Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Drug Repositioning: A Smart Approach for Combating SARS-CoV-2

Author(s): Supriya Roy and Suneela Dhaneshwar*

Volume 19, Issue 3, 2021

Published on: 25 September, 2020

Page: [278 - 298] Pages: 21

DOI: 10.2174/2211352518999200925154020

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The enigmatic coronavirus outburst on December 31, 2019, originated from Wuhan city of China, is now declared as Coronavirus Disease (COVID-19) by the World Health Organization (WHO). The causative agent is highly contagious, and its rapid blowout has affected almost every country of the world, endangering thousands of lives. Recently, the WHO has raised the COVID-19 epidemic threat to the “very high” level. Pathophysiological mechanisms are related to the inter-related functioning of various viral polyproteins, structural proteins as well as Non-Structural Proteins (NSP). These proteins play a crucial role in accelerating pathogenesis by promoting viral replication, viral assembly, and virion release, thereby disabling the overall host distinctive immunological system. Presently, there is no specific treatment for COVID-19. The majority of the treatments focus on symptomatic relief and supportive therapy only. Although several drugs have been investigated against coronavirus in numerous clinical trials, only a few exhibited mild-moderate signs of clinical recovery. Drugs that are being repurposed and researched include an anti-- malarial drug, hydroxychloroquine; anti-HIV drugs, lopinavir, Remdesivir alone, or in combination; anti-influenza drugs like umifenovir, and favilavir; anti-arthritic baracitinib, and anti-interleukins. Various research articles demonstrated the excellent potential of hydroxychloroquine either alone or in combination with anti-HIV drugs lopinavir, and Remdesivir at the cellular level; however, exhaustive clinical support and validation are still desirable for repurposing these drugs. Profound identification of cellular targets involved in disease pathogenesis may warrant successful re-profiling of the candidate drugs or their combinations aiming against COVID-19.

Keywords: Coronavirus, SARS-CoV-2, drug repurposing, pandemic, vaccines, convalescent plasma therapy, lopinavir, remdesivir, antiretrovirals, clinical trials.

Graphical Abstract
[1]
Khan, S.; Siddique, R.; Shereen, M.A.; Ali, A.; Liu, J.; Bai, Q.; Bashir, N.; Xue, M.; Bai, Q.; Bashir, N.; Xue, M. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options J. Clin. Microbiol., 2020, 58(5), e00187-e20.
[http://dx.doi.org/10.1128/JCM.00187-20] [PMID: 32161092]
[2]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[3]
Raoult, D.; Zumla, A.; Locatelli, F.; Ippolito, G.; Kroemer, G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses; Cell Stress, 2020.
[4]
Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; Medhi, B. Drug targets for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[5]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[6]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, evaluation and treatment coronavirus (COVID-19); StatPearls Publishing, 2020.
[7]
Fung, T.S.; Liu, D.X. Human coronavirus: host-pathogen interaction. Annu. Rev. Microbiol., 2019, 73(1), 529-557.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[8]
WHO Coronavirus Disease (COVID-19) Dashboard https://covid19.who.int/
[9]
Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; Nishimura, M.; Koh, Y.; Du, B. Asian Critical Care Clinical Trials Group. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir. Med., 2020, 8(5), 506-517.
[http://dx.doi.org/10.1016/S2213-2600(20)30161-2] [PMID: 32272080]
[10]
Grasselli, G.; Pesenti, A.; Cecconi, M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA, 2020, 323(16), 1545-1546.
[http://dx.doi.org/10.1001/jama.2020.4031] [PMID: 32167538]
[11]
Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun., 2020, 525(1), 135-140.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[12]
Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol., 2020, 92(4), 433-440.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[13]
Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. Adv. Virus Res., 2011, 81, 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[14]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[15]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[16]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[17]
Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The Architecture of SARS-CoV-2 Transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[18]
Kim, J.M.; Chung, Y.S.; Jo, H.J.; Lee, N.J.; Kim, M.S.; Woo, S.H.; Park, S.; Kim, J.W.; Kim, H.M.; Han, M.G. Identification of coronavirus isolated from a patient in korea with COVID-19. Osong Public Health Res. Perspect., 2020, 11(1), 3-7.
[http://dx.doi.org/10.24171/j.phrp.2020.11.1.02] [PMID: 32149036]
[19]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. a novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[20]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[21]
Angeletti, S.; Benvenuto, D.; Bianchi, M.; Giovanetti, M.; Pascarella, S.; Ciccozzi, M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J. Med. Virol., 2020, 92(6), 584-588.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[22]
Graham, R.L.; Sparks, J.S.; Eckerle, L.D.; Sims, A.C.; Denison, M.R. SARS coronavirus replicase proteins in pathogenesis. Virus Res., 2008, 133(1), 88-100.
[http://dx.doi.org/10.1016/j.virusres.2007.02.017] [PMID: 17397959]
[23]
Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J., 2020, 55(4), 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[24]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[25]
Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol., 2020, 215, 108427.
[http://dx.doi.org/10.1016/j.clim.2020.108427] [PMID: 32325252]
[26]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[27]
Fung, T.S.; Liu, D.X. Coronavirus infection, ER stress, apoptosis and innate immunity. Front. Microbiol., 2014, 5, 296.
[http://dx.doi.org/10.3389/fmicb.2014.00296] [PMID: 24987391]
[28]
Yang, W.; Sirajuddin, A.; Zhang, X.; Liu, G.; Teng, Z.; Zhao, S.; Lu, M. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur. Radiol., 2020, 30(9), 4874-4882.
[http://dx.doi.org/10.1007/s00330-020-06827-4] [PMID: 32296940]
[29]
Meng, H.; Xiong, R.; He, R.; Lin, W.; Hao, B.; Zhang, L.; Lu, Z.; Shen, X.; Fan, T.; Jiang, W.; Yang, W.; Li, T.; Chen, J.; Geng, Q. CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J. Infect., 2020.
[30]
Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2020.
[31]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev., 2020, 19(6), 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[32]
Moore, J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science, 2020, 368(6490), 473-474.
[http://dx.doi.org/10.1126/science.abb8925] [PMID: 32303591]
[33]
Hirano, T.; Murakami, M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity, 2020, 52(5), 731-733.
[http://dx.doi.org/10.1016/j.immuni.2020.04.003] [PMID: 32325025]
[34]
Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol., 2020, 214, 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[35]
Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun., 2020, 111, 102452.
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[36]
Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; Yuan, Z.; Feng, Z.; Zhang, Y.; Wu, Y.; Chen, Y. Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). Front. Immunol., 2020, 11, 827.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[37]
Pawar, A.Y. Combating devastating COVID-19 by drug repurposing. Int. J. Antimicrob. Agents, 2020, 56(2), 105984.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105984] [PMID: 32305589]
[38]
Senanayake, S.L. Drug repurposing strategies for COVID-19. Future Drug Discov., 2020, 2(2), fdd-2020-fdd-0010.
[http://dx.doi.org/10.4155/fdd-2020-0010]
[39]
Andersen, P.I.; Ianevski, A.; Lysvand, H.; Vitkauskiene, A.; Oksenych, V.; Bjørås, M.; Telling, K.; Lutsar, I.; Dumpis, U.; Irie, Y.; Tenson, T.; Kantele, A.; Kainov, D.E. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int. J. Infect. Dis., 2020, 93, 268-276.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[40]
Coronavirus (COVID-19) Update: Daily Roundup March 30, 2020 | FDA. 2020. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-daily-roundup-march-30-2020
[41]
Jain, R.; Anudeep, T.C.; Shetty, D.U.; Jeyaraman, M.; Chawla, A.; Mahajan, S.; Tarunita, T. Current consensus on drugs and biologics against nCOVID-19-a systematic review. IJCRR, 2020, 12(9), 26-35.
[http://dx.doi.org/10.31782/IJCRR.2020.12096]
[42]
Hickley, N.M.; Al-Maskari, A.; McKibbin, M. Chloroquine and hydroxychloroquine toxicity. Arch. Ophthalmol., 2011, 129(11), 1506-1507.
[http://dx.doi.org/10.1001/archophthalmol.2011.321] [PMID: 22084231]
[43]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[44]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6(1), 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[45]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[46]
Kapoor, A.; Pandurangi, U.; Arora, V.; Gupta, A.; Jaswal, A.; Nabar, A.; Naik, A.; Naik, N.; Namboodiri, N.; Vora, A.; Yadav, R.; Saxena, A. Cardiovascular risks of hydroxychloroquine in treatment and prophylaxis of COVID-19 patients: a scientific statement from the Indian Heart Rhythm Society. Indian Pacing Electrophysiol. J., 2020, 20(3), 117-120.
[http://dx.doi.org/10.1016/j.ipej.2020.04.003] [PMID: 32278018]
[47]
Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect., 2020, 50(4), 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[48]
Tang, W.; Cao, Z.; Han, M.; Wang, Z.; Chen, J.; Sun, W.; Wu, Y.; Xiao, W.; Liu, S.; Chen, E.; Chen, W.; Wang, X.; Yang, J.; Lin, J.; Zhao, Q.; Yan, Y.; Xie, Z.; Li, D.; Yang, Y.; Liu, L.; Qu, J.; Ning, G.; Shi, G.; Xie, Q. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ, 2020, 369, m1849.
[http://dx.doi.org/10.1136/bmj.m1849] [PMID: 32409561]
[49]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[50]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[51]
Wang, P.H. Increasing host cellular receptor-Angiotensin-Converting Enzyme 2 (ACE2) expression by coronavirus may facilitate 2019-NCoV infection. bioRxiv, 2020.
[52]
Chloroquine and hydroxychloroquine: Current evidence for their effectiveness in treating COVID-19-CEBM Available from: https://www.cebm.net/covid-19/chloroquine-and-hydroxychloroquine-current-evidence-for-their-effectiveness-in-treating-covid-19/
[53]
Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; Doremalen, N.; van, ; Leighton, I.; Yinda, C. K.; Perez-Perez, L.; Okumura, A.; Lovaglio, J.; Hanley, P. W.; Saturday, G.; Bosio, C. M.; Anzick, S.; Barbian, K.; Cihlar, T.; Martens, C.; Scott, D. P.; Munster, V. J.; Wit, E.; de, Clinical benefit of Remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv, 2020.
[54]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[55]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M. L.; Lescure, F.-X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S. H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A. O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S. K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R. P.; Brainard, D. M.; Childs, R.; Flanigan, T. Compassionate use of Remdesivir for patients with severe Covid-19. N. Engl. J. Med., 2020, 382, 2327-2336.
[56]
NIH. Critical study of Covid-19 drug shows patients respond to treatment Available from: https://www.statnews.com/2020/04/29/gilead-says-critical-study-of-covid-19-drug-shows-patients-are-responding-to-treatment/
[57]
Fact sheet for health care providers Emergency Use Authorization (EUA) of Remdesivir (GS-5734TM). Available from: https://www.fda.gov/media/137566/download
[58]
Dayer, M.R.; Taleb-Gassabi, S.; Dayer, M.S. Lopinavir; a potent drug against coronavirus infection: insight from molecular docking study. Arch. Clin. Infect. Dis., 2017, 12(4), e13823.
[http://dx.doi.org/10.5812/archcid.13823]
[59]
Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; Spahn, J.E.; Bauer, L.; Sellers, S.; Porter, D.; Feng, J.Y.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020, 11(1), 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[60]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. Case of the index patient who caused tertiary transmission of coronavirus disease 2019 in Korea: the application of lopinavir/ritonavir for the treatment of COVID-19 pneumonia monitored by quantitative RT-PCR. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[61]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[62]
Lokugamage, K.G.; Hage, A.; Schindewolf, C.; Rajsbaum, R.; Menachery, V.D. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv, 2020, 21(1), 1-9.
[http://dx.doi.org/10.1101/2020.03.07.982264] [PMID: 32511335]
[63]
Shen, K.L.; Yang, Y.H. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J. Pediatr., 2020, 16(3), 219-221.
[http://dx.doi.org/10.1007/s12519-020-00344-6] [PMID: 32026147]
[64]
Vanden Eynde, J.J. COVID-19: A brief overview of the discovery clinical trial. Pharmaceuticals (Basel), 2020, 13(4), 65.
[http://dx.doi.org/10.3390/ph13040065] [PMID: 32290348]
[65]
Sallard, E.; Lescure, F.X.; Yazdanpanah, Y.; Mentre, F.; Peiffer-Smadja, N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res., 2020, 178, 104791.
[http://dx.doi.org/10.1016/j.antiviral.2020.104791] [PMID: 32275914]
[66]
Vafaei, S.; Razmi, M.; Mansoori, M.; Asadi-Lari, M.; Madjd, Z. Spotlight of Remdesivir in Comparison with Ribavirin, Favipiravir, Oseltamivir and Umifenovir in Coronavirus Disease 2019 (COVID-19); Pandemic. SSRN Electron. J., 2020.
[http://dx.doi.org/10.2139/ssrn.3569866]
[67]
Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA, 2017, 114(2), 206-214.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[68]
Wang, Z.; Yang, B.; Li, Q.; Wen, L.; Zhang, R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 769-777.
[http://dx.doi.org/10.1093/cid/ciaa272] [PMID: 32176772]
[69]
BREAKING! Coronavirus research shows that arbidol could help in post-exposure prophylaxis (pep) of covid-19 transmission among healthcare workers - thailand medical news Available from: https://www.thailandmedical.news/news/breaking-coronavirus-research-shows-that-arbidol-could-help-in-post-exposure-prophylaxis-pep-of-covid-19-transmission-among-healthcare-workers
[70]
Covid-19 clinical trials analysed by GlobalData in terms of participant size. Available from: https://www.clinicaltrialsarena.com/comment/covid-19-clinical-trials/
[71]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[72]
Furuta, Y.; Takahashi, K.; Kuno-Maekawa, M.; Sangawa, H.; Uehara, S.; Kozaki, K.; Nomura, N.; Egawa, H.; Shiraki, K. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother., 2005, 49(3), 981-986.
[http://dx.doi.org/10.1128/AAC.49.3.981-986.2005] [PMID: 15728892]
[73]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing), 2020, 10, 1016.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[74]
Du, Y.X.; Chen, X.P. Favipiravir: pharmacokinetics and concerns about clinical trials for 2019‐nCoV Infection. Clin. Pharmacol. Ther., 2020, 108(2), 242-247.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[75]
Chen, C.; Zhang, Y.; Huang, J.; Yin, P.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M.; Luo, Y.; Ju, L.; Zhang, J.; Wang, X. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. medRxiv, 2020.
[76]
Harismah, K.; Mirzaei, M. Favipiravir: structural analysis and activity against COVID-19. Adv. J. Chem. B., 2020, 2(2), 55-60.
[http://dx.doi.org/10.33945/SAMI/AJCB.2020.2.3]
[77]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[78]
Chaccour, C.; Hammann, F.; Ramón-García, S.; Rabinovich, N.R. Ivermectin and COVID-19: keeping rigor in times of urgency. Am. J. Trop. Med. Hyg., 2020, 102(6), 1156-1157.
[http://dx.doi.org/10.4269/ajtmh.20-0271] [PMID: 32314704]
[79]
Zhang, S.; Li, L.; Shen, A.; Chen, Y.; Qi, Z. Rational Use of Tocilizumab in the Treatment of Novel Coronavirus Pneumonia. Clin. Drug Investig., 2020, 40(6), 511-518.
[http://dx.doi.org/10.1007/s40261-020-00917-3] [PMID: 32337664]
[80]
Michot, J.M.; Albiges, L.; Chaput, N.; Saada, V.; Pommeret, F.; Griscelli, F.; Balleyguier, C.; Besse, B.; Marabelle, A.; Netzer, F.; Merad, M.; Robert, C.; Barlesi, F.; Gachot, B.; Stoclin, A. tocilizumab, an anti-IL6 receptor antibody, to treat covid-19-related respiratory failure: A case report. Ann. Oncol., 2020.
[81]
Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5), 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[82]
Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: a single center experience. J. Med. Virol., 2020, 92(7), 814-818.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[83]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[84]
Rajbhar, P.; Singh, D.; Yadav, R. Repurposing of SARS inhibitors against COVID 19. ChemRxiv, 2020.
[85]
Uno, Y. Camostat mesilate therapy for COVID-19. Intern. Emerg. Med., 2020.
[http://dx.doi.org/10.1007/s11739-020-02345-9] [PMID: 32347443]
[86]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[87]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[88]
Favalli, E.G.; Biggioggero, M.; Maioli, G.; Caporali, R. Baricitinib for COVID-19: a suitable treatment? Lancet. Infect. Dis., 2020.
[89]
Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, 20(4), 400-402.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[90]
Smith, T.; Bushek, J.; Leclaire, A.; Prosser, T. COVID-19. Drug Ther. (N.Y.), 2020.
[91]
Algernon re-purposes Ifenprodil drug against COVID-19. Available from: https://www.biospectrumasia.com/news/25/15885/algernon-re-purposes-ifenprodil-drug-against-covid-19.html
[92]
Staedtke, V.; Bai, R-Y.; Kim, K.; Darvas, M.; Davila, M.L.; Riggins, G.J.; Rothman, P.B.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Zhou, S. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature, 2018, 564(7735), 273-277.
[http://dx.doi.org/10.1038/s41586-018-0774-y] [PMID: 30542164]
[93]
Vogelstein, J.T.; Powell, M.; Koenecke, A.; Xiong, R.; Fischer, N.; Huq, S.; Khalafallah, A.M.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Zhou, S.; Bettegowda, C.; Konig, M.F.; Mensh, B.; Athey, S. Alpha-1 adrenergic receptor antagonists prevent acute respiratory distress syndrome and death: implications for coronavirus disease 2019. arXiv, 2020. Available from: https://arxiv.org/abs/2004.10117
[94]
Chandel, V.; Raj, S.; Rathi, B.; Kumar, D. In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: a drug repurposing approach. Preprint, 2020.
[95]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[96]
Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; Peng, C.; Yuan, M.; Huang, J.; Wang, Z.; Yu, J.; Gao, X.; Wang, D.; Yu, X.; Li, L.; Zhang, J.; Wu, X.; Li, B.; Yu, Y.; Chen, W.; Peng, Y.; Hu, Y.; Lin, L.; Liu, X.; Huang, S.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Z.; Deng, K.; Xia, Z.; Gong, Q.; Zhang, W.; Zheng, X.; Liu, Y.; Yang, H.; Zhou, D.; Yu, D.; Hou, J.; Shi, Z.; Chen, S.; Chen, Z.; Zhang, X.; Yang, X. The feasibility of convalescent plasma therapy in severe COVID-19 patients: a pilot study. medRxiv, 2020.
[97]
Bloch, E.M.; Shoham, S.; Casadevall, A.; Sachais, B.S.; Shaz, B.; Winters, J.L.; van Buskirk, C.; Grossman, B.J.; Joyner, M.; Henderson, J.P.; Pekosz, A.; Lau, B.; Wesolowski, A.; Katz, L.; Shan, H.; Auwaerter, P.G.; Thomas, D.; Sullivan, D.J.; Paneth, N.; Gehrie, E.; Spitalnik, S.; Hod, E.A.; Pollack, L.; Nicholson, W.T.; Pirofski, L.A.; Bailey, J.A.; Tobian, A.A.R. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Invest., 2020, 130(6), 2757-2765.
[http://dx.doi.org/10.1172/JCI138745] [PMID: 32254064]
[98]
Pluristem Advances Placental Cells to Modulate COVID-19 Cytokine Storm–PharmaLive. Available from: https://www.pharmalive.com/pluristem-advances-placental-cells-to-modulate-covid-19-cytokine-storm/
[99]
Beyrouti, R.; Adams, M.E.; Benjamin, L.; Cohen, H.; Farmer, S.F.; Goh, Y.Y.; Humphries, F.; Jäger, H.R.; Losseff, N.A.; Perry, R.J.; Shah, S.; Simister, R.J.; Turner, D.; Chandratheva, A.; Werring, D.J. Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 889-891.
[http://dx.doi.org/10.1136/jnnp-2020-323586] [PMID: 32354768]
[100]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[101]
Oudkerk, M.; Büller, H.R.; Kuijpers, D.; van Es, N.; Oudkerk, S.F.; McLoud, T.C.; Gommers, D.; van Dissel, J.; Ten Cate, H.; van Beek, E.J. Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19: report of the National Institute for Public Health of the Netherlands. Radiology, 2020, 201629, 201629.
[http://dx.doi.org/10.1148/radiol.2020201629] [PMID: 32324101]
[102]
Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; Burdelski, C.; de Heer, G.; Nierhaus, A.; Frings, D.; Pfefferle, S.; Becker, H.; Bredereke-Wiedling, H.; de Weerth, A.; Paschen, H-R.; Sheikhzadeh-Eggers, S.; Stang, A.; Schmiedel, S.; Bokemeyer, C.; Addo, M.M.; Aepfelbacher, M.; Püschel, K.; Kluge, S. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann. Intern. Med., 2020, 173(4), 268-277.
[http://dx.doi.org/10.7326/M20-2003] [PMID: 32374815]
[103]
Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost., 2020, 18(5), 1094-1099.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[104]
Johnson, R.M.; Vinetz, J.M. Dexamethasone in the management of covid -19. BMJ, 2020, 370, m2648.
[http://dx.doi.org/10.1136/bmj.m2648] [PMID: 32620554]
[105]
Mahase, E. Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds. BMJ, 2020, 369, m2422.
[http://dx.doi.org/10.1136/bmj.m2422] [PMID: 32546467]
[106]
Lythgoe, M.P.; Middleton, P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol. Sci., 2020, 41(6), 363-382.
[http://dx.doi.org/10.1016/j.tips.2020.03.006] [PMID: 32291112]
[107]
Thorlund, K.; Dron, L.; Park, J.; Hsu, G.; Forrest, J.I.; Mills, E.J. A real-time dashboard of clinical trials for COVID-19. Lancet Digit Health, 2020, 2(6), e286-e287.
[http://dx.doi.org/10.1016/S2589-7500(20)30086-8] [PMID: 32363333]
[109]
US drug company begins human trials of COVID-19 vaccine-Italy claims to develop first COVID-19 vaccine: Here is the current status of all the potential coronavirus vaccines Available from: https://timesofindia.indiatimes.com/life-style/health-fitness/health-news/italy-claims-to-develop-first-covid-19-vaccine-here-is-the-current-status-of-all-the-potential-coronavirus-vaccines/photostory/75575319.cms?picid=75582600
[110]
Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. The SARS-CoV-2 Vaccine Pipeline: an Overview. Curr. Trop. Med. Rep., 2020, 7, 1-4.
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[111]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[112]
Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity, 2020, 52(4), 583-589.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy