Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

The Impetus of COVID -19 in Multiple Organ Affliction Apart from Respiratory Infection: Pathogenesis, Diagnostic Measures and Current Treatment Strategy

Author(s): Bilha Baby, Aswathy R Devan, Bhagyalakshmi Nair and Lekshmi R. Nath*

Volume 21, Issue 4, 2021

Published on: 05 September, 2020

Page: [514 - 526] Pages: 13

DOI: 10.2174/1871526520999200905115050

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

The pandemic spread of COVID 19 caused by the novel Coronavirus (SARS-CoV- 2) produced a tremendous effect on the life of humanity across the globe. The epidemiological studies revealed the drastic spectrum of SARS-CoV 2 infection ranging from mere flu-like symptoms to severe respiratory suppression within a short period. Initially, cases have been confined in the emerging point, Wuhan, China. But, within a few months, it has spread all over 212 countries around the globe and presently has become a severe threat to human life. Even though it is a severe acute respiratory syndrome virus, recent reports came with multiple organ effects of SARS-CoV 2, suggesting the virulence potential of this novel virus to sweep the planet in the absence of a proper vaccine or therapy. In this review, we discuss the multi-organ pathophysiology of COVID-19 infection, together with the treatment methods adopted and innovative diagnostic methods used.

Keywords: SARS-CoV2, pathophysiology, treatment methods, diagnosis, multiple organs, respiratory syndrome.

Graphical Abstract
[1]
Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis., 2020, 94, 44-48.
[http://dx.doi.org/10.1016/j.ijid.2020.03.004] [PMID: 32171952]
[2]
Kathryn, V. Holmes, SARS associated corona virus. N ENG J MED, 2003, 348(20), 1948-1951.
[http://dx.doi.org/10.1056/NEJMp030078]
[3]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[4]
Tang, X; Wu, C; Li, X; Song, Y; Yao, X; Wu, X; Duan, Y; Zhang, H; Wang, Y; Qian, Z; Cui, J; Lu, J On the origin and continuing evolution of SARS-CoV-2. NSR,
[http://dx.doi.org/10.1093/nsr/nwaa036]
[5]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[6]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[7]
Yang, M.; Zhao, J.; Zhang, Z.; Yang, M.; Zhao, J.; Zhang, Z. More Than Pneumonia, The Potential Occurrence of Multiple Organ Failure in 2019 Novel Coronavirus Infection. SSRN,
[http://dx.doi.org/10.2139/ssrn.3532272]
[8]
Han, R.; Huang, L.; Jiang, H.; Dong, J.; Peng, H.; Zhang, D. Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia American J. Roentgenology, 2019, 1-6.https://www.ajronline.org/doi/full/10.2214/AJR.20.22961
[9]
Ai, T.; Yang, Z.; Hou, H.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: a report of 1014 cases. Radiolog, 2019, 296(2), E36-E40.
[http://dx.doi.org/10.1148/radiol.2020200642]
[10]
Del Rio, C.; Malani, P.N. COVID-19-New Insights on a Rapidly Changing Epidemic. JAMA, 2020, 323(14), 1339-1340.
[http://dx.doi.org/10.1001/jama.2020.3072] [PMID: 32108857]
[11]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[12]
Phan, T. Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol., 2020, 81, 104260.
[http://dx.doi.org/10.1016/j.meegid.2020.104260] [PMID: 32092483]
[13]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[14]
Singhal, T. A review of corona virus disease 2019(Covid 19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[15]
Abdulamin, A.S.; Hafidh, R.R. The possible immunological pathway for the variable immunopathogensis of covid 19 infections among healthy adults, elderly and children. Electron J Gen Med, 2020, 7(4), em202.
[http://dx.doi.org/10.29333/ejgm/7850]
[16]
Gou, J.; Huang, Z.; Lin, L.; Lv, J. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin‐Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Am. Heart. Assoc., 2020, 9(7), e016219.
[http://dx.doi.org/10.1161/JAHA.120.016219]
[17]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[18]
Kuba, K.; Imai, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol., 2006, 6(3), 271-276.
[http://dx.doi.org/10.1016/j.coph.2006.03.001] [PMID: 16581295]
[19]
Loeffelholz, M.J.; Tang, Y.W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg. Microbes Infect., 2020, 9(1), 747-756.
[http://dx.doi.org/10.1080/22221751.2020.1745095] [PMID: 32196430]
[20]
Hocke, A.C.; Becher, A.; Knepper, J.; Peter, A.; Holland, G.; Tönnies, M.; Bauer, T.T.; Schneider, P.; Neudecker, J.; Muth, D.; Wendtner, C.M.; Rückert, J.C.; Drosten, C.; Gruber, A.D.; Laue, M.; Suttorp, N.; Hippenstiel, S.; Wolff, T. Emerging human middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs. Am. J. Respir. Crit. Care Med., 2013, 188(7), 882-886.
[http://dx.doi.org/10.1164/rccm.201305-0954LE] [PMID: 24083868]
[21]
Rokni, M.; Ghasemi, V.; Tavakoli, Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev. Med. Virol., 2020, 30(3), e2107.
[http://dx.doi.org/10.1002/rmv.2107] [PMID: 32267987]
[22]
Lin, L.; Lu, L.; Cao, W.; Li, T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg. Microbes Infect., 2020, 9(1), 727-732.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[23]
Lee, Y.L.; Liao, C.H.; Liu, P.Y.; Cheng, C.Y.; Chung, M.Y.; Liu, C.E.; Chang, S.Y.; Hsueh, P.R. Dynamics of anti-SARS-Cov-2 IgM and IgG antibodies among COVID-19 patients. J. Infect., 2020, 81(2), e55-e58.
[http://dx.doi.org/10.1016/j.jinf.2020.04.019] [PMID: 32335168]
[24]
H Ma1, W Zeng, H He, D Zhao, D Jiang, P Zhou, L Cheng,Y Li, X Ma, T Jin, Serum IgA, IgM, and IgG responses in COVID-19. Cell. Mol. Immunol., 2020, 17, 773-775.
[http://dx.doi.org/10.1038/s41423-020-0474-z]
[25]
Liu, X.; Wang, J.; Xu, X.; Liao, G.; Chen, Y.; Hu, C.H. Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg. Microbes. Infec., 2020, 9(1), 1269-1274.
[http://dx.doi.org/10.1080/22221751.2020.1773324]
[26]
Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; Tian, D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis., 2020, 71(15), 762-768.
[http://dx.doi.org/10.1093/cid/ciaa248] [PMID: 32161940]
[27]
Backer, J.A.; Klinkenberg, D.; Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill., 2020, 25(5), pii2000062.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.5.2000062] [PMID: 32046819]
[28]
Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[29]
Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med., 2020, 27(2), taa02.
[http://dx.doi.org/10.1093/jtm/taaa021] [PMID: 32052846]
[30]
Hindson, J. COVID-19: faecal-oral transmission? Nat. Rev. Gastroenterol. Hepatol., 2020, 17(5), 259.
[http://dx.doi.org/10.1038/s41575-020-0295-7] [PMID: 32214231]
[31]
Cai, J.; Sun, W.; Huang, J.; Gamber, M.; Wu, J.; He, G. Indirect Virus Transmission in Cluster of COVID-19 Cases, Wenzhou, China, 2020. Emerg. Infect. Dis., 2020, 26(6), 1343-1345.
[http://dx.doi.org/10.3201/eid2606.200412] [PMID: 32163030]
[32]
Doremalen, N.V.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J. SI GERBER, jol Smith, ED Wit, VJ Munster, Aersol and surface stability of SARS CoV 2 as compared with SARSCoV 1. N. J. Med., 2020, 382, 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[33]
Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol., 2020, 5(7), 811-818.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[34]
Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; Schwartz, A.; Uriel, N. Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation, 2020, 141(20), 1648-1655.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046941] [PMID: 32200663]
[35]
Zaim, S.; Chong, J.H.; Sankaranarayanan, V.; Harky, A. COVID-19 and Multiorgan Response. Curr. Probl. Cardiol., 2020, 45(8), 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[36]
Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med., 2020, 14(9), 865-868.
[http://dx.doi.org/10.1080/17476348.2020.1778470] [PMID: 32567404]
[37]
Xiong, T.Y.; Redwood, S.; Prendergast, B.; Chen, M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J., 2020, 41(19), 1798-1800.
[http://dx.doi.org/10.1093/eurheartj/ehaa231] [PMID: 32186331]
[38]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4), e21.
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[39]
Patel, A.B.; Verma, A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers: What Is the Evidence? JAMA, 2020, (18), 1769-1770.
[http://dx.doi.org/10.1001/jama.2020.4812] [PMID: 32208485]
[40]
Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol., 2020, 5(7), 831-840.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[41]
Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int., 2020, 97(5), 829-838.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[42]
Su, H; Yang, M; Wan, C; Yi, LX; Tang, F; Zhu, HY; Yi, F; Yang, HC; Fogo, AB; Nie, X; Zhang, C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int., 2020, 98(1), 219-227.
[http://dx.doi.org/10.1016/j.kint.2020.04.003]
[43]
Wu, Z; Zhang, Z; Wu, S Focus on the “Crosstalk” between COVID-19 and urogenital systems. J. Urol., 2020, 204(1), 7-8.
[44]
Dashraath, P.; Wong, J.L.J.; Lim, M.X.K.; Lim, L.M.; Li, S.; Biswas, A.; Choolani, M.; Mattar, C.; Su, L.L. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol., 2020, 222(6), 521-531.
[http://dx.doi.org/10.1016/j.ajog.2020.03.021] [PMID: 32217113]
[45]
Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol., 2020, 92(6), 568-576.
[http://dx.doi.org/10.1002/jmv.25748] [PMID: 32134116]
[46]
Gao, Q.Y.; Chen, Y.X.; Fang, J.Y. 2019 Novel coronavirus infection and gastrointestinal tract. J. Dig. Dis., 2020, 21(3), 125-126.
[http://dx.doi.org/10.1111/1751-2980.12851] [PMID: 32096611]
[47]
Gu, J.; Han, B.; Wang, J. Covid 19 Gastrointestinal manifestations and potential fecal –oral transmission. Gastroenterology, 2020, 158(6), 1518-1519.
[http://dx.doi.org/10.1053/j.gastro.2020.02.054] [PMID: 32142785]
[48]
Wu, Y.; Xu, X.; Chen, Z.; Duan, J.; Hashimoto, K.; Yang, L.; Liu, C.; Yang, C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun., 2020, 87, 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[49]
Musa, S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): What do we know till now? Arab J. Gastroenterol., 2020, 21(1), 3-8.
[http://dx.doi.org/10.1016/j.ajg.2020.03.002] [PMID: 32253172]
[50]
ST Moein, SMR Hashemian, B Mansourafshar, AK Tousi, P Tabarsi, RL Doty, Smell dysfunction: a biomarker for COVID‐19. INT FORUM ALLERGY RH,
[http://dx.doi.org/10.1002/alr.22587]
[51]
Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci., 2020, 12(1), 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[52]
Tang, K.; Wang, Y.; Zhang, H.; Zheng, Q.; Fang, R.; Sun, Q. Cutaneous manifestations of the Coronavirus Disease 2019 (COVID-19): A brief review. Dermatol. Ther. (Heidelb.), 2020, 33(4), e13528.
[http://dx.doi.org/10.1111/dth.13528] [PMID: 32383234]
[53]
Jia, J.L.; Kamceva, M.; Rao, S.A.; Linos, E. Cutaneous manifestations of COVID-19: A preliminary review. J. Am. Acad. Dermatol., 2020, 83(2), 687-690.
[http://dx.doi.org/10.1016/j.jaad.2020.05.059] [PMID: 32422225]
[54]
Bouaziz, J.D.; Duong, T.; Jachiet, M.; Velter, C.; Lestang, P.; Cassius, C.; Arsouze, A.; Domergue Than Trong, E.; Bagot, M.; Begon, E.; Sulimovic, L.; Rybojad, M. Vascular skin symptoms in COVID-19: a french observational study. J. Eur. Acad. Dermatol. Venereol., 2020, 34(9), e451-e452.
[http://dx.doi.org/10.1111/jdv.16544] [PMID: 32339344]
[55]
Young S, Fernandez AP, Skin manifestations of COVID-19. CLEV CLIN J MED, 2020.
[http://dx.doi.org/10.3949/ccjm.87a.ccc031] [PMID: 32409442]
[56]
Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano, 2020, 14(4), 3822-3835.
[http://dx.doi.org/10.1021/acsnano.0c02624] [PMID: 32223179]
[57]
Mitra, P.; Misra, S.; Sharma, P. COVID-19 Pandemic in India: what lies ahead. Indian J. Clin. Biochem., 2020, 35(3), 1-3.
[http://dx.doi.org/10.1007/s12291-020-00886-6] [PMID: 32313407]
[58]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[59]
Caruso, D.; Zerunian, M.; Polici, M.; Pucciarelli, F.; Polidori, T.; Rucci, C.; Guido, G.; Bracci, B.; De Dominicis, C.; Laghi, A.; Chest, C.T. Chest CT Features of COVID-19 in Rome, Italy. Radiology, 2020, 296(2), E79-E85.
[http://dx.doi.org/10.1148/radiol.2020201237] [PMID: 32243238]
[60]
Ye, Z.; Zhang, Y.; Wang, Y.; Huang, Z.; Song, B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur. Radiol., 2020, 30(8), 4381-4389.
[http://dx.doi.org/10.1007/s00330-020-06801-0] [PMID: 32193638]
[61]
Song, F.; Shi, N.; Shan, F.; Zhang, Z.; Shen, J.; Lu, H.; Ling, Y.; Jiang, Y.; Shi, Y. Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology, 2020, 295(1), 210-217.
[http://dx.doi.org/10.1148/radiol.2020200274] [PMID: 32027573]
[62]
Shi, H.; Han, X.; Jiang, N.; Cao, Y.; Alwalid, O.; Gu, J.; Fan, Y.; Zheng, C. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect. Dis., 2020, 20(4), 425-434.
[http://dx.doi.org/10.1016/S1473-3099(20)30086-4] [PMID: 32105637]
[63]
Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 2020, 296(2), E115-E117.
[http://dx.doi.org/10.1148/radiol.2020200432] [PMID: 32073353]
[64]
Li, Y.; Xia, L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. AJR Am. J. Roentgenol., 2020, 214(6), 1280-1286.
[http://dx.doi.org/10.2214/AJR.20.22954] [PMID: 32130038]
[65]
Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; Zhang, L.; Han, L.; Dang, S.; Xu, Y.; Yang, Q.; Xu, S.; Zhu, H.; Xu, Y.; Jin, Q.; Sharma, L.; Wang, L.; Wang, J. Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clin. Infect. Dis., 2020, ciaa310.
[http://dx.doi.org/10.1093/cid/ciaa310] [PMID: 32198501]
[66]
Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; Zhang, Y.; Wang, J.; Huang, B.; Lin, Y.; Yang, J.; Cai, W.; Wang, X.; Cheng, J.; Chen, Z.; Sun, K.; Pan, W.; Zhan, Z.; Chen, L.; Ye, F. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol., 2020, 92(9), 1518-1524.
[http://dx.doi.org/10.1002/jmv.25727] [PMID: 32104917]
[67]
Sabino-Silva, R.; Jardim, A.C.G.; Siqueira, W.L. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin. Oral Investig., 2020, 24(4), 1619-1621.
[http://dx.doi.org/10.1007/s00784-020-03248-x] [PMID: 32078048]
[68]
Zhang, J.; Wang, S.; Xue, Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol., 2020, 92(6), 680-682.
[http://dx.doi.org/10.1002/jmv.25742] [PMID: 32124995]
[69]
Ko, W.C.; Rolain, J.M.; Lee, N.Y.; Chen, P.L.; Huang, C.T.; Lee, P.I.; Hsueh, P.R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections Int. J. Antimicrob. Agents, 2020, 55(4), 105933.
[http://dx.doi.org/10.1016%2Fj.ijantimicag.2020.105933]
[70]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[71]
Shittu, MO; Afolami, OI Improving the efficacy of Chloroquine and Hydroxychloroquine against SARS-CoV-2 may require zinc additives - A better synergy for future COVID-19 clinical trials.cases in China where the infection was original Le Infezioni in Medicina, 2020, 2, 192-197.
[72]
Gao, J; Tian, Z; Yang, X Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047]
[73]
Greinetal, J. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Eng. J. Med.,
[http://dx.doi.org/10.1056/NEJMoa2007016]
[74]
ClinicalTrial.gov Identifier- NCT0429289.,
[75]
ClinicalTrial.gov Identifier-NCT04321174.,
[76]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing), 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[77]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T. Trial of Lopinavir–Ritonavir in Adults Hospitalised with Severe Covid-19. N. Engl. J. Med., 2020, 382, (19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[78]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[79]
Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5), 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[80]
Crump, A.; Ōmura, S. Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2011, 87(2), 13-28.
[http://dx.doi.org/10.2183/pjab.87.13] [PMID: 21321478]
[81]
ClinicalTrial.gov Identifier- NCT04373824,
[82]
LCaly. JD Druce, MG Catton, DA Jans, KM Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro; Antivir Res, 2020, p. 178.
[83]
Wilson, A.P.R.; Grüneberg, R.N. Use of teicoplanin in community medicine. Eur. J. Clin. Microbiol. Infect. Dis., 1994, 13(9), 701-710.
[http://dx.doi.org/10.1007/BF02276052] [PMID: 7843174]
[84]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Title: Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19? Int. J. Antimicrob. Agents, 2020, 5(4)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[85]
Rotblat, B.; Ehrlich, M.; Haklai, R.; Kloog, Y. The Ras Inhibitor Farnesylthiosalicylic Acid (Salirasib) disrupts the spatiotemporal localization of active ras: a potential treatment for cancer. Method Enzymol, 2008, 439, 467-89.
[http://dx.doi.org/10.1016/S0076-6879(07)00432-6]
[86]
Sun, ML; Yang, JM; Sun, YP; Su, GH Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43(0), E014.
[87]
87. ClinicalTrial.gov Identifier- NCT04353596.,
[88]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[89]
Patrì, A.; Fabbrocini, G. Hydroxychloroquine and ivermectin: a synergistic combination for COVID-19 chemoprophylaxis and/or treatment? J. Am. Acad. Dermatol., 2020, 82(6), e221.
[http://dx.doi.org/10.1016%2Fj.jaad.2020.04.017]
[90]
Lalak, N.J.; Morris, D.L. Azithromycin clinical pharmacokinetics. Clin. Pharmacokinet., 1993, 25(5), 370-374.
[http://dx.doi.org/10.2165/00003088-199325050-00003] [PMID: 8287632]
[91]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[92]
Zhou, D; Dai, SM; Tong, Q COVID-19: a recommendation to examine the effect of Hydroxychloroquine in preventing infection and progression. J Antimicrob. Chemother., 2020, 75(7), 1667-1670.
[93]
Saiz, LC COVID-19: Remdesivir as a potential therapy against COVID-19 Research gate, 2020.
[94]
Xu, X; Han, M; Li, T; Sun, W; Wang, D; Fu, B; Zhou, Y; Zheng, X; Yang, Y; Li, X; Zhang, X; Pan, A; Wei, H Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci., USA, 2020, 117(20), 10970-10975.
[95]
Fu, B.; Xu, X.; Wei, H. Why tocilizumab could be an effective treatment for severe COVID-19? J. Transl. Med., 2020, 18(1), 164.
[http://dx.doi.org/10.1186/s12967-020-02339-3] [PMID: 32290839]
[96]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[97]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[98]
Ren, J.; Zhang, A.H.; Wang, X.J. Traditional Chinese medicine for COVID-19 treatment Pharmacol Res, 2020, 155, 104743.
[http://dx.doi.org/10.1016%2Fj.phrs.2020.104743]
[99]
Chan, K.W.; Wong, V.T.; Tang, S.C.W. COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease. Am. J. Chin. Med., 2020, 48(3), 737-762.
[http://dx.doi.org/10.1142/S0192415X20500378] [PMID: 32164424]
[100]
BVellingiri, K.; Jayaramayyab, K.; Iyer, M. COVID-19: A promising cure for the global panic. Sci. Total Environ., 2020, 725, 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277]
[101]
Panda, AK; Dixit, S; Rout, B Practitioners Consensus to Develop Strategies for Prevention and Treatment of Corona Virus Disease (COVID-19).
[http://dx.doi.org/10.21760/jaims.5.1.1.6]
[102]
Aditya, The Plausible role of Indian Traditional Medicine in combating Corona Virus (SARS CoV 2): a mini reviw. Curr. Pharm. Biotechnol, 2020, 22(7), 906-919.
[http://dx.doi.org/10.2174/1389201021666200807111359]
[103]
Xu, Z; Shi, L; Wang, Y Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Resp. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X]
[104]
Gates, B. Responding to Covid-19 - A Once-in-a-Century Pandemic? N. Engl. J. Med., 2020, 382(18), 1677-1679.
[http://dx.doi.org/10.1056/NEJMp2003762] [PMID: 32109012]
[105]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 Vaccines at Pandemic Speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[106]
Smith, A.W.; Freedman, D.O. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel Coronavirus (2019-nCoV) outbreak. J. Travel Med., 2020, 27(2), taaa020.
[http://dx.doi.org/10.1093/jtm/taaa020]
[107]
Sultan, M.T.; Butt, M.S.; Qayyum, M.M.N.; Suleria, H.A.R. Immunity: plants as effective mediators. Crit. Rev. Food Sci. Nutr., 2014, 54(10), 1298-1308.
[http://dx.doi.org/10.1080/10408398.2011.633249] [PMID: 24564587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy