Abstract
Stem Cells (SCs) show a wide range of applications in the treatment of numerous diseases, including neurodegenerative diseases, diabetes, cardiovascular diseases, cancer, etc. SC related research has gained popularity owing to the unique characteristics of self-renewal and differentiation. Artificial Intelligence (AI), an emerging field of computer science and engineering, has shown potential applications in different fields like robotics, agriculture, home automation, healthcare, banking, and transportation since its invention. This review aims to describe the various applications of AI in SC biology, including understanding the behavior of SCs, recognizing individual cell type before undergoing differentiation, characterization of SCs using mathematical models and prediction of mortality risk associated with SC transplantation. This review emphasizes the role of neural networks in SC biology and further elucidates the concepts of machine learning and deep learning and their applications in SC research.
Keywords: Machine learning, deep learning, convolutional neural network, artificial neural network, induced pluripotent stem cell, mathematical models.
[http://dx.doi.org/10.1016/j.metabol.2017.01.011] [PMID: 28126242]
[http://dx.doi.org/10.1016/0004-3702(85)90013-X]
[http://dx.doi.org/10.1016/S0168-1699(00)00132-0]
[http://dx.doi.org/10.1126/science.1217640]
[http://dx.doi.org/10.1136/svn-2017-000101] [PMID: 29507784]
[http://dx.doi.org/10.1016/j.techfore.2015.12.014]]
[http://dx.doi.org/10.3109/14639238809010100] [PMID: 3185024]
[http://dx.doi.org/10.2174/138161207780765954] [PMID: 17504169]
[http://dx.doi.org/10.1016/j.biopha.2017.04.126] [PMID: 28499241]
[http://dx.doi.org/10.1016/j.bpobgyn.2004.09.002] [PMID: 15582541]
[http://dx.doi.org/10.1172/JCI40435] [PMID: 20051638]
[http://dx.doi.org/10.1038/s41598-017-13680-x] [PMID: 29044152]
[http://dx.doi.org/10.1093/bmb/ldr012]
[http://dx.doi.org/10.1016/j.biopha.2017.10.127] [PMID: 29080456]
[http://dx.doi.org/10.1007/s12015-019-09903-5]
[http://dx.doi.org/10.1038/nature04954]
[http://dx.doi.org/10.1186/1741-7015-10-1] [PMID: 22216957]
[http://dx.doi.org/10.1038/nature06800] [PMID: 18288183]
[http://dx.doi.org/10.1096/fj.07-8560rev] [PMID: 17625071]
[http://dx.doi.org/10.1016/j.expneurol.2016.01.021] [PMID: 26826449]
[http://dx.doi.org/10.1038/nature04960] [PMID: 16810245]
[http://dx.doi.org/10.1016/j.stem.2015.06.007] [PMID: 26140604]
[http://dx.doi.org/10.1038/bmt.2013.146] [PMID: 24096823]
[http://dx.doi.org/10.14569/IJARAI.2013.020206]
[http://dx.doi.org/10.1016/j.jacc.2018.03.521] [PMID: 29880128]
[http://dx.doi.org/10.1038/s41568-018-0016-5] [PMID: 29777175]
[http://dx.doi.org/10.1007/5584_2018_177] [PMID: 29516308]
[http://dx.doi.org/10.3390/cells8050403] [PMID: 31052294]
[http://dx.doi.org/10.1155/2016/3091039]
[http://dx.doi.org/10.1371/journal.pone.0189974] [PMID: 29281701]
[http://dx.doi.org/10.1007/s42452-020-2070-3]
[http://dx.doi.org/10.1111/j.1365-2184.2009.00619.x]
[http://dx.doi.org/10.3390/ijms20215337] [PMID: 31717803]
[http://dx.doi.org/10.1016/j.clindermatol.2004.06.005] [PMID: 15896544]
[http://dx.doi.org/10.1016/j.retram.2020.01.002] [PMID: 32029403]
[http://dx.doi.org/10.1016/j.chaos.2015.11.029]
[http://dx.doi.org/10.1109/ICOEI.2018.8553781]
[http://dx.doi.org/10.1016/j.exphem.2010.02.012] [PMID: 20206661]
[http://dx.doi.org/10.1016/j.stemcr.2019.02.004] [PMID: 30880077]
[http://dx.doi.org/10.4015/S1016237219500091]
[http://dx.doi.org/10.1016/j.cogsys.2018.12.007]
[http://dx.doi.org/10.1186/s41232-019-0103-3] [PMID: 31312276]
[http://dx.doi.org/10.1200/JCO.2014.59.1339] [PMID: 26240227]
[PMID: 29880463]
[http://dx.doi.org/10.1095/biolreprod.104.030395] [PMID: 15140800]
[http://dx.doi.org/10.1007/978-1-4939-7471-9_2]