4(1), 2.
[http://dx.doi.org/10.1186/s13619-015-0015-x] [PMID: 25848531]
[40]
Baar, M.P.; Brandt, R.M.C.; Putavet, D.A.; Klein, J.D.D.; Derks, K.W.J.; Bourgeois, B.R.M.; Stryeck, S.; Rijksen, Y.; van Willigenburg, H.; Feijtel, D.A.; van der Pluijm, I.; Essers, J.; van Cappellen, W.A.; van IJcken, W.F.; Houtsmuller, A.B.; Pothof, J.; de Bruin, R.W.F.; Madl, T.; Hoeijmakers, J.H.J.; Campisi, J.; de Keizer, P.L.J. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. cell, 2017, 169(1), 132-147..e16
[http://dx.doi.org/10.1016/j.cell.2017.02.031] [PMID: 28340339]
[41]
Rubin, S.J.S.; Tal-Gan, Y.; Gilon, C.; Qvit, N. Conversion of protein active regions into peptidomimetic therapeutic leads using backbone cyclization and cycloscan-how to do it yourself! Curr. Top. Med. Chem., 2018, 18(7), 556-565.
[http://dx.doi.org/10.2174/1568026618666180518094322] [PMID: 29773063]
[42]
Qvit, N.; Rubin, S.J.S.; Urban, T.J.; Mochly-Rosen, D.; Gross, E.R. Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov. Today, 2017, 22(2), 454-462.
[http://dx.doi.org/10.1016/j.drudis.2016.11.003] [PMID: 27856346]
[43]
Rubin, S.; Qvit, N. Cyclic peptides for protein-protein interaction targets: applications to human disease. Crit. Rev. Eukaryot. Gene Expr., 2016, 26(3), 199-221.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2016016525] [PMID: 27650985]
[44]
Cheng, A.C.; Coleman, R.G.; Smyth, K.T.; Cao, Q.; Soulard, P.; Caffrey, D.R.; Salzberg, A.C.; Huang, E.S. Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol., 2007, 25(1), 71-75.
[http://dx.doi.org/10.1038/nbt1273] [PMID: 17211405]
[45]
Jin, L.; Wang, W.; Fang, G. Targeting protein-protein interaction by small molecules. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 435-456.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-140028] [PMID: 24160698]
[46]
Qvit, N.; Crapster, J.A. Peptides that target protein-protein interactions as an anti-parasite strategy. Chim. Oggi, 2014, 32, 62-66.
[47]
London, N.; Raveh, B.; Schueler-Furman, O. Druggable protein-protein interactions--from hot spots to hot segments. Curr. Opin. Chem. Biol., 2013, 17(6), 952-959.
[http://dx.doi.org/10.1016/j.cbpa.2013.10.011] [PMID: 24183815]
[48]
Fleming, A.; Wright, A.E. On a remarkable bacteriolytic element found in tissues and secretions. Proc. R. Soc. Lond., B, 1922, 93, 306-317.
[http://dx.doi.org/10.1098/rspb.1922.0023]
[49]
Steiner, H.; Hultmark, D.; Engström, A.; Bennich, H.; Boman, H.G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 1981, 292(5820), 246-248.
[http://dx.doi.org/10.1038/292246a0] [PMID: 7019715]
[50]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[51]
Gaspar, D.; Veiga, A.S.; Castanho, M.A. From antimicrobial to anticancer peptides. A review. Front. Microbiol., 2013, 4, 294.
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[52]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[53]
Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int., 2015, 2015, 735087-735087.
[http://dx.doi.org/10.1155/2015/735087] [PMID: 25815333]
[54]
Lewies, A.; Wentzel, J.F.; Miller, H.C.; Du Plessis, L.H. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells. Biochimie, 2018, 144, 28-40.
[http://dx.doi.org/10.1016/j.biochi.2017.10.009] [PMID: 29054798]
[55]
Parvy, J-P.; Yu, Y.; Dostalova, A.; Kondo, S.; Kurjan, A.; Bulet, P.; Lemaître, B.; Vidal, M.; Cordero, J.B. The antimicrobial peptide defensin cooperates with tumour necrosis factor to drive tumour cell death in Drosophila. eLife, 2019, 8e45061
[http://dx.doi.org/10.7554/eLife.45061] [PMID: 31358113]
[56]
Andrès, E.; Dimarcq, J.L. Cationic antimicrobial peptides: update of clinical development. J. Intern. Med., 2004, 255(4), 519-520.
[http://dx.doi.org/10.1046/j.1365-2796.2003.01278.x] [PMID: 15049887]
[57]
Fry, D.E. Antimicrobial Peptides. Surg. Infect. (Larchmt.), 2018, 19(8), 804-811.
[http://dx.doi.org/10.1089/sur.2018.194] [PMID: 30265592]
[58]
Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals, 2016, 9(3), 59.
[http://dx.doi.org/10.3390/ph9030059] [PMID: 27657092]
[59]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 8.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[60]
Hilchie, A.L.; Wuerth, K.; Hancock, R.E. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol., 2013, 9(12), 761-768.
[http://dx.doi.org/10.1038/nchembio.1393] [PMID: 24231617]
[61]
da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.C.; Lima, L.A.; Sampaio, K.B.O.; Dohms, S.S.M.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22(2), 234-248.
[http://dx.doi.org/10.1016/j.drudis.2016.10.017] [PMID: 27890668]
[62]
Zanetti, M.; Gennaro, R.; Romeo, D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett., 1995, 374(1), 1-5.
[http://dx.doi.org/10.1016/0014-5793(95)01050-O] [PMID: 7589491]
[63]
Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: family of antimicrobial peptides. A review. Mol. Biol. Rep., 2012, 39(12), 10957-10970.
[http://dx.doi.org/10.1007/s11033-012-1997-x] [PMID: 23065264]
[64]
Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta, 2016, 1858(3), 546-566.
[http://dx.doi.org/10.1016/j.bbamem.2015.11.003] [PMID: 26556394]
[65]
Agerberth, B.; Gunne, H.; Odeberg, J.; Kogner, P.; Boman, H.G.; Gudmundsson, G.H. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. USA, 1995, 92(1), 195-199.
[http://dx.doi.org/10.1073/pnas.92.1.195] [PMID: 7529412]
[66]
Johansson, J.; Gudmundsson, G.H.; Rottenberg, M.E.; Berndt, K.D.; Agerberth, B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem., 1998, 273(6), 3718-3724.
[http://dx.doi.org/10.1074/jbc.273.6.3718] [PMID: 9452503]
[67]
Oren, Z.; Lerman, J.C.; Gudmundsson, G.H.; Agerberth, B.; Shai, Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem. J., 1999, 341(Pt 3), 501-513.
[http://dx.doi.org/10.1042/bj3410501] [PMID: 10417311]
[68]
Li, X.; Li, Y.; Han, H.; Miller, D.W.; Wang, G. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J. Am. Chem. Soc., 2006, 128(17), 5776-5785.
[http://dx.doi.org/10.1021/ja0584875] [PMID: 16637646]
[69]
Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem., 2008, 283(47), 32637-32643.
[http://dx.doi.org/10.1074/jbc.M805533200] [PMID: 18818205]
[70]
Porcelli, F.; Verardi, R.; Shi, L.; Henzler-Wildman, K.A.; Ramamoorthy, A.; Veglia, G. NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry, 2008, 47(20), 5565-5572.
[http://dx.doi.org/10.1021/bi702036s] [PMID: 18439024]
[71]
Gutsmann, T.; Larrick, J.W.; Seydel, U.; Wiese, A. Molecular mechanisms of interaction of rabbit CAP18 with outer membranes of gram-negative bacteria. Biochemistry, 1999, 38(41), 13643-13653.
[http://dx.doi.org/10.1021/bi990643v] [PMID: 10521271]
[72]
Chen, X. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell. Physiol. Biochem., 2018, 47, 1060-1073.
[73]
Kuroda, K.; Okumura, K.; Isogai, H.; Isogai, E. The human cathelicidin antimicrobial peptide ll-37 and mimics are potential anticancer drugs. Front. Oncol., 2015, 5, 144.
[http://dx.doi.org/10.3389/fonc.2015.00144] [PMID: 26175965]
[74]
Zsila, F.; Beke-Somfai, T. Human host-defense peptide LL-37 targets stealth siderophores. Biochem. Biophys. Res. Commun., 2020, 526(3), 780-785.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.162] [PMID: 32265033]
[75]
Chung, M.C.; Dean, S.N.; van Hoek, M.L. Acyl carrier protein is a bacterial cytoplasmic target of cationic antimicrobial peptide LL-37. Biochem. J., 2015, 470(2), 243-253.
[http://dx.doi.org/10.1042/BJ20150432] [PMID: 26188040]
[76]
Roudi, R.; Syn, N.L.; Roudbary, M. Antimicrobial peptides as biologic and immunotherapeutic agents against cancer: a comprehensive overview. Front. Immunol., 2017, 8, 1320.
[http://dx.doi.org/10.3389/fimmu.2017.01320] [PMID: 29081781]
[77]
Lambert, L.A. Molecular evolution of the transferrin family and associated receptors. Biochim. Biophys. Acta, 2012, 1820(3), 244-255.
[http://dx.doi.org/10.1016/j.bbagen.2011.06.002] [PMID: 21693173]
[78]
Kawabata, H. Transferrin and transferrin receptors update. Free Radic. Biol. Med., 2019, 133, 46-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.037] [PMID: 29969719]
[79]
Baker, H.M. Metal substitution in transferrins: specific binding of cerium(IV) revealed by the crystal structure of cerium-substituted human lactoferrin. J. Bio. Org. Chem., 2000, 5, 692-698.
[80]
Hao, L.; Shan, Q.; Wei, J.; Ma, F.; Sun, P. Lactoferrin: major physiological functions and applications. Curr. Protein Pept. Sci., 2019, 20(2), 139-144.
[http://dx.doi.org/10.2174/1389203719666180514150921] [PMID: 29756573]
[81]
Gifford, J.L.; Hunter, H.N.; Vogel, H.J. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell. Mol. Life Sci., 2005, 62(22), 2588-2598.
[http://dx.doi.org/10.1007/s00018-005-5373-z] [PMID: 16261252]
[82]
Jiang, R.; Lonnerdal, B. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways. Biochem. Cell Biol., 2017, 95, 99-109.
[83]
Haug, B.E.; Camilio, K.A.; Eliassen, L.T.; Stensen, W.; Svendsen, J.S.; Berg, K.; Mortensen, B.; Serin, G.; Mirjolet, J.F.; Bichat, F.; Rekdal, Ø. Discovery of a 9-mer cationic peptide (ltx-315) as a potential first in class oncolytic peptide. J. Med. Chem., 2016, 59(7), 2918-2927.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02025] [PMID: 26982623]
[84]
Sveinbjørnsson, B.; Camilio, K.A.; Haug, B.E.; Rekdal, Ø. LTX-315: a first-in-class oncolytic peptide that reprograms the tumor microenvironment. Future Med. Chem., 2017, 9(12), 1339-1344.
[http://dx.doi.org/10.4155/fmc-2017-0088] [PMID: 28490192]
[85]
Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel), 2020, 9(1), 9.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[86]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[87]
Greber, K.E.; Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem., 2017, 17(5), 620-628.
[http://dx.doi.org/10.2174/1568026616666160713143331] [PMID: 27411322]
[88]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[89]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[90]
Kazmaier, U.; Hebach, C.; Watzke, A.; Maier, S.; Mues, H.; Huch, V. A straightforward approach towards cyclic peptides via ring-closing metathesis--scope and limitations. Org. Biomol. Chem., 2005, 3(1), 136-145.
[http://dx.doi.org/10.1039/B411228H] [PMID: 15602609]
[91]
Clark, R.J.; Craik, D.J. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers, 2010, 94(4), 414-422.
[http://dx.doi.org/10.1002/bip.21372] [PMID: 20593458]
[92]
Qvit, N.; Rubin, S.J.S. Cyclic peptides for protein-protein interaction targets. Curr. Top. Med. Chem., 2018, 18(7), 525-525.
[http://dx.doi.org/10.2174/156802661807180709111525] [PMID: 30014801]
[93]
Barda, Y.; Cohen, N.; Lev, V.; Ben-Aroya, N.; Koch, Y.; Mishani, E.; Fridkin, M.; Gilon, C. Backbone metal cyclization: novel 99mTc labeled GnRH analog as potential SPECT molecular imaging agent in cancer. Nucl. Med. Biol., 2004, 31(7), 921-933.
[http://dx.doi.org/10.1016/j.nucmedbio.2004.05.003] [PMID: 15464394]
[94]
Qvit, N.; Reuveni, H.; Gazal, S.; Zundelevich, A.; Blum, G.; Niv, M.Y.; Feldstein, A.; Meushar, S.; Shalev, D.E.; Friedler, A.; Gilon, C. Synthesis of a novel macrocyclic library: discovery of an IGF-1R inhibitor. J. Comb. Chem., 2008, 10(2), 256-266.
[http://dx.doi.org/10.1021/cc700113c] [PMID: 18271560]
[95]
Tal-Gan, Y.; Hurevich, M.; Klein, S.; Ben-Shimon, A.; Rosenthal, D.; Hazan, C.; Shalev, D.E.; Niv, M.Y.; Levitzki, A.; Gilon, C. Backbone cyclic peptide inhibitors of protein kinase B (PKB/Akt). J. Med. Chem., 2011, 54(14), 5154-5164.
[http://dx.doi.org/10.1021/jm2003969] [PMID: 21650457]
[96]
Nakamura, T.; Furunaka, H.; Miyata, T.; Tokunaga, F.; Muta, T.; Iwanaga, S.; Niwa, M.; Takao, T.; Shimonishi, Y. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem., 1988, 263(32), 16709-16713.
[PMID: 3141410]
[97]
Vernen, F.; Harvey, P.J.; Dias, S.A.; Veiga, A.S.; Huang, Y.H.; Craik, D.J.; Lawrence, N.; Troeira Henriques, S. Characterization of tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int. J. Mol. Sci., 2019, 20(17), 4184.
[http://dx.doi.org/10.3390/ijms20174184] [PMID: 31455019]
[98]
Lau, Y.H.; de Andrade, P.; Wu, Y.; Spring, D.R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev., 2015, 44(1), 91-102.
[http://dx.doi.org/10.1039/C4CS00246F] [PMID: 25199043]
[99]
Sawyer, T.K.; Partridge, A.W.; Kaan, H.Y.K.; Juang, Y.C.; Lim, S.; Johannes, C.; Yuen, T.Y.; Verma, C.; Kannan, S.; Aronica, P.; Tan, Y.S.; Sherborne, B.; Ha, S.; Hochman, J.; Chen, S.; Surdi, L.; Peier, A.; Sauvagnat, B.; Dandliker, P.J.; Brown, C.J.; Ng, S.; Ferrer, F.; Lane, D.P. Macrocyclic α helical peptide therapeutic modality: A perspective of learnings and challenges. Bioorg. Med. Chem., 2018, 26(10), 2807-2815.
[http://dx.doi.org/10.1016/j.bmc.2018.03.008] [PMID: 29598901]
[100]
Carvajal, L.A.; Neriah, D.B.; Senecal, A.; Benard, L.; Thiruthuvanathan, V.; Yatsenko, T.; Narayanagari, S.R.; Wheat, J.C.; Todorova, T.I.; Mitchell, K.; Kenworthy, C.; Guerlavais, V.; Annis, D.A.; Bartholdy, B.; Will, B.; Anampa, J.D.; Mantzaris, I.; Aivado, M.; Singer, R.H.; Coleman, R.A.; Verma, A.; Steidl, U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci. Transl. Med., 2018, 10(436)eaao3003
[http://dx.doi.org/10.1126/scitranslmed.aao3003] [PMID: 29643228]
[101]
Clinical trials: A study of alrn-6924 for the prevention of topotecaninduced myelosuppression during treatment for small cell lung cancer. Available from: https://ClinicalTrials.gov/show/NCT040228762020.
[102]
Clinical trials: ALRN-6924 in patients with advanced solid tumors or lymphomas. Available from: https://ClinicalTrials.gov/show/NCT022646132020.
[103]
Migoń, D.; Neubauer, D.; Kamysz, W. Hydrocarbon stapled antimicrobial peptides. Protein J., 2018, 37(1), 2-12.
[http://dx.doi.org/10.1007/s10930-018-9755-0] [PMID: 29330644]
[104]
Blok, D.; Feitsma, R.I.; Vermeij, P.; Pauwels, E.J. Peptide radiopharmaceuticals in nuclear medicine. Eur. J. Nucl. Med., 1999, 26(11), 1511-1519.
[http://dx.doi.org/10.1007/s002590050488] [PMID: 10552097]
[105]
Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics, 2012, 2(5), 481-501.
[http://dx.doi.org/10.7150/thno.4024] [PMID: 22737187]
[106]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[107]
Brouwer, C.P.J.M.; Sarda-Mantel, L.; Meulemans, A.; Le Guludec, D.; Welling, M.M. The use of technetium-99m radiolabeled human antimicrobial peptides for infection specific imaging. Mini Rev. Med. Chem., 2008, 8(10), 1039-1052.
[http://dx.doi.org/10.2174/138955708785740670] [PMID: 18782056]
[108]
Welling, M.M.; Lupetti, A.; Balter, H.S.; Lanzzeri, S.; Souto, B.; Rey, A.M.; Savio, E.O.; Paulusma-Annema, A.; Pauwels, E.K.; Nibbering, P.H. 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida albicans infections. J. Nucl. Med., 2001, 42(5), 788-794.
[PMID: 11337578]
[109]
Akhtar, M.S.; Qaisar, A.; Irfanullah, J.; Iqbal, J.; Khan, B.; Jehangir, M.; Nadeem, M.A.; Khan, M.A.; Afzal, M.S.; Ul-Haq, I.; Imran, M.B. Antimicrobial peptide 99mTc-ubiquicidin 29-41 as human infection-imaging agent: clinical trial. J. Nucl. Med., 2005, 46(4), 567-573.
[PMID: 15809477]
[110]
Melle, C.; Ernst, G.; Schimmel, B.; Bleul, A.; Thieme, H.; Kaufmann, R.; Mothes, H.; Settmacher, U.; Claussen, U.; Halbhuber, K.J.; Von Eggeling, F. Discovery and identification of α-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology, 2005, 129(1), 66-73.
[http://dx.doi.org/10.1053/j.gastro.2005.05.014] [PMID: 16012935]
[111]
Brayden, D.J.; Alonso, M-J. Oral delivery of peptides: opportunities and issues for translation. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 193-195.
[http://dx.doi.org/10.1016/j.addr.2016.10.005] [PMID: 27865345]
[112]
Jain, K.K. Drug delivery systems - an overview. Methods Mol. Biol., 2008, 437, 1-50.
[http://dx.doi.org/10.1007/978-1-59745-210-6_1] [PMID: 18369961]
[113]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6), 1189-1193.
[http://dx.doi.org/10.1016/0092-8674(88)90263-2] [PMID: 2849510]
[114]
Green, M.; Loewenstein, P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6), 1179-1188.
[http://dx.doi.org/10.1016/0092-8674(88)90262-0] [PMID: 2849509]
[115]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[116]
Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 1997, 272(25), 16010-16017.
[http://dx.doi.org/10.1074/jbc.272.25.16010] [PMID: 9188504]
[117]
Schwarze, S.R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285(5433), 1569-1572.
[http://dx.doi.org/10.1126/science.285.5433.1569] [PMID: 10477521]
[118]
Joliot, A.; Pernelle, C.; Deagostini-Bazin, H.; Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA, 1991, 88(5), 1864-1868.
[http://dx.doi.org/10.1073/pnas.88.5.1864] [PMID: 1672046]
[119]
Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res., 2016, 44(D1), D1098-D1103.
[http://dx.doi.org/10.1093/nar/gkv1266] [PMID: 26586798]
[120]
Ramsey, J.D.; Flynn, N.H. Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther., 2015, 154, 78-86.
[http://dx.doi.org/10.1016/j.pharmthera.2015.07.003] [PMID: 26210404]
[121]
Johnson, R.M. Therapeutic applications of cell-penetrating peptides.Cell-Penetrating Peptides; Springer: Berlin, 2011, pp. 535-551.
[http://dx.doi.org/10.1007/978-1-60761-919-2_38]
[122]
Fu, L.S.; Wu, Y.R.; Fang, S.L.; Tsai, J.J.; Lin, H.K.; Chen, Y.J.; Chen, T.Y.; Chang, M.D. Cell penetrating peptide derived from human eosinophil cationic protein decreases airway allergic inflammation. Sci. Rep., 2017, 7(1), 12352.
[http://dx.doi.org/10.1038/s41598-017-12390-8] [PMID: 28955044]
[123]
Gurney, L.R.I.; Taggart, J.; Tong, W.C.; Jones, A.T.; Robson, S.C.; Taggart, M.J. Inhibition of inflammatory changes in human myometrial cells by cell penetrating peptide and small molecule inhibitors of nfκb. Front. Immunol., 2018, 9, 2966.
[http://dx.doi.org/10.3389/fimmu.2018.02966] [PMID: 30619324]
[124]
Garcia-Caballero, A.; Gadotti, V.M.; Chen, L.; Zamponi, G.W. A cell-permeant peptide corresponding to the cUBP domain of USP5 reverses inflammatory and neuropathic pain. Mol. Pain, 2016, 12, 12.
[http://dx.doi.org/10.1177/1744806916642444] [PMID: 27130589]
[125]
Ma, W.Y.; Murata, E.; Ueda, K.; Kuroda, Y.; Cao, M.H.; Abe, M.; Shigemi, K.; Hirose, M. A synthetic cell-penetrating peptide antagonizing TrkA function suppresses neuropathic pain in mice. J. Pharmacol. Sci., 2010, 114(1), 79-84.
[http://dx.doi.org/10.1254/jphs.10119FP] [PMID: 20710118]
[126]
Peng, J.; Rao, Y.; Yang, X.; Jia, J.; Wu, Y.; Lu, J.; Tao, Y.; Tu, W. Targeting neuronal nitric oxide synthase by a cell penetrating peptide Tat-LK15/siRNA bioconjugate. Neurosci. Lett., 2017, 650, 153-160.
[http://dx.doi.org/10.1016/j.neulet.2017.04.045] [PMID: 28450191]
[127]
Gurbel, P.A.; Bliden, K.P.; Turner, S.E.; Tantry, U.S.; Gesheff, M.G.; Barr, T.P.; Covic, L.; Kuliopulos, A. Cell-penetrating pepducin therapy targeting par1 in subjects with coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2016, 36(1), 189-197.
[http://dx.doi.org/10.1161/ATVBAHA.115.306777] [PMID: 26681756]
[128]
Nasrollahi, S.A.; Fouladdel, S.; Taghibiglou, C.; Azizi, E.; Farboud, E.S. A peptide carrier for the delivery of elastin into fibroblast cells. Int. J. Dermatol., 2012, 51(8), 923-929.
[http://dx.doi.org/10.1111/j.1365-4632.2011.05214.x] [PMID: 22788807]
[129]
Jia, L.; Gorman, G.S.; Coward, L.U.; Noker, P.E.; McCormick, D.; Horn, T.L.; Harder, J.B.; Muzzio, M.; Prabhakar, B.; Ganesh, B.; Das Gupta, T.K.; Beattie, C.W. Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother. Pharmacol., 2011, 68(2), 513-524.
[http://dx.doi.org/10.1007/s00280-010-1518-3] [PMID: 21085965]
[130]
de Araujo, C.B.; Russo, L.C.; Castro, L.M.; Forti, F.L.; do Monte, E.R.; Rioli, V.; Gozzo, F.C.; Colquhoun, A.; Ferro, E.S. A novel intracellular peptide derived from g1/s cyclin d2 induces cell death. J. Biol. Chem., 2014, 289(24), 16711-16726.
[http://dx.doi.org/10.1074/jbc.M113.537118] [PMID: 24764300]
[131]
Russo, L.C.; Araujo, C.B.; Iwai, L.K.; Ferro, E.S.; Forti, F.L.A. Cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. J. Proteomics, 2017, 151, 24-32.
[http://dx.doi.org/10.1016/j.jprot.2016.06.028] [PMID: 27371349]
[132]
de Araujo, C.B.; de Lima, L.P.; Calderano, S.G.; Silva Damasceno, F.; Silber, A.M.; Elias, M.C. Pep5, a fragment of cyclin d2, shows antiparasitic effects in different stages of the trypanosoma cruzi life cycle and blocks parasite infectivity. Antimicrob. Agents Chemother., 2019, 63(5), 63.
[http://dx.doi.org/10.1128/AAC.01806-18] [PMID: 30833431]
[133]
Lulla, R.R. Phase 1 trial of p28 (nsc745104), a non-hdm2 mediated peptide inhibitor of p53 ubiquitination in children with recurrent or progressive CNS tumors: a final report from the pediatric brain tumor consortium. J. Clin. Oncol., 2015, 33, 10059-10059.
[http://dx.doi.org/10.1200/jco.2015.33.15_suppl.10059]
[134]
Warso, M.A.; Richards, J.M.; Mehta, D.; Christov, K.; Schaeffer, C.; Rae Bressler, L.; Yamada, T.; Majumdar, D.; Kennedy, S.A.; Beattie, C.W.; Das Gupta, T.K. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br. J. Cancer, 2013, 108(5), 1061-1070.
[http://dx.doi.org/10.1038/bjc.2013.74] [PMID: 23449360]
[135]
Meyer-Losic, F. DTS-108, a novel peptidic prodrug of SN38: in vivo efficacy and toxicokinetic studies. Clin. Cancer Res., 2008, 14, 2145-2153.
[136]
Coriat, R.; Faivre, S.J.; Mir, O.; Dreyer, C.; Ropert, S.; Bouattour, M.; Desjardins, R.; Goldwasser, F.; Raymond, E. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study. Int. J. Nanomedicine, 2016, 11, 6207-6216.
[http://dx.doi.org/10.2147/IJN.S110274] [PMID: 27920527]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy