Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Directing the Antiretroviral Drugs to the Brain Reservoir: A Nanoformulation Approach for NeuroAIDS

Author(s): Bushra Nabi, Saleha Rehman, Faheem H. Pottoo, Sanjula Baboota and Javed Ali*

Volume 22, Issue 4, 2021

Published on: 23 September, 2020

Page: [280 - 286] Pages: 7

DOI: 10.2174/1389200221666200923151036

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Background: Human immunodeficiency virus (HIV)/AIDS is one of the principal concerns contributing to the global burden and the accompanying deleterious outcomes could not be left unattended. Despite significant advances and innovative research being conducted throughout the globe in order to improve the therapeutic profile of conventionally available antiretroviral (ARV) drugs in the eradication of HIV virus reservoirs, its penetration across the blood-brain barrier (BBB) is still a formidable mission. This makes the central nervous system a dominant and vulnerable site for virus propagation, which ultimately affects the therapeutic potential of the drug administered. Therefore there is an upsurge in the prerequisite of novel technologies to come into play, paving the way for nanotechnology.

Methods: This review primarily provides a comprehensive outline and emphasizes on the nanotechnological techniques employed for the delivery of ARV drugs and their stupendous advantages in overcoming the hurdles associated with the same.

Results: The nanotechnological approach bears the potential of site-specific delivery across the BBB via targeting explicit transport processes and provides a sustained release mechanism. Furthermore, different routes of administration explored have also yielded beneficial outcomes for the delivery of ARV drugs.

Conclusion: The futuristic holistic nanotechnology methods, however, should focus on increasing drug trafficking and permeability across the BBB to ameliorate the therapeutic effect of ARV drugs. Additionally, the domain warrants clinical studies to be undertaken to make the technology commercially viable and a success to deal with the problems of the treatment strategy.

Keywords: Antiretroviral drugs, neuroAIDS, nanoformulations, HIV, blood-brain barrier, drug trafficking.

Graphical Abstract
[1]
Roy, U.; Rodríguez, J.; Barber, P.; das Neves, J.; Sarmento, B.; Nair, M. The potential of HIV-1 nanotherapeutics: from in vitro studies to clinical trials. Nanomedicine (Lond.), 2015, 10(24), 3597-3609.
[PMID: 26400459]
[2]
Kumar, S.; Maurya, V.K.; Dandu, H.R.; Bhatt, M.L.B.; Saxena, S.K. Global perspective of novel therapeutic strategies for the management of neuroAIDS. Biomol. Concepts, 2018, 9(1), 33-42.
[PMID: 29742062]
[3]
Scutari, R.; Alteri, C.; Perno, C.F.; Svicher, V.; Aquaro, S. The role of HIV infection in neurologic injury. Brain Sci., 2017, 7(4), 38.
[PMID: 28383502]
[4]
Fiandra, L.; Capetti, A.; Sorrentino, L.; Corsi, F. Nanoformulated antiretrovirals for penetration of the central nervous system: state of the art. J. Neuroimmune Pharmacol., 2017, 12(1), 17-30.
[PMID: 27832401]
[5]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A.; Harshita, ; Sarafroz, M.; Amir, M. Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharm. Nanotechnol., 2019, 7(3), 220-233.
[PMID: 31486751]
[6]
Kaushik, A.; Jayant, R.D.; Nair, M. Nanomedicine for neuroHIV/AIDS management. Nanomedicine (Lond.), 2018, 13(7), 669-673.
[PMID: 29485351]
[7]
Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev., 2016, 103, 202-217.
[PMID: 26944096]
[8]
Tauber, S.C.; Staszewski, O.; Prinz, M.; Weis, J.; Nolte, K.; Bunkowski, S.; Brück, W.; Nau, R. HIV encephalopathy: glial activation and hippocampal neuronal apoptosis, but limited neural repair. HIV Med., 2016, 17(2), 143-151.
[PMID: 26176591]
[9]
Peng, H.; Sun, L.; Jia, B.; Lan, X.; Zhu, B.; Wu, Y.; Zheng, J. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS One, 2011, 6(5), e19439.
[PMID: 21637744]
[10]
Hauser, K.F.; Fitting, S.; Dever, S.M.; Podhaizer, E.M.; Knapp, P.E. Opiate drug use and the pathophysiology of neuroAIDS. Curr. HIV Res., 2012, 10(5), 435-452.
[PMID: 22591368]
[11]
Chiappetta, D.A.; Hocht, C.; Opezzo, J.A.; Sosnik, A. Intranasal administration of antiretroviral-loaded micelles for anatomical targeting to the brain in HIV. Nanomedicine (Lond.), 2013, 8(2), 223-237.
[PMID: 23173734]
[12]
Rehman, S.; Nabi, B.; Zafar, A.; Baboota, S.; Ali, J. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson’s disease treatment? Expert Opin. Drug Deliv., 2019, 16(12), 1355-1366.
[PMID: 31663382]
[13]
Xu, G.; Mahajan, S.; Roy, I.; Yong, K.T. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front. Pharmacol., 2013, 4, 140.
[PMID: 24298256]
[14]
Javed, M.N.; Alam, M.S.; Waziri, A.; Pottoo, F.H.; Yadav, A.K.; Hasnain, M.S.; Almalki, F.A. QbD Applications for the Development of Nanopharmaceutical Products. Pharmaceutical Quality by Design; Academic Press, 2019, pp. 229-253.
[15]
Javed, M.N.; Kohli, K.; Amin, S. Risk assessment integrated QbD approach for development of optimized bicontinuousmucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech, 2018, 19(3), 1377-1391.
[PMID: 29388027]
[16]
Grande, F.; Ioele, G.; Occhiuzzi, M.A.; De Luca, M.; Mazzotta, E.; Ragno, G.; Garofalo, A.; Muzzalupo, R. Reverse transcriptase inhibitors nanosystems designed for drug stability and controlled delivery. Pharmaceutics, 2019, 11(5), E197.
[PMID: 31035595]
[17]
Gendelman, H.E.; Anantharam, V.; Bronich, T.; Ghaisas, S.; Jin, H.; Kanthasamy, A.G.; Liu, X.; McMillan, J.; Mosley, R.L.; Narasimhan, B.; Mallapragada, S.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine (Lond.), 2015, 11(3), 751-767.
[PMID: 25645958]
[18]
Hasnain, M.S.; Javed, M.N.; Alam, M.S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A.K.; Beg, S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box-Behnken design. Mater. Sci. Eng. C, 2019, 99, 1105-1114.
[PMID: 30889643]
[19]
Edagwa, B.; McMillan, J.; Sillman, B.; Gendelman, H.E. Long-acting slow effective release antiretroviral therapy. Expert Opin. Drug Deliv., 2017, 14(11), 1281-1291.
[PMID: 28128004]
[20]
Alam, M.S.; Javed, M.N.; Pottoo, F.H.; Waziri, A.; Almalki, F.A.; Hasnain, M.S.; Garg, A.; Saifullah, M.K. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto‐dye. Appl. Organomet. Chem., 2019, 33(9), e5071.
[21]
Cao, S.; Slack, S.D.; Levy, C.N.; Hughes, S.M.; Jiang, Y.; Yogodzinski, C.; Roychoudhury, P.; Jerome, K.R.; Schiffer, J.T.; Hladik, F.; Woodrow, K.A. Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4+ T cell activation and HIV-1 latency reversal. Sci. Adv., 2019, 5(3), eaav6322.
[PMID: 30944862]
[22]
Alam, M.S.; Garg, A.; Pottoo, F.H.; Saifullah, M.K.; Tareq, A.I.; Manzoor, O.; Mohsin, M.; Javed, M.N. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design. Int. J. Biol. Macromol., 2017, 104(Pt A), 758-767.
[PMID: 28601649]
[23]
Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., 2019, 23, 20.
[PMID: 31832232]
[24]
Charlton, S.; Jones, N.S.; Davis, S.S.; Illum, L. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device. Eur. J. Pharm. Sci., 2007, 30(3-4), 295-302.
[PMID: 17223022]
[25]
Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release, 2016, 235, 34-47.
[PMID: 27208862]
[26]
Cherukula, K.; Manickavasagam Lekshmi, K.; Uthaman, S.; Cho, K.; Cho, C.S.; Park, I.K. Multifunctional inorganic nanoparticles: recent progress in thermal therapy and imaging. Nanomaterials (Basel), 2016, 6(4), 76.
[PMID: 28335204]
[27]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[PMID: 26379790]
[28]
Gao, Y.; Kraft, J.C.; Yu, D.; Ho, R.J.Y. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur. J. Pharm. Biopharm., 2019, 138, 75-91.
[PMID: 29678735]
[29]
Belgamwar, A.; Khan, S.; Yeole, P. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 374-386.
[PMID: 28423949]
[30]
Belgamwar, A.V.; Khan, S.A.; Yeole, P.G. Intranasal dolutegravir sodium loaded nanoparticles of hydroxypropyl-betacyclodextrin for brain delivery in Neuro-AIDS. J. Drug Deliv. Sci. Technol., 2019, 52, 1008-1020.
[31]
Dalpiaz, A.; Fogagnolo, M.; Ferraro, L.; Beggiato, S.; Hanuskova, M.; Maretti, E.; Sacchetti, F.; Leo, E.; Pavan, B. Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery. Eur. J. Pharm. Biopharm., 2019, 144, 91-100.
[PMID: 31521715]
[32]
Dash, P.K.; Gendelman, H.E.; Roy, U.; Balkundi, S.; Alnouti, Y.; Mosley, R.L.; Gelbard, H.A.; McMillan, J.; Gorantla, S.; Poluektova, L.Y. Long-acting nanoformulated antiretroviral therapy elicits potent antiretroviral and neuroprotective responses in HIV-1-infected humanized mice. AIDS, 2012, 26(17), 2135-2144.
[PMID: 22824628]
[33]
Kanmogne, G.D.; Singh, S.; Roy, U.; Liu, X.; McMillan, J.; Gorantla, S.; Balkundi, S.; Smith, N.; Alnouti, Y.; Gautam, N.; Zhou, Y.; Poluektova, L.; Kabanov, A.; Bronich, T.; Gendelman, H.E. Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int. J. Nanomedicine, 2012, 7, 2373-2388.
[PMID: 22661891]
[34]
Martins, C.; Araújo, F.; Gomes, M.J.; Fernandes, C.; Nunes, R.; Li, W.; Santos, H.A.; Borges, F.; Sarmento, B. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. Eur. J. Pharm. Biopharm., 2019, 138, 111-124.
[PMID: 29397261]
[35]
Raymond, A.D.; Diaz, P.; Chevelon, S.; Agudelo, M.; Yndart-Arias, A.; Ding, H.; Kaushik, A.; Jayant, R.D.; Nikkhah-Moshaie, R.; Roy, U.; Pilakka-Kanthikeel, S.; Nair, M.P. Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. J. Neurovirol., 2016, 22(2), 129-139.
[PMID: 26631079]
[36]
Kuo, Y.C.; Chung, C.Y. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf. B Biointerfaces, 2012, 91, 242-249.
[PMID: 22137614]
[37]
Kuo, Y.C.; Lee, C.L. Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood-brain barrier. Colloids Surf. B Biointerfaces, 2012, 90, 75-82.
[PMID: 22024400]
[38]
Al-Ghananeem, A.M.; Saeed, H.; Florence, R.; Yokel, R.A.; Malkawi, A.H. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J. Drug Target., 2010, 18(5), 381-388.
[PMID: 20001275]
[39]
Thomsen, L.B.; Thomsen, M.S.; Moos, T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther. Deliv., 2015, 6(10), 1145-1155.
[PMID: 26446407]
[40]
Tomitaka, A.; Kaushik, A.; Kevadiya, B.D.; Mukadam, I.; Gendelman, H.E.; Khalili, K.; Liu, G.; Nair, M. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov. Today, 2019, 24(3), 873-882.
[PMID: 30660756]
[41]
Atluri, V.S.; Jayant, R.D.; Pilakka-Kanthikeel, S.; Garcia, G.; Samikkannu, T.; Yndart, A.; Kaushik, A.; Nair, M. Development of TIMP1 magnetic nanoformulation for regulation of synaptic plasticity in HIV-1 infection. Int. J. Nanomedicine, 2016, 11, 4287-4298.
[PMID: 27621622]
[42]
Nowacek, A.S.; McMillan, J.; Miller, R.; Anderson, A.; Rabinow, B.; Gendelman, H.E. Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J. Neuroimmune Pharmacol., 2010, 5(4), 592-601.
[PMID: 20237859]
[43]
Epstein, A.A.; Narayanasamy, P.; Dash, P.K.; High, R.; Bathena, S.P.R.; Gorantla, S.; Poluektova, L.Y.; Alnouti, Y.; Gendelman, H.E.; Boska, M.D. Combinatorial assessments of brain tissue metabolomics and histopathology in rodent models of human immunodeficiency virus infection. J. Neuroimmune Pharmacol., 2013, 8(5), 1224-1238.
[PMID: 23702663]
[44]
Kaushik, A.; Jayant, R.D.; Nikkhah-Moshaie, R.; Bhardwaj, V.; Roy, U.; Huang, Z.; Ruiz, A.; Yndart, A.; Atluri, V.; El-Hage, N.; Khalili, K.; Nair, M. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci. Rep., 2016, 6, 25309.
[PMID: 27143580]
[45]
Garrido, C.; Simpson, C.A.; Dahl, N.P.; Bresee, J.; Whitehead, D.C.; Lindsey, E.A.; Harris, T.L.; Smith, C.A.; Carter, C.J.; Feldheim, D.L.; Melander, C.; Margolis, D.M. Gold nanoparticles to improve HIV drug delivery. Future Med. Chem., 2015, 7(9), 1097-1107.
[PMID: 26132521]
[46]
Fiandra, L.; Colombo, M.; Mazzucchelli, S.; Truffi, M.; Santini, B.; Allevi, R.; Nebuloni, M.; Capetti, A.; Rizzardini, G.; Prosperi, D.; Corsi, F. Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine (Lond.), 2015, 11(6), 1387-1397.
[PMID: 25839392]
[47]
Rodriguez, M.; Kaushik, A.; Lapierre, J.; Dever, S.M.; El-Hage, N.; Nair, M. Electro-magnetic nano-particle bound beclin1 siRNA crosses the blood-brain barrier to attenuate the inflammatory effects of HIV-1 infection in vitro. J. Neuroimmune Pharmacol., 2017, 12(1), 120-132.
[PMID: 27287620]
[48]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[PMID: 28748089]
[49]
Macchione, M.A.; Guerrero-Beltrán, C.; Rosso, A.P.; Euti, E.M.; Martinelli, M.; Strumia, M.C.; Muñoz-Fernández, M.A. Poly(N-vinylcaprolactam) nanogels with antiviral behavior against hiv-1 infection. Sci. Rep., 2019, 9(1), 5732.
[PMID: 30952921]
[50]
Vinogradov, S.V.; Poluektova, L.Y.; Makarov, E.; Gerson, T.; Senanayake, M.T. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir. Chem. Chemother., 2010, 21(1), 1-14.
[PMID: 21045256]
[51]
Gerson, T.; Makarov, E.; Senanayake, T.H.; Gorantla, S.; Poluektova, L.Y.; Vinogradov, S.V. Nano-NRTIs demonstrate low neurotoxicity and high antiviral activity against HIV infection in the brain. Nanomedicine (Lond.), 2014, 10(1), 177-185.
[PMID: 23845925]
[52]
Mahajan, S.D.; Law, W.C.; Aalinkeel, R.; Reynolds, J.; Nair, B.B.; Yong, K.T.; Roy, I.; Prasad, P.N.; Schwartz, S.A. Nanoparticle-mediated targeted delivery of antiretrovirals to the brain. Methods Enzymol., 2012, 509, 41-60.
[PMID: 22568900]
[53]
Singh, I.; Swami, R.; Pooja, D.; Jeengar, M.K.; Khan, W.; Sistla, R. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J. Drug Target., 2016, 24(3), 212-223.
[PMID: 26219519]
[54]
Vilella, A.; Ruozi, B.; Belletti, D.; Pederzoli, F.; Galliani, M.; Semeghini, V.; Forni, F.; Zoli, M.; Vandelli, M.A.; Tosi, G. Endocytosis of nanomedicines: the case of glycopeptide engineered PLGA nanoparticles. Pharmaceutics, 2015, 7(2), 74-89.
[PMID: 26102358]
[55]
Saiyed, Z.M.; Gandhi, N.H.; Nair, M.P. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood-brain barrier. Int. J. Nanomedicine, 2010, 5, 157-166.
[PMID: 20463931]
[56]
Xie, S.; Tao, Y.; Pan, Y.; Qu, W.; Cheng, G.; Huang, L.; Chen, D.; Wang, X.; Liu, Z.; Yuan, Z. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J. Control. Release, 2014, 187, 101-117.
[PMID: 24878179]
[57]
Borgmann, K.; Rao, K.S.; Labhasetwar, V.; Ghorpade, A. Efficacy of tat-conjugated ritonavir-loaded nanoparticles in reducing HIV-1 replication in monocyte-derived macrophages and cytocompatibility with macrophages and human neurons. AIDS Res. Hum. Retroviruses, 2011, 27(8), 853-862.
[PMID: 21175357]
[58]
Chattopadhyay, N.; Zastre, J.; Wong, H.L.; Wu, X.Y.; Bendayan, R. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm. Res., 2008, 25(10), 2262-2271.
[PMID: 18516666]
[59]
Gupta, S.; Kesarla, R.; Chotai, N.; Misra, A.; Omri, A. Systematic approach for the formulation and optimization of solid lipid nanoparticles of efavirenz by high pressure homogenization using design of experiments for brain targeting and enhanced bioavailability. BioMed Res. Int., 2017, 2017, 5984014.
[PMID: 28243600]
[60]
Vyas, A.; Jain, A.; Hurkat, P.; Jain, A.; Jain, S.K. Targeting of AIDS related encephalopathy using phenylalanine anchored lipidic nanocarrier. Colloids Surf. B Biointerfaces, 2015, 131, 155-161.
[PMID: 25988279]
[61]
Dandagi, P.M.; Patel, P.D.; Gadad, A.P.; Aravapalli, A.K. RES and brain targeting stavudine-loaded solid lipid nanoparticles for AIDS therapy. Asian J. Pharm., 2012, 6, 116.
[62]
Nabi, B.; Rehman, S.; Baboota, S.; Ali, J. Insights on oral drug delivery of lipid nanocarriers: a win-win solution for augmenting bioavailability of antiretroviral drugs. AAPS PharmSciTech, 2019, 20(2), 60.
[PMID: 30623263]
[63]
Chakraborty, T.; Das, M.K.; Dutta, L.; Mukherjee, B.; Das, S. Sarma.; A. Successful delivery of zidovudine-loaded docosanol nanostructured lipid Carriers (Docosanol NLCs) into rat brain. In: Surface Modification of Nanoparticles for Targeted Drug Delivery; Pathak, Y., Ed.; Springer: Switzerland AG, 2019; pp. 245-276.
[64]
Sarma, A.; Das, M.K. Formulation by Design (FbD) approach to develop TenofovirDisoproxilFumarate loaded Nanostructured Lipid Carriers (NLCs) for the aptness of nose to brain delivery. J. Drug Deliv. Ther., 2019, 9(2), 148-159.
[65]
Pokharkar, V.; Patil-Gadhe, A.; Palla, P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: in-vivo pharmacokinetic and toxicity study. Biomed. Pharmacother., 2017, 94, 150-164.
[PMID: 28759752]
[66]
Vyas, T.K.; Shahiwala, A.; Amiji, M.M. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int. J. Pharm., 2008, 347(1-2), 93-101.
[PMID: 17651927]
[67]
Nair, M. Personalized NanoMedicine: Towards new Theranostic Approach. J. Pers. Nanomed., 2015, 1(1), 1-2.
[PMID: 26635970]
[68]
Cao, S.; Woodrow, K.A. Nanotechnology approaches to eradicating HIV reservoirs. Eur. J. Pharm. Biopharm., 2019, 138, 48-63.
[PMID: 29879528]
[69]
Sagar, V.; Nair, M. Near-infrared biophotonics-based nanodrug release systems and their potential application for neuro-disorders. Expert Opin. Drug Deliv., 2018, 15(2), 137-152.
[PMID: 28276967]
[70]
Kaushik, A.; Nikkhah-Moshaie, R.; Sinha, R.; Bhardwaj, V.; Atluri, V.; Jayant, R.D.; Yndart, A.; Kateb, B.; Pala, N.; Nair, M. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells. Sci. Rep., 2017, 7, 45663.
[PMID: 28374799]
[71]
Sharma, S.; Javed, M.N.; Pottoo, F.H.; Rabbani, S.A.; Barkat, M.A. Harshita; Sarafroz, M.; Amir,M. Bioresponse Inspired Nanomaterials for Targeted Drug and Gene Delivery. Pharm. Nanotechnol., 2019, 7, 1-15.
[72]
Nabi, B.; Rehman, S.; Khan, S.; Baboota, S.; Ali, J. Ligand conjugation: an emerging platform for enhanced brain drug delivery. Brain Res. Bull., 2018, 142, 384-393.
[PMID: 30086350]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy