Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Mucoadhesive Formulation Designs for Oral Controlled Drug Release at the Colon

Author(s): Phuong H.L. Tran and Thao T.D. Tran*

Volume 27, Issue 4, 2021

Published on: 17 September, 2020

Page: [540 - 547] Pages: 8

DOI: 10.2174/1381612826666200917143816

Price: $65

conference banner
Abstract

Mucoadhesive formulations have been demonstrated to result in efficient drug delivery systems with advantages over existing systems such as increased local retention and sustained drug release via adhesiveness to mucosal tissues. The controlled release of colon-targeted, orally administered drugs has recently attracted a number of studies investigating mucoadhesive systems. Consequently, substantial designs, from mucoadhesive cores to shells of particles, have been studied with promising applications. This review will provide an overview of specific strategies for developing mucoadhesive systems for colon-targeted oral delivery with controlled drug release, including mucoadhesive matrices, cross-linked mucoadhesive microparticles, coatings and mucoadhesive nanoparticles. The understanding of the basic principle of these designs and advanced formulations throughout will lead to the development of products with efficient drug delivery at the colon for therapies for different diseases.

Keywords: Colonic delivery, controlled release, mucoadhesive drug delivery system, mucoadhesive nanoparticles, mucoadhesive matrices, mucoadhesive formulations.

[1]
Sudhakar S, Chandran SV, Selvamurugan N, Nazeer RA. Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo. Int J Biol Macromol 2020; 150: 281-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.079] [PMID: 32057846]
[2]
Iyer H, Khedkar A, Verma M. Oral insulin - a review of current status. Diabetes Obes Metab 2010; 12(3): 179-85.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01150.x] [PMID: 20151994]
[3]
Javanbakht S, Shaabani A. Carboxymethyl cellulose-based oral delivery systems. Int J Biol Macromol 2019; 133: 21-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.079] [PMID: 30986470]
[4]
Du X, Yin S, Xu L, et al. Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym 2020; 229: 115484.
[http://dx.doi.org/10.1016/j.carbpol.2019.115484] [PMID: 31826482]
[5]
Tran PHL, Duan W, Lee BJ, Tran TTD. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int J Pharm 2019; 569: 118614.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118614] [PMID: 31415877]
[6]
Fan Y, Dhaliwal HK, Menon AV, et al. Site-specific intestinal DMT1 silencing to mitigate iron absorption using pH-sensitive multi-compartmental nanoparticulate oral delivery system. Nanomedicine (Lond) 2019; 22: 102091.
[http://dx.doi.org/10.1016/j.nano.2019.102091] [PMID: 31626992]
[7]
Forbes DC, Peppas NA. Oral delivery of small RNA and DNA. J Control Release 2012; 162(2): 438-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.037] [PMID: 22771979]
[8]
Lautenschläger C, Schmidt C, Fischer D, Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev 2014; 71: 58-76.
[http://dx.doi.org/10.1016/j.addr.2013.10.001] [PMID: 24157534]
[9]
Kriegel C, Attarwala H, Amiji M. Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Adv Drug Deliv Rev 2013; 65(6): 891-901.
[http://dx.doi.org/10.1016/j.addr.2012.11.003] [PMID: 23220324]
[10]
Uhl P, Grundmann C, Sauter M, et al. Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide. Nanomedicine (Lond) 2020; 24: 102132.
[http://dx.doi.org/10.1016/j.nano.2019.102132] [PMID: 31783138]
[11]
Kiataramgul A, Maneenin S, Purton S, et al. An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae. Aquaculture 2020; 521: 735022.
[http://dx.doi.org/10.1016/j.aquaculture.2020.735022]
[12]
Lupo N, Tkadlečková VN, Jelkmann M, et al. Self-emulsifying drug delivery systems: in vivo evaluation of their potential for oral vaccination. Acta Biomater 2019; 94: 425-34.
[http://dx.doi.org/10.1016/j.actbio.2019.06.026] [PMID: 31228632]
[13]
Hu WY, Wu ZM, Yang QQ, Liu YJ, Li J, Zhang CY. Smart pH-responsive polymeric micelles for programmed oral delivery of insulin. Colloids Surf B Biointerfaces 2019; 183: 110443.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110443] [PMID: 31445358]
[14]
Lee SH, Song JG, Han H-K. Development of pH-responsive organic-inorganic hybrid nanocomposites as an effective oral delivery system of protein drugs. J Control Release 2019; 311-312: 74-84.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.036] [PMID: 31487499]
[15]
Zeng Z, Qi D, Yang L, et al. Stimuli-responsive self-assembled dendrimers for oral protein delivery. J Control Release 2019; 315: 206-13.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.049] [PMID: 31672623]
[16]
Ameeduzzafar , El-Bagory I, Alruwaili NK, et al. Development of novel dapagliflozin loaded solid self-nanoemulsifying oral delivery system: Physiochemical characterization and in vivo antidiabetic activity. J Drug Deliv Sci Technol 2019; 54: 101279.
[http://dx.doi.org/10.1016/j.jddst.2019.101279]
[17]
Wang J, Wang F, Li X, Zhou Y, Wang H, Zhang Y. Uniform carboxymethyl chitosan-enveloped Pluronic F68/poly(lactic-co-glycolic acid) nano-vehicles for facilitated oral delivery of gefitinib, a poorly soluble antitumor compound. Colloids Surf B Biointerfaces 2019; 177: 425-32.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.028] [PMID: 30798063]
[18]
Otte A, Soh B-K, Yoon G, Park K. Liquid crystalline drug delivery vehicles for oral and IV/subcutaneous administration of poorly soluble (and soluble) drugs. Int J Pharm 2018; 539(1-2): 175-83.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.037] [PMID: 29371020]
[19]
Tran PHL, Duan W, Lee B-J, Tran TTD. The use of zein in the controlled release of poorly water-soluble drugs. Int J Pharm 2019; 566: 557-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306]
[20]
Beig A, Fine-Shamir N, Porat D, Lindley D, Miller JM, Dahan A. Concomitant solubility-permeability increase: Vitamin E TPGS vs. amorphous solid dispersion as oral delivery systems for etoposide. Eur J Pharm Biopharm 2017; 121: 97-103.
[http://dx.doi.org/10.1016/j.ejpb.2017.09.012] [PMID: 28958946]
[21]
Tran PHL, Duan W, Lee BJ, Tran TTD. Modulation of drug crystallization and molecular interactions by additives in solid dispersions for improving drug bioavailability. Curr Pharm Des 2019; 25(18): 2099-107.
[http://dx.doi.org/10.2174/1381612825666190618102717] [PMID: 31244413]
[22]
Md S, Singh G, Ahuja A, et al. Mucoadhesive microspheres as a controlled drug delivery system for gastroretention. Systematic Reviews in Pharmacy 2012; 3(1): 4.
[http://dx.doi.org/10.4103/0975-8453.107130]
[23]
Foppoli A, Maroni A, Moutaharrik S, et al. in vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int J Pharm 2019; 572: 118723.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118723] [PMID: 31628978]
[24]
Maroni A, Del Curto MD, Salmaso S, et al. in vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin. Eur J Pharm Biopharm 2016; 108: 76-82.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.002] [PMID: 27519826]
[25]
Vass P, Démuth B, Hirsch E, et al. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019; 296: 162-78.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.023] [PMID: 30677436]
[26]
Bisharat L, Barker SA, Narbad A, Craig DQM. in vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int J Pharm 2019; 556: 311-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.021] [PMID: 30557678]
[27]
Nguyen MNU, Tran PHL, Tran TTD. A single-layer film coating for colon-targeted oral delivery. Int J Pharm 2019; 559: 402-9.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.066] [PMID: 30738130]
[28]
Xu J, Tam M, Samaei S, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater 2017; 48: 247-57.
[http://dx.doi.org/10.1016/j.actbio.2016.10.026] [PMID: 27769943]
[29]
Lemdani K, Seguin J, Lesieur C, et al. Mucoadhesive thermosensitive hydrogel for the intra-tumoral delivery of immunomodulatory agents, in vivo evidence of adhesion by means of non-invasive imaging techniques. Int J Pharm 2019; 567: 118421.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.012] [PMID: 31176849]
[30]
Antonino RSCMQ, Nascimento TL, de Oliveira Junior ER, Souza LG, Batista AC, Lima EM. Thermoreversible mucoadhesive polymer-drug dispersion for sustained local delivery of budesonide to treat inflammatory disorders of the GI tract. J Control Release 2019; 303: 12-23.
[http://dx.doi.org/10.1016/j.jconrel.2019.04.011] [PMID: 30980853]
[31]
Jelkmann M, Bonengel S, Menzel C, Markovic S, Bernkop-Schnürch A. New perspectives of starch: Synthesis and in vitro assessment of novel thiolated mucoadhesive derivatives. Int J Pharm 2018; 546(1-2): 70-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.028] [PMID: 29758345]
[32]
Agarwal T, Narayana SNGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int J Biol Macromol 2015; 75: 409-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.052] [PMID: 25680962]
[33]
McGirr MEA, McAllister SM, Peters EE, Vickers AW, Parr AF, Basit AW. The use of the InteliSite companion device to deliver mucoadhesive polymers to the dog colon. Eur J Pharm Sci 2009; 36(4-5): 386-91.
[http://dx.doi.org/10.1016/j.ejps.2008.11.007] [PMID: 19063965]
[34]
Sabra R, Billa N, Roberts CJ. An augmented delivery of the anticancer agent, curcumin, to the colon. React Funct Polym 2018; 123: 54-60.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.12.012]
[35]
Thirawong N, Thongborisute J, Takeuchi H, Sriamornsak P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J Control Release 2008; 125(3): 236-45.
[http://dx.doi.org/10.1016/j.jconrel.2007.10.023] [PMID: 18082282]
[36]
Ali HSM, Hanafy AF, El Achy SN. Tailoring the mucoadhesive and sustained release characteristics of mesalamine loaded formulations for local treatment of distal forms of ulcerative colitis. Eur J Pharm Sci 2016; 93: 233-43.
[http://dx.doi.org/10.1016/j.ejps.2016.08.008] [PMID: 27503459]
[37]
Senthil Kumar C, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym 2020; 231: 115682.
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[38]
Penhasi A, Gomberg M, Shalev DE. A novel nicotine pectinate salt formulated in a specific time-controlled delivery system: A new approach for colon-targeted nicotine release. J Drug Deliv Sci Technol 2020; 56: 101583.
[http://dx.doi.org/10.1016/j.jddst.2020.101583]
[39]
Wang L-H, Huang G-Q, Xu T-C, Xiao J-X. Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery. Food Hydrocoll 2019; 94: 354-62.
[http://dx.doi.org/10.1016/j.foodhyd.2019.03.045]
[40]
Yuan Y, Xu X, Gong J, et al. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int J Biol Macromol 2019; 131: 209-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.061] [PMID: 30872052]
[41]
Zhu J, Zhong L, Chen W, et al. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system. Food Hydrocoll 2019; 95: 562-70.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.042]
[42]
Sinha P, Udhumansha U, Rathnam G, Ganesh M, Jang HT. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: in vitro evaluation. Int J Biol Macromol 2018; 117: 840-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.181] [PMID: 29807085]
[43]
Sabra R, Roberts CJ, Billa N. Courier properties of modified citrus pectinate-chitosan nanoparticles in colon delivery of curcumin. Colloid and Interface Science Communications 2019; 32: 100192.
[http://dx.doi.org/10.1016/j.colcom.2019.100192]
[44]
Gamboa JM, Leong KW. in vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev 2013; 65(6): 800-10.
[http://dx.doi.org/10.1016/j.addr.2013.01.003] [PMID: 23415952]
[45]
Netsomboon K, Bernkop-Schnürch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm 2016; 98: 76-89.
[http://dx.doi.org/10.1016/j.ejpb.2015.11.003] [PMID: 26598207]
[46]
Dodou D, Breedveld P, Wieringa PA. Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications. Eur J Pharm Biopharm 2005; 60(1): 1-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.01.007] [PMID: 15848050]
[47]
Sontheimer-Phelps A, Chou DB, Tovaglieri A, et al. Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology. Cell Mol Gastroenterol Hepatol 2020; 9(3): 507-26.
[http://dx.doi.org/10.1016/j.jcmgh.2019.11.008] [PMID: 31778828]
[48]
Woertz C, Preis M, Breitkreutz J, Kleinebudde P. Assessment of test methods evaluating mucoadhesive polymers and dosage forms: an overview. Eur J Pharm Biopharm 2013; 85(3 Pt. B): 843-53.
[http://dx.doi.org/10.1016/j.ejpb.2013.06.023] [PMID: 23851076]
[49]
Mura C, Manconi M, Valenti D, et al. in vitro study of N-succinyl chitosan for targeted delivery of 5-aminosalicylic acid to colon. Carbohydr Polym 2011; 85(3): 578-83.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.017]
[50]
Mura C, Nácher A, Merino V, et al. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf B Biointerfaces 2012; 94: 199-205.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.030] [PMID: 22341520]
[51]
Cerchiara T, Abruzzo A, Parolin C, et al. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 2016; 143: 124-30.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.020] [PMID: 27083351]
[52]
Gadalla HH, Mohammed FA, El-Sayed AM, Soliman GM. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm 2020; 577: 119070.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119070] [PMID: 31981708]
[53]
de Oliveira Cardoso VM, Evangelista RC, Daflon Gremião MP, Stringhetti Ferreira Cury B. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J Drug Deliv Sci Technol 2020; 55: 101445.
[http://dx.doi.org/10.1016/j.jddst.2019.101445]
[54]
Anande NM, Jain SK, Jain NK. Con-A conjugated mucoadhesive microspheres for the colonic delivery of diloxanide furoate. Int J Pharm 2008; 359(1-2): 182-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.009] [PMID: 18486369]
[55]
Kiani M, Mirzazadeh Tekie FS, Dinarvand M, Soleimani M, Dinarvand R, Atyabi F. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: in vitro stability and efficiency study. Mater Sci Eng C 2016; 62: 771-8.
[http://dx.doi.org/10.1016/j.msec.2016.02.009] [PMID: 26952483]
[56]
Li H, Sanchez-Vazquez B, Trindade RP, et al. Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids Surf B Biointerfaces 2019; 183: 110411.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110411] [PMID: 31421404]
[57]
Mura C, Nácher A, Merino V, et al. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: in vivo study with TNBS-induced colitis model in rats. Int J Pharm 2011; 416(1): 145-54.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.025] [PMID: 21723929]
[58]
Roy P, Shahiwala A. Multiparticulate formulation approach to pulsatile drug delivery: Current perspectives. J Control Release 2009; 134(2): 74-80.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.011] [PMID: 19105973]
[59]
Asghar LFA, Chandran S. Multiparticulate formulation approach to colon specific drug delivery: Current perspectives. J Pharm Pharm Sci 2006; 9(3): 327-38.
[PMID: 17207416]
[60]
Kurra P, Narra K, Puttugunta SB, Kilaru NB, Mandava BR. Development and optimization of sustained release mucoadhesive composite beads for colon targeting. Int J Biol Macromol 2019; 139: 320-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.190] [PMID: 31374273]
[61]
Girhepunje K, Krishnapiillai V, Pal R, Gevariya H, Thirumoorthy N. Celecoxib loaded microbeads: A targeted drug delivery for colorectal cancer. Int J Curr Pharm Res 2010; 2(1): 46-55.
[62]
Gadalla HH, Soliman GM, Mohammed FA, El-Sayed AM. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone. Drug Deliv 2016; 23(7): 2541-54.
[PMID: 25853478]
[63]
Nappinnai M, Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microspheres using 32 factorial design. J Pharm Res 2013; 7(4): 304-9.
[http://dx.doi.org/10.1016/j.jopr.2013.04.014]
[64]
Deng X-Q, Zhang H-B, Wang G-F, et al. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. Int J Pharm 2019; 570: 118644.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118644] [PMID: 31465837]
[65]
Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci 2011; 3(1): 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
[66]
Raj Kumar S, Suman R, Piyush T, Akanksha T. Enteric Coated Guar Gum Microspheres of Ornidazole for Colonic Delivery. Curr Nanosci 2012; 8(4): 571-80.
[http://dx.doi.org/10.2174/157341312801784186]
[67]
Chickpetty SM, Baswaraj R, Kumar GS. Development of novel combined time and pH-dependent based drug delivery systems for targeting 5-fluorouracil to the colon. Curr Drug Deliv 2011; 8(5): 566-74.
[http://dx.doi.org/10.2174/156720111796642246] [PMID: 21696357]
[68]
Hude RU, Jagdale SC. Optimization of time controlled 6-mercaptopurine delivery for site- specific targeting to colon diseases. Curr Drug Deliv 2016; 13(4): 534-44.
[http://dx.doi.org/10.2174/1567201812666150317123226] [PMID: 25784282]
[69]
Song L, Liang L, Shi X, et al. Optimizing pH-sensitive and time-dependent polymer formula of colonic pH-responsive pellets to achieve precise drug release. Asian J Pharm Sci 2019; 14(4): 413-22.
[http://dx.doi.org/10.1016/j.ajps.2018.05.012] [PMID: 32104470]
[70]
Maderuelo C, Lanao JM, Zarzuelo A. Enteric coating of oral solid dosage forms as a tool to improve drug bioavailability. Eur J Pharm Sci 2019; 138: 105019.
[http://dx.doi.org/10.1016/j.ejps.2019.105019] [PMID: 31374253]
[71]
Chen J, Li X, Chen L, Xie F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr Polym 2018; 191: 242-54.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[72]
Tunpanich P, Limpongsa E, Pongjanyakul T, Sripanidkulchai B, Jaipakdee N. Mucoadhesive sustained-release tablets for vaginal delivery of Curcuma comosa extracts: Preparation and characterization. J Drug Deliv Sci Technol 2019; 51: 559-68.
[http://dx.doi.org/10.1016/j.jddst.2019.03.030]
[73]
Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Maheriya PM, Nagar BJ. Locust bean gum in the development of sustained release mucoadhesive macromolecules of aceclofenac. Carbohydr Polym 2014; 113: 138-48.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.061] [PMID: 25256468]
[74]
LaFountaine JS, Prasad LK, Miller DA, McGinity JW, Williams RO III. Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs. Eur J Pharm Biopharm 2017; 113: 157-67.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.031] [PMID: 28088635]
[75]
Sharif S, Abbas G, Hanif M, Bernkop-Schnürch A, Jalil A, Yaqoob M. Mucoadhesive micro-composites: Chitosan coated halloysite nanotubes for sustained drug delivery. Colloids Surf B Biointerfaces 2019; 184: 110527.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110527] [PMID: 31577976]
[76]
Anupama S, Pramod Kumar S, Rishabha M. Sustained Drug Delivery Using Mucoadhesive Microspheres: The Basic Concept, Preparation Methods and Recent Patents. Recent Patents on Nanomedicine (Discontinued) 2012; 2(1): 62-77.
[http://dx.doi.org/10.2174/1877912311202010062]
[77]
Swain S, Meher D, Patra CN, Sruti J, Dinda SC, Rao ME. Design and characterization of sustained release mucoadhesive microspheres of tolterodine tartrate. Curr Drug Deliv 2013; 10(4): 413-26.
[http://dx.doi.org/10.2174/1567201811310040006] [PMID: 23215776]
[78]
Belgamwar V, Shah V, Surana SJ. Formulation and evaluation of oral mucoadhesive multiparticulate system containing metoprolol tartarate: an in vitro-ex vivo characterization. Curr Drug Deliv 2009; 6(1): 113-21.
[http://dx.doi.org/10.2174/156720109787048285] [PMID: 19418963]
[79]
Majithiya RJ, Murthy RS. Chitosan-based mucoadhesive microspheres of clarithromycin as a delivery system for antibiotic to stomach. Curr Drug Deliv 2005; 2(3): 235-42.
[http://dx.doi.org/10.2174/1567201054367995] [PMID: 16305425]
[80]
Nagda CD, Chotai NP, Nagda DC, Patel SB, Patel UL. Preparation and characterization of spray-dried mucoadhesive microspheres of ketorolac for nasal administration. Curr Drug Deliv 2012; 9(2): 205-18.
[http://dx.doi.org/10.2174/156720112800234503] [PMID: 22023210]
[81]
Wang B, Zhang K, Wang J, Zhao R, Zhang Q, Kong X. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf B Biointerfaces 2020; 189: 110832.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110832] [PMID: 32070865]
[82]
Petchsangsai M, Sajomsang W, Gonil P, et al. A water-soluble methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride as novel mucoadhesive polymeric nanocomplex platform for sustained-release drug delivery. Carbohydr Polym 2011; 83(3): 1263-73.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.033]
[83]
Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. Int J Pharm 2006; 312(1-2): 113-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.003] [PMID: 16490331]
[84]
Preisig D, Roth R, Tognola S, et al. Mucoadhesive microparticles for local treatment of gastrointestinal diseases. Eur J Pharm Biopharm 2016; 105: 156-65.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.009] [PMID: 27302556]
[85]
Pardo-Castaño C, Bolaños G. Solubility of chitosan in aqueous acetic acid and pressurized carbon dioxide-water: Experimental equilibrium and solubilization kinetics. J Supercrit Fluids 2019; 151: 63-74.
[http://dx.doi.org/10.1016/j.supflu.2019.05.007]
[86]
Ribeiro LNM, Alcântara ACS, Darder M, Aranda P, Araújo-Moreira FM, Ruiz-Hitzky E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 2014; 463(1): 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.035] [PMID: 24374607]
[87]
Shimoda J, Onishi H, Machida Y. Bioadhesive characteristics of chitosan microspheres to the mucosa of rat small intestine. Drug Dev Ind Pharm 2001; 27(6): 567-76.
[http://dx.doi.org/10.1081/DDC-100105182] [PMID: 11548864]
[88]
Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 2003; 255(1-2): 13-32.
[http://dx.doi.org/10.1016/S0378-5173(03)00087-5] [PMID: 12672598]
[89]
Itoh K, Hirayama T, Takahashi A, et al. In situ gelling pectin formulations for oral drug delivery at high gastric pH. Int J Pharm 2007; 335(1-2): 90-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.042] [PMID: 17141988]
[90]
Duan H, Lü S, Gao C, et al. Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids Surf B Biointerfaces 2016; 145: 510-9.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.038] [PMID: 27239905]
[91]
Varum FJO, Veiga F, Sousa JS, Basit AW. Mucoadhesive platforms for targeted delivery to the colon. Int J Pharm 2011; 420(1): 11-9.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.006] [PMID: 21856393]
[92]
Ibekwe VC, Liu F, Fadda HM, et al. An investigation into the in vivo performance variability of pH responsive polymers for ileo-colonic drug delivery using gamma scintigraphy in humans. J Pharm Sci 2006; 95(12): 2760-6.
[http://dx.doi.org/10.1002/jps.20742] [PMID: 16917845]
[93]
McConnell EL, Short MD, Basit AW. An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man. J Control Release 2008; 130(2): 154-60.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.022] [PMID: 18639950]
[94]
Kalb AJ, Levitzki A. Metal-binding sites of concanavalin A and their role in the binding of α-methyl d-glucopyranoside. Biochem J 1968; 109(4): 669-72.
[http://dx.doi.org/10.1042/bj1090669] [PMID: 5683514]
[95]
Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm 2013; 455(1-2): 219-28.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.034] [PMID: 23886649]
[96]
Leclere L, Cutsem PV, Michiels C. Anti-cancer activities of pH- or heat-modified pectin. Front Pharmacol 2013; 4: 128.
[http://dx.doi.org/10.3389/fphar.2013.00128] [PMID: 24115933]
[97]
Venzon SS, Canteri MHG, Granato D, et al. Physicochemical properties of modified citrus pectins extracted from orange pomace. J Food Sci Technol 2015; 52(7): 4102-12.
[http://dx.doi.org/10.1007/s13197-014-1419-2] [PMID: 26139875]
[98]
Rajasree PH, Paul W, Sharma CP, Osmani RAM, Hani U, Srivastava A. Eudragit encapsulated cationic poly (lactic-co-glycolic acid) nanoparticles in targeted delivery of capecitabine for augmented colon carcinoma therapy. J Drug Deliv Sci Technol 2018; 46: 302-11.
[http://dx.doi.org/10.1016/j.jddst.2018.05.025]
[99]
Krishna S, Amarehwar P. Preparation of chitosan coated nanoparticles by emulsion polymerization technique Asian J Pharm Clin Res 2011; 4(1)
[100]
McCall RL, Sirianni RW. PLGA nanoparticles formed by single-or double-emulsion with vitamin E-TPGS. JoVE (Journal of Visualized Experiments) 2013; 82: e51015.
[http://dx.doi.org/10.3791/51015]
[101]
Moghe AK, Gupta BS. Co‐axial electrospinning for nanofiber structures: Preparation and applications. Polym Rev (Philadelphia, PA, U S) 2008; 48(2): 353-77.
[http://dx.doi.org/10.1080/15583720802022257]
[102]
Jiang Y-N, Mo H-Y, Yu D-G. Electrospun drug-loaded core-sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm 2012; 438(1-2): 232-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.053] [PMID: 22981688]
[103]
Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech 2015; 16(4): 731-41.
[http://dx.doi.org/10.1208/s12249-015-0350-9] [PMID: 26070545]
[104]
Belali N, Wathoni N, Muchtaridi M. Advances in orally targeted drug delivery to colon. J Adv Pharm Technol Res 2019; 10(3): 100-6.
[http://dx.doi.org/10.4103/japtr.JAPTR_26_19] [PMID: 31334090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy