Case Report

重组人p53腺病毒注射液(rAd-p53)联合化学疗法治疗4例高级别浆液性卵巢癌

卷 20, 期 4, 2020

页: [313 - 320] 页: 8

弟呕挨: 10.2174/1566523220666200826100245

价格: $65

conference banner
摘要

背景:高度浆液性卵巢癌(HGSOC)是最常见的卵巢上皮癌之一。它具有高度的侵袭性,在全身治疗后很容易复发,并且预后不良。尽管尝试了许多新的化学治疗药物并尝试了不同方案的组合进行治疗,但HGSOC的治疗仍未取得有意义的进展。随着基因测序技术的发展,基因治疗已成为肿瘤治疗的新方向。据报道,P53在HGSOC中具有很高的突变率,这为基因治疗在HGSOC患者中的应用提供了理论基础。重组人p53腺病毒注射液(rAd-p53)是世界上第一个获批的肿瘤基因治疗药物。 病例报告:在本文中,我们回顾性分析了4例用rAdp53治疗的HGSOC患者。其中三例为复发性卵巢癌,其中一例为初始治疗。治疗方法是将重组人p53腺病毒注射液(rAd-p53)应用于病变部位进行局部注射,72小时后,向病变部位注射博来霉素或氟尿嘧啶,同时进行全身静脉内化疗。经rAd-p53治疗后,三种复发性卵巢癌之一达到完全缓解(CR),一种达到部分缓解(PR),一种为稳定疾病(SD)。未经治疗的患者在rAd-p53联合新辅助化疗后进行了手术,获得了病理CR。在P53的各种机制的作用下,随后的肿瘤治疗表现出肿瘤进展缓慢,无腹水和局部复发的特征。截至随访结束,4例患者的OS为71-120个月。 结论:通过这4例病例的显着疗效,我们可以看到,rAdp53联合化学疗法可以有效控制肿瘤病变,延长患者生存时间,提高患者生活质量,为rAd- p53治疗卵巢癌,促进了基因治疗这一领域的进一步发展和进步。

关键词: 高度浆液性卵巢癌,HGSOC,rAd-p53,基因治疗,肿瘤细胞,上皮性卵巢癌。

« Previous
图形摘要
[1]
Shih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004; 164(5): 1511-8.
[http://dx.doi.org/10.1016/S0002-9440(10)63708-X] [PMID: 15111296]
[2]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[3]
Bowtell DD. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer 2010; 10(11): 803-8.
[http://dx.doi.org/10.1038/nrc2946] [PMID: 20944665]
[4]
Ahmed AA, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 2010; 221(1): 49-56.
[http://dx.doi.org/10.1002/path.2696] [PMID: 20229506]
[5]
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474(7353): 609-15.
[http://dx.doi.org/10.1038/nature10166] [PMID: 21720365]
[6]
Hayano T, Yokota Y, Hosomichi K, et al. Molecular characterization of an intact p53 pathway subtype in high-grade serous ovarian cancer. PLoS One 2014; 9(12)e114491
[http://dx.doi.org/10.1371/journal.pone.0114491] [PMID: 25460179]
[7]
Zhong F, Zhu T, Pan X, et al. Comprehensive genomic profiling of high-grade serous ovarian carcinoma from Chinese patients identifies co-occurring mutations in the Ras/Raf pathway with TP53. Cancer Med 2019; 8(8): 3928-35.
[http://dx.doi.org/10.1002/cam4.2243] [PMID: 31124283]
[8]
Ma WS, Ma JG, Xing LN. Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anticancer Drugs 2017; 28(2): 230-6.
[http://dx.doi.org/10.1097/CAD.0000000000000448] [PMID: 27775992]
[9]
Pan JJ, Zhang SW, Chen CB, et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol 2009; 27(5): 799-804.
[http://dx.doi.org/10.1200/JCO.2008.18.9670] [PMID: 19103729]
[10]
Wang J, Wang X, Yang J, et al. Treatment of local advanced non-small cell lung cancer with recombinant human p53adenovirus combined with radiochemotherapy. J Guiyang Med Coll 2014; 39: 225-8.
[11]
Ning X, Sun Z, Wang Y, et al. Docetaxel plus trans-tracheal injection of adenoviral-mediated p53 versus docetaxel alone in patients with previously treated non-small-cell lung cancer. Cancer Gene Ther 2011; 18(6): 444-9.
[http://dx.doi.org/10.1038/cgt.2011.15] [PMID: 21455255]
[12]
Xu Z, Quan X, Jiang J. Clinical observations of intensity modulated radiation therapy combined with recombinant human p53 adenovirus injection on middle-late type giant piece of cervical carcinoma. Anhui Med J 2015; 36: 19-22.
[13]
Huh JJ, Wolf JK, Fightmaster DL, Lotan R, Follen M. Transduction of adenovirus-mediated wild-type p53 after radiotherapy in human cervical cancer cells. Gynecol Oncol 2003; 89(2): 243-50.
[http://dx.doi.org/10.1016/S0090-8258(03)00054-4] [PMID: 12713987]
[14]
Xia Y, Du Z, Wang X, Li X. Treatment of Uterine Sarcoma with rAd-p53 (Gendicine) Followed by Chemotherapy: Clinical Study of TP53 Gene Therapy. Hum Gene Ther 2018; 29(2): 242-50.
[http://dx.doi.org/10.1089/hum.2017.206] [PMID: 29281902]
[15]
Cross B, Chen L, Cheng Q, Li B, Yuan ZM, Chen J. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J Biol Chem 2011; 286(18): 16018-29.
[http://dx.doi.org/10.1074/jbc.M111.228981] [PMID: 21454483]
[16]
Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70(6): 923-35.
[http://dx.doi.org/10.1016/0092-8674(92)90243-6] [PMID: 1356076]
[17]
Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 1992; 70(6): 937-48.
[http://dx.doi.org/10.1016/0092-8674(92)90244-7] [PMID: 1525830]
[18]
Pappas K, Xu J, Zairis S, et al. p53 Maintains baseline expression of multiple tumor suppressor genes. Mol Cancer Res 2017; 15(8): 1051-62.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0089] [PMID: 28483946]
[19]
Hofseth LJ, Hussain SP, Harris CC. p53: 25 years after its discovery. Trends Pharmacol Sci 2004; 25(4): 177-81.
[http://dx.doi.org/10.1016/j.tips.2004.02.009] [PMID: 15116721]
[20]
Xi D, Wang M, Ye H, Luo X, Ning Q. Combined adenovirus-mediated artificial microRNAs targeting mfgl2, mFas, and mTNFR1 protect against fulminant hepatic failure in mice. PLoS One 2013; 8(11)e82330
[http://dx.doi.org/10.1371/journal.pone.0082330] [PMID: 24303082]
[21]
Gai XD, Li GL, Huang JZ, Xue HJ, Wang D. Reversal of multidrug resistance of human hepatocellular carcinoma cells by wild-type p53 gene and related mechanisms. Chin J Cancer 2006; 25(8): 954-9.
[PMID: 16965674]
[22]
Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000; 11(4): 265-83.
[http://dx.doi.org/10.1016/S0928-0987(00)00114-7] [PMID: 11033070]
[23]
Qi X, Chang Z, Song J, Gao G, Shen Z. Adenovirus-mediated p53 gene therapy reverses resistance of breast cancer cells to adriamycin. Anticancer Drugs 2011; 22(6): 556-62.
[http://dx.doi.org/10.1097/CAD.0b013e328345b4e7] [PMID: 21637162]
[24]
Lee YS, Yoon S, Park MS, Kim JH, Lee JH, Song CW. Influence of p53 expression on sensitivity of cancer cells to bleomycin. J Biochem Mol Toxicol 2010; 24(4): 260-9.
[http://dx.doi.org/10.1002/jbt.20334] [PMID: 20135637]
[25]
Guntur VP, Waldrep JC, Guo JJ, Selting K, Dhand R. Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro. Anticancer Res 2010; 30(9): 3557-64.
[PMID: 20944137]
[26]
Liu Q, Sui R, Li R, Miao J, Liu J. Biological characteristics of Taxol resistant ovarian cancer cells and reversal of Taxol resistance by adenovirus expressing p53. Mol Med Rep 2015; 11(2): 1292-7.
[http://dx.doi.org/10.3892/mmr.2014.2784] [PMID: 25351378]
[27]
Kipps E, Tan DS, Kaye SB. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 2013; 13(4): 273-82.
[http://dx.doi.org/10.1038/nrc3432] [PMID: 23426401]
[28]
Fujimoto J, Sakaguchi H, Aoki I, Khatun S, Tamaya T. Clinical implications of expression of vascular endothelial growth factor in metastatic lesions of ovarian cancers. Br J Cancer 2001; 85(3): 313-6.
[http://dx.doi.org/10.1054/bjoc.2001.1933] [PMID: 11487257]
[29]
Shibuya M, Luo JC, Toyoda M, Yamaguchi S. Involvement of VEGF and its receptors in ascites tumor formation. Cancer Chemother Pharmacol 1999; 43: S72-7.
[http://dx.doi.org/10.1007/s002800051102] [PMID: 10357563]
[30]
Bekes I, Friedl TWP, Köhler T, et al. Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer? Mol Cancer 2016; 15(15): 13.
[http://dx.doi.org/10.1186/s12943-016-0497-3] [PMID: 26868378]
[31]
Pal S, Datta K, Mukhopadhyay D. Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 2001; 61(18): 6952-7.
[PMID: 11559575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy