Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Mini-Review Article

COVID-19: A Great Mime or a Trigger Event of Autoimmune Manifestations?

Author(s): Maria Celeste Fatone*

Volume 17, Issue 1, 2021

Published on: 05 October, 2020

Page: [7 - 16] Pages: 10

DOI: 10.2174/1573397116666201005122603

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Viruses can induce autoimmune diseases, in addition to genetic predisposition and environmental factors. Particularly, coronaviruses are mentioned among the viruses implicated in autoimmunity. Today, the world's greatest threat derives from the pandemic of a new human coronavirus, called “severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the responsible agent of coronavirus disease 2019 (COVID-19). First case of COVID-19 was identified in Wuhan, the capital of Hubei, China, in December 2019 and quickly spread around the world. This review focuses on autoimmune manifestations described during COVID-19, including pro-thrombotic state associated with antiphospholipid antibodies (aPL), acute interstitial pneumonia, macrophage activation syndrome, lymphocytopenia, systemic vasculitis, and autoimmune skin lesions. This offers the opportunity to highlight the pathogenetic mechanisms common to COVID-19 and several autoimmune diseases in order to identify new therapeutic targets. In a supposed preliminary pathogenetic model, SARS-CoV-2 plays a direct role in triggering widespread microthrombosis and microvascular inflammation, because it is able to induce transient aPL, endothelial damage and complement activation at the same time. Hence, endothelium might represent the common pathway in which autoimmunity and infection converge. In addition, autoimmune phenomena in COVID-19 can be explained by regulatory T cells impairment and cytokines cascade.

Keywords: COVID-19, autoimmune manifestations, antiphospholipid antibodies, endothelium, pathogenesis, regulatory T cells, thrombosis, vasculitis.

Graphical Abstract
[1]
Bogdanos DP, Smyk DS, Invernizzi P, et al. Infectome: A platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2013; 12(7): 726-40.
[http://dx.doi.org/10.1016/j.autrev.2012.12.005] [PMID: 23266520]
[2]
Callaway E. Time to use the p-word? Coronavirus enter dangerous new phase. Nature 2020; 579: 12.
[http://dx.doi.org/10.1038/d41586-020-00551-1]
[3]
Ahn DG, Shin HJ, Kim MH, et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30(3): 313-24.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[4]
von Herrath MG, Oldstone MB. Virus-induced autoimmune disease. Curr Opin Immunol 1996; 8(6): 878-85.
[http://dx.doi.org/10.1016/S0952-7915(96)80019-7] [PMID: 8994870]
[5]
Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol 2020; 94(13): e00510-20.
[http://dx.doi.org/10.1128/JVI.00510-20] [PMID: 32303592]
[6]
Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol Rev 2020; 296(1): 205-19.
[http://dx.doi.org/10.1111/imr.12897] [PMID: 32658335]
[7]
Lyons-Weiler J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun 2020; 3: 100051.
[http://dx.doi.org/10.1016/j.jtauto.2020.100051] [PMID: 32292901]
[8]
Megremis S, Walker TDJ, He X, et al. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis. Ann Rheum Dis 2020; 79(10): 1383-6.
[9]
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant 2020; 39(5): 405-7.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[10]
Wang Y, Sun S, Shen H, et al. Cross-reaction of SARS-CoV antigen with autoantibodies in autoimmune diseases. Cell Mol Immunol 2004; 1(4): 304-7.
[PMID: 16225774]
[11]
Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020.
[12]
De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun 2020; 11(1): 3434.
[http://dx.doi.org/10.1038/s41467-020-17292-4] [PMID: 32632085]
[13]
Punkosdy GA, Blain M, Glass DD, et al. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proc Natl Acad Sci USA 2011; 108(9): 3677-82.
[http://dx.doi.org/10.1073/pnas.1100213108] [PMID: 21321220]
[14]
Wan Z, Zhou Z, Liu Y, et al. Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol 2020; 91(5): e12873.
[http://dx.doi.org/10.1111/sji.12873] [PMID: 32090360]
[15]
Cecere TE, Todd SM, Leroith T. Regulatory T cells in arterivirus and coronavirus infections: Do they protect against disease or enhance it? Viruses 2012; 4(5): 833-46.
[http://dx.doi.org/10.3390/v4050833] [PMID: 22754651]
[16]
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020; 20(4): 425-34.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[17]
Allenbach Y, Uzunhan Y, Toquet S, et al. French myositis network. Different phenotypes in dermatomyositis associated with anti-MDA5 antibody: Study of 121 cases. Neurology 2020; 95(1): e70-8.
[http://dx.doi.org/10.1212/WNL.0000000000009727] [PMID: 32487712]
[18]
Giannini M, Ohana M, Nespola B, Zanframundo G, Geny B, Meyer A. Similarities between COVID-19 and anti-MDA5 syndrome: What can we learn for better care? Eur Respir J 2020; 2001618: 2001618.
[http://dx.doi.org/10.1183/13993003.01618-2020] [PMID: 32631836]
[19]
Tanizawa K, Handa T, Nakashima R, et al. HRCT features of interstitial lung disease in dermatomyositis with anti-CADM-140 antibody. Respir Med 2011; 105(9): 1380-7.
[http://dx.doi.org/10.1016/j.rmed.2011.05.006] [PMID: 21632230]
[20]
Saraya T, Kimura H, Kurai D, et al. Clinical significance of respiratory virus detection in patients with acute exacerbation of interstitial lung diseases. Respir Med 2018; 136: 88-92.
[http://dx.doi.org/10.1016/j.rmed.2018.02.003] [PMID: 29501253]
[21]
Ishiguro T, Kobayashi Y, Uozumi R, et al. Viral pneumonia requiring differentiation from acute and progressive diffuse interstitial lung diseases. Intern Med 2019; 58(24): 3509-19.
[http://dx.doi.org/10.2169/internalmedicine.2696-19] [PMID: 31839671]
[22]
Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev 2015; 24(135): 102-14.
[http://dx.doi.org/10.1183/09059180.00003214] [PMID: 25726561]
[23]
Bruni C, Frech T, Manetti M, et al. Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: Should the door be closed? Front Immunol 2018; 9: 2045.
[http://dx.doi.org/10.3389/fimmu.2018.02045] [PMID: 30245695]
[24]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[25]
Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: Immunology and treatment options. Clin Immunol 2020; 215: 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[26]
Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 2020; 27(6): 992-1000.e3.
[27]
Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol 2019; 10: 119.
[http://dx.doi.org/10.3389/fimmu.2019.00119] [PMID: 30774631]
[28]
Kyriazopoulou E, Leventogiannis K, Norrby-Teglund A, et al. Hellenic sepsis study group. Macrophage activation-like syndrome: An immunological entity associated with rapid progression to death in sepsis. BMC Med 2017; 15(1): 172.
[http://dx.doi.org/10.1186/s12916-017-0930-5] [PMID: 28918754]
[29]
Rigante D, Emmi G, Fastiggi M, Silvestri E, Cantarini L. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders. Clin Rheumatol 2015; 34(8): 1333-9.
[http://dx.doi.org/10.1007/s10067-015-2923-0] [PMID: 25846831]
[30]
McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020; 19(6): 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[31]
Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol 2016; 12(5): 259-68.
[http://dx.doi.org/10.1038/nrrheum.2015.179] [PMID: 27009539]
[32]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[33]
Monteagudo LA, Boothby A, Gertner E. Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol 2020; 2(5): 276-82.
[http://dx.doi.org/10.1002/acr2.11135]
[34]
Poissy J, Goutay J, Caplan M, et al. Lille ICU haemostasis COVID-19 group. Pulmonary embolism in patients with COVID-19: Awareness of an increased prevalence. Circulation 2020; 142(2): 184-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.047430] [PMID: 32330083]
[35]
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol 2020; 5(7): 831-40.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[36]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[37]
Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[38]
Fruchtman S, Aledort LM. Disseminated intravascular coagulation. J Am Coll Cardiol 1986; 8(6)(Suppl. B): 159B-67B.
[http://dx.doi.org/10.1016/S0735-1097(86)80017-1] [PMID: 3537068]
[39]
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033-040.
[40]
Barbosa ACN, Montalvão SAL, Barbosa KGN, et al. Prolonged APTT of unknown etiology: A systematic evaluation of causes and laboratory resource use in an outpatient hemostasis academic unit. Res Pract Thromb Haemost 2019; 3(4): 749-57.
[http://dx.doi.org/10.1002/rth2.12252] [PMID: 31624795]
[41]
Cervera R. Antiphospholipid syndrome. Thromb Res 2017; 151(Suppl. 1): S43-7.
[http://dx.doi.org/10.1016/S0049-3848(17)30066-X] [PMID: 28262233]
[42]
Uthman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum 2002; 31(4): 256-63.
[http://dx.doi.org/10.1053/sarh.2002.28303] [PMID: 11836658]
[43]
Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med 2020; 382(17): e38.
[http://dx.doi.org/10.1056/NEJMc2007575] [PMID: 32268022]
[44]
Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020; 190: 62.
[http://dx.doi.org/10.1016/j.thromres.2020.04.014] [PMID: 32305740]
[45]
Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid-19. J Thromb Haemost 2020; 18(8): 2064-5.
[http://dx.doi.org/10.1111/jth.14867]
[46]
Bowles L, Platton S, Yartey N, et al. Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N Engl J Med 2020; 383(3): 288-90.
[http://dx.doi.org/10.1056/NEJMc2013656] [PMID: 32369280]
[47]
Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 2020; 8(7): 681-6.
[http://dx.doi.org/10.1016/S2213-2600(20)30243-5] [PMID: 32473124]
[48]
Corban MT, Duarte-Garcia A, McBane RD, Matteson EL, Lerman LO, Lerman A. Antiphospholipid Syndrome: Role of vascular endothelial cells and implications for risk stratification and targeted therapeutics. J Am Coll Cardiol 2017; 69(18): 2317-30.
[http://dx.doi.org/10.1016/j.jacc.2017.02.058] [PMID: 28473138]
[49]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[50]
Velásquez M, Rojas M, Abrahams VM, Escudero C, Cadavid ÁP. Mechanisms of endothelial dysfunction in antiphospholipid syndrome: Association with clinical manifestations. Front Physiol 2018; 9: 1840.
[http://dx.doi.org/10.3389/fphys.2018.01840] [PMID: 30627104]
[51]
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res 2020; 220: 1-13.
[52]
Girardi G, Redecha P, Salmon JE. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat Med 2004; 10(11): 1222-6.
[http://dx.doi.org/10.1038/nm1121] [PMID: 15489858]
[53]
Cervera R, Rodríguez-Pintó I, Espinosa G. The diagnosis and clinical management of the catastrophic antiphospholipid syndrome: A comprehensive review. J Autoimmun 2018; 92: 1-11.
[http://dx.doi.org/10.1016/j.jaut.2018.05.007] [PMID: 29779928]
[54]
Dal Ben ER, do Prado CH, Baptista TS, Bauer ME, Staub HL. Decreased levels of circulating CD4+CD25+Foxp3+ regulatory T cells in patients with primary antiphospholipid syndrome. J Clin Immunol 2013; 33(4): 876-9.
[http://dx.doi.org/10.1007/s10875-012-9857-y] [PMID: 23354908]
[55]
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8(4): 420-2.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[56]
Boraschi P. Covid-19 pulmonary involvement: Is really an interstitial pneumonia? Acad Radiol 2020; 27(6): 900.
[57]
Springer J, Villa-Forte A. Thrombosis in vasculitis. Curr Opin Rheumatol 2013; 25(1): 19-25.
[http://dx.doi.org/10.1097/BOR.0b013e32835ad3ca] [PMID: 23143223]
[58]
Newburger JW, Takahashi M, Burns JC. Kawasaki Disease. J Am Coll Cardiol 2016; 67(14): 1738-49.
[http://dx.doi.org/10.1016/j.jacc.2015.12.073] [PMID: 27056781]
[59]
Turnier JL, Anderson MS, Heizer HR, Jone PN, Glodé MP, Dominguez SR. Concurrent respiratory viruses and kawasaki disease. Pediatrics 2015; 136(3): e609-14.
[http://dx.doi.org/10.1542/peds.2015-0950] [PMID: 26304824]
[60]
Esper F, Shapiro ED, Weibel C, Ferguson D, Landry ML, Kahn JS. Association between a novel human coronavirus and Kawasaki disease. J Infect Dis 2005; 191(4): 499-502.
[http://dx.doi.org/10.1086/428291] [PMID: 15655771]
[61]
Jones VG, Mills M, Suarez D, et al. Covid-19 and kawasaki disease: Novel virus and novel case. Hosp Pediatr 2020; 10(6): 537-40.
[62]
Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 2020; 395(10239): 1771-8.
[http://dx.doi.org/10.1016/S0140-6736(20)31103-X] [PMID: 32410760]
[63]
Du Y, Tu L, Zhu P, et al. Clinical features of 85 fatal cases of covid-19 from wuhan. A retrospective observational study. Am J Respir Crit Care Med 2020; 201(11): 1372-9.
[http://dx.doi.org/10.1164/rccm.202003-0543OC] [PMID: 32242738]
[64]
Zhang G, Hu C, Luo L, et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol 2020; 127: 104364.
[http://dx.doi.org/10.1016/j.jcv.2020.104364] [PMID: 32311650]
[65]
Feng Y, Ling Y, Bai T, et al. COVID-19 with different severities: A multicenter study of clinical features. Am J Respir Crit Care Med 2020; 201(11): 1380-8.
[http://dx.doi.org/10.1164/rccm.202002-0445OC] [PMID: 32275452]
[66]
Chan JF, Zhang AJ, Yuan S, et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis 2020; 71(9): 2428-46.
[67]
Schulze-Koops H. Lymphopenia and autoimmune diseases. Arthritis Res Ther 2004; 6(4): 178-80.
[http://dx.doi.org/10.1186/ar1208] [PMID: 15225363]
[68]
Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol 2018; 19(7): 665-73.
[http://dx.doi.org/10.1038/s41590-018-0120-4] [PMID: 29925983]
[69]
Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol 2020; 190(1): 29-31.
[http://dx.doi.org/10.1111/bjh.16794] [PMID: 32374906]
[70]
Revuz S, Vernier N, Saadi L, Campagne J, Poussing S, Maurier F. Immune thrombocytopenic purpura in patients with covid-19. Eur J Case Rep Intern Med 2020; 7(7): 001751.
[71]
Bomhof G, Mutsaers PGNJ, Leebeek FWG, et al. COVID-19-associated immune thrombocytopenia. Br J Haematol 2020; 190(2): e61-4.
[http://dx.doi.org/10.1111/bjh.16850] [PMID: 32420612]
[72]
Pavord S, Thachil J, Hunt BJ, et al. Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. Br J Haematol 2020; 189(6): 1038-43.
[http://dx.doi.org/10.1111/bjh.16775] [PMID: 32374026]
[73]
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study [published correction appears in BMJ]. BMJ 2020; 368: m1091.
[74]
Yuan J, Zou R, Zeng L, et al. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm Res 2020; 69(6): 599-606.
[http://dx.doi.org/10.1007/s00011-020-01342-0] [PMID: 32227274]
[75]
Crum-Cianflone NF. Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev 2008; 21(3): 473-94.
[http://dx.doi.org/10.1128/CMR.00001-08] [PMID: 18625683]
[76]
Recalcati S. Cutaneous manifestations in COVID-19: A first perspective. J Eur Acad Dermatol Venereol 2020; 34(5): e212-3.
[http://dx.doi.org/10.1111/jdv.16387] [PMID: 32215952]
[77]
Fraser K, Robertson L. Chronic urticaria and autoimmunity. Skin Therapy Lett 2013; 18(7): 5-9.
[PMID: 24305753]
[78]
Galván Casas C, Català A, Carretero Hernández G, et al. Classification of the cutaneous manifestations of COVID-19: A rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020; 183(1): 71-7.
[http://dx.doi.org/10.1111/bjd.19163] [PMID: 32348545]
[79]
Walling HW, Sontheimer RD. Cutaneous lupus erythematosus: issues in diagnosis and treatment. Am J Clin Dermatol 2009; 10(6): 365-81.
[http://dx.doi.org/10.2165/11310780-000000000-00000] [PMID: 19824738]
[80]
Abreu MM, Danowski A, Wahl DG, et al. The relevance of “non-criteria” clinical manifestations of antiphospholipid syndrome: 14th international congress on antiphospholipid antibodies technical task force report on antiphospholipid syndrome clinical features. Autoimmun Rev 2015; 14(5): 401-14.
[http://dx.doi.org/10.1016/j.autrev.2015.01.002] [PMID: 25641203]
[81]
Medlin JL, Hansen KE, Fitz SR, Bartels CM. A systematic review and meta-analysis of cutaneous manifestations in late- versus early-onset systemic lupus erythematosus. Semin Arthritis Rheum 2016; 45(6): 691-7.
[http://dx.doi.org/10.1016/j.semarthrit.2016.01.004] [PMID: 26972993]
[82]
Bouaziz JD, Duong T, Jachiet M, et al. Vascular skin symptoms in COVID-19: A french observational study. J Eur Acad Dermatol Venereol 2020; 34(9): e451-2.
[http://dx.doi.org/10.1111/jdv.16544] [PMID: 32339344]
[83]
Zulfiqar AA, Lorenzo-Villalba N, Hassler P, Andrès E. Immune thrombocytopenic purpura in a patient with Covid-19. N Engl J Med 2020; 382(18): e43.
[http://dx.doi.org/10.1056/NEJMc2010472] [PMID: 32294340]
[84]
Li H, Xiang X, Ren H, et al. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J Infect 2020; 80(6): 646-55.
[85]
Abouelasrar Salama S, Lavie M, De Buck M, Van Damme J, Struyf S. Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine Growth Factor Rev 2019; 50: 29-42.
[http://dx.doi.org/10.1016/j.cytogfr.2019.10.006] [PMID: 31718982]
[86]
De Beer FC, Mallya RK, Fagan EA, Lanham JG, Hughes GR, Pepys MB. Serum amyloid-A protein concentration in inflammatory diseases and its relationship to the incidence of reactive systemic amyloidosis. Lancet 1982; 2(8292): 231-4.
[http://dx.doi.org/10.1016/S0140-6736(82)90321-X] [PMID: 6124669]
[87]
Sodin-Semrl S, Zigon P, Cucnik S, et al. Serum amyloid A in autoimmune thrombosis. Autoimmun Rev 2006; 6(1): 21-7.
[http://dx.doi.org/10.1016/j.autrev.2006.03.006] [PMID: 17110312]
[88]
Thompson JC, Wilson PG, Shridas P, et al. Serum amyloid A3 is pro-atherogenic. Atherosclerosis 2018; 268: 32-5.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.011] [PMID: 29175652]
[89]
Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? a review of coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm 2020; 28(3): 391-5.
[http://dx.doi.org/10.1080/09273948.2020.1738501] [PMID: 32175797]
[90]
Hu K, Patel J, Patel BC. Ophthalmic Manifestations Of Coronavirus (COVID-19).StatPearls. Treasure Island, FL: StatPearls Publishing 2020.
[91]
Peleg Y, Kudose S, D’Agati V, et al. Acute kidney injury due to collapsing glomerulopathy following COVID-19 infection. Kidney Int Rep 2020.
[http://dx.doi.org/10.1016/j.ekir.2020.04.017] [PMID: 32346659]
[92]
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98(1): 219-7.
[93]
Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: Causality or coincidence? Lancet Neurol 2020; 19(5): 383-4.
[http://dx.doi.org/10.1016/S1474-4422(20)30109-5] [PMID: 32246917]
[94]
Alberti P, Beretta S, Piatti M, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflamm 2020; 7(4): e741.
[95]
Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol 2019; 15(11): 671-83.
[http://dx.doi.org/10.1038/s41582-019-0250-9] [PMID: 31541214]
[96]
Perlman S, Zhao J. Roles of regulatory T cells and IL-10 in virus-induced demyelination. J Neuroimmunol 2017; 308: 6-11.
[http://dx.doi.org/10.1016/j.jneuroim.2017.01.001] [PMID: 28065579]
[97]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[98]
Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev 2020; 19(5): 102523.
[http://dx.doi.org/10.1016/j.autrev.2020.102523] [PMID: 32205186]
[99]
Gianfrancesco MA, Hyrich KL, Gossec L, et al. COVID-19 Global rheumatology alliance steering committee. Rheumatic disease and COVID-19: Initial data from the COVID-19 global rheumatology alliance provider registries. Lancet Rheumatol 2020; 2(5): e250-3.
[http://dx.doi.org/10.1016/S2665-9913(20)30095-3] [PMID: 32309814]
[100]
D'Silva KM, Serling-Boyd N, Wallwork R, et al. Clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and rheumatic disease: A comparative cohort study from a US 'hot spot'. Ann Rheum Dis 2020; 79: 1156-62.
[101]
Monti S, Balduzzi S, Delvino P, Bellis E, Quadrelli VS, Montecucco C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann Rheum Dis 2020; 79(5): 667-8.
[http://dx.doi.org/10.1136/annrheumdis-2020-217424] [PMID: 32241793]
[102]
Norsa L, Indriolo A, Sansotta N, Cosimo P, Greco S, D’Antiga L. Uneventful course in patients with inflammatory bowel disease during the severe acute respiratory syndrome coronavirus 2 outbreak in Northern Italy. Gastroenterology 2020; 159(1): 371-2.
[http://dx.doi.org/10.1053/j.gastro.2020.03.062] [PMID: 32247695]
[103]
Mihai C, Dobrota R, Schröder M, et al. COVID-19 in a patient with systemic sclerosis treated with tocilizumab for SSc-ILD. Ann Rheum Dis 2020; 79(5): 668-9.
[http://dx.doi.org/10.1136/annrheumdis-2020-217442] [PMID: 32241792]
[104]
Sawalha AH. Patients with lupus are not protected from COVID-19. Ann Rheum Dis 2021; 80: e21.
[105]
Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol 2020; 39(7): 2055-62.
[http://dx.doi.org/10.1007/s10067-020-05073-9] [PMID: 32277367]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy