Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Advancement in Pharmacological Activities of Benzothiazole and its Derivatives: An Up to Date Review

Author(s): Sumit, Arvind Kumar and Arun Kumar Mishra*

Volume 21, Issue 3, 2021

Published on: 20 August, 2020

Page: [314 - 335] Pages: 22

DOI: 10.2174/1389557520666200820133252

Price: $65

conference banner
Abstract

Benzothiazole is a heterocyclic aromatic and bicyclic compound in which, benzene ring is attached with thiazole ring. This nucleus is established in marine as well as terrestrial natural compounds. The benzothiazole skeleton is established in a broad variety of bioactive heterocycles and natural products. The benzothiazole nucleus is considered as the principle moiety in several biologically active compounds. Over the decade, chemists are paying more attention towards the revision of the biological and therapeutic activities such as antimicrobial, analgesic, antiinflammatory, antitubercular, antiviral and antioxidant of benzothiazole containing compounds. The molecular structures of a number of potent drugs including Frentizole, Pramipexole, Thioflavin T and Riluzole etc., are based on benzothiazole skeleton. The present work is the compilation and presentation of all available information in a systematic manner with an aim to present the findings in a way, which may be beneficial for future research.

Keywords: Benzothiazole, antimicrobial activity, analgesic activity, antiinflammatory activity, anti-tubercular activity, benzene.

Graphical Abstract
[1]
Abrol, S.; Bodla, R.B.; Goswami, C. A comprehensive review on benzothiazole derivatives for their biological activities. Int. J. Pharm. Sci. Res., 2019, 10(7), 3196-3209.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(7).3196-09]
[2]
Haoa, J.; Wang, Z.; Wan, W.; Lu, W.; Ge, F. One-pot synthesis of 2-trifluoromethyl and 2-difluoromethyl substituted benzo-1,3-diazoles. Tetrahedron Lett., 2007, 48(18), 3251-3254.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.015]
[3]
Xie, Y.; Deng, S.; Chen, Z.; Yan, S.; Landry, D.W. Identification of small-molecule inhibitors of the Abeta-ABAD interaction. Bioorg. Med. Chem. Lett., 2006, 16(17), 4657-4660.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.099]
[4]
Aiken, C.B. Pramipexole in psychiatry: A systematic review of the literature. J. Clin. Psychiatry, 2007, 68(8), 1230-1236.
[http://dx.doi.org/10.4088/JCP.v68n0810]
[5]
Xue, C.; Lin, T.Y.; Chang, D.; Guo, Z. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R. Soc. Open Sci., 2017, 4(1)160696
[http://dx.doi.org/10.1098/rsos.160696]
[6]
Dorst, J. Ludolph, c.; Huebers, A. Antisense oligonucleotides in neurological disorder. Ther. Adv. Neurol. Disorder., 2018, 11, 175-184.
[http://dx.doi.org/10.1177/1756285617734734]
[7]
Mincione, F.; Scozzafava, A.; Supuran, C.T. The development of topically acting carbonic anhydrase inhibitors as anti-glaucoma agents. Curr. Top. Med. Chem., 2007, 7(9), 849-854.
[http://dx.doi.org/10.2174/156802607780636735]
[8]
Deshmukh, R.; Thakur, A.S.; Jha, A.K.; Deshmukh, R. Synthesis and biological evaluation of some 1,3- benzthiazoles derivatives. Int. J. Res. Pharm. Chem., 2011, 1(3), 329-333.
[9]
Bele, D.S.; Kothari, H.; Singhvi, I. Synthesis and antimicrobial activity of some Benzothiazole derivatives. Int. J. Pharm. Chem. Sci., 2012, 1(4), 1238-1242.
[10]
Gupta, A. Synthesis of C-6 methyl substituted benzothiazole derivatives and antifungal activity against aspergillus niger. Ther. Res. Skin Dis., 2018, 1(2), 36-40.
[http://dx.doi.org/10.32474/TRSD.2018.01.000106]
[11]
Franchini, C.; Muraglia, M.; Corbo, F.; Florio, M.A.; Mola, A.D.; Rosato, A.; Matucci, R.; Nesi, M. Synthesis and biological evaluation of 2-mercapto-1,3-benzothiazole derivatives with potential antimicrobial activity. Arch. Pharm. Chem. Life Sci., 2009, 342(10), 605-613.
[http://dx.doi.org/10.1002/ardp.200900092]
[12]
Rajeeva, B.; Srinivasulu, N.; Shantakumar, S.M. Synthesis and antimicrobial activity of some new 2-Substituted benzothiazole derivatives. E-J. Chem., 2009, 6(3), 775-779.
[http://dx.doi.org/10.1155/2009/404596]
[13]
Singh, M.; Singh, S.K.; Gangwar, M.; Nath, G. Design, synthesis and mode of action of some new 2-(4′-aminophenyl) benzothiazole derivatives as potent antimicrobial agents. Lett. Drug Des. Discov., 2016, 13(5), 429-437.
[http://dx.doi.org/10.2174/1570180812666150821003220]
[14]
Ravishankara, D.K.; Chandrashekara, P.G. Synthesis of some novel benzimidazole derivatives and it’s biological evaluation. Eur. J. Chem., 2012, 3(3), 359-362.
[http://dx.doi.org/10.5155/eurjchem.3.3.359-362.607]
[15]
Alla, T.; Kontham, R.; Madhuri, S.K.; Bakshi, V. Synthesis and biological evaluation of some novel 2-cyclic amine benzothiazole derivatives. Indo Amer. J. Pharm. Sci., 2018, 05(04), 2635-2643.
[http://dx.doi.org/10.5281/zenodo.1220232]
[16]
Kolate, S.S.; Waghulde, G.P.; Patil, C.J.; Sarode, C.H. Synthesis, spectroscopic characterization and biological evaluation of some 6-nitro-benzothiazole-2-yl-hydrazone derivatives. J. Pharm. Chem. Biol. Sci., 2018, 6(3), 143-150.
[17]
Azam, M.A.; Dharanya, L.; Mehta, C.C.; Sachdeva, S. Synthesis and biological evaluation of some novel pyrazolopyrimidines incorporating a benzothiazole ring system. Acta Pharm., 2013, 63(1), 19-30.
[http://dx.doi.org/10.2478/acph-2013-0001]
[18]
Gupta, A. Antibacterial activity of novel hydroxy substituted benzothiazole derivatives against streptococcus pyogens. Int. Res. J. Pharm., 2018, 9(6), 207-215.
[http://dx.doi.org/10.7897/2230-8407.096118]
[19]
Chauhan, D.; Siddiqui, A.A.; Kataria, R.; Singh, R. Synthesis, characterization and antimicrobial evaluation of some new benzothiazole derivatives. Int. J. Pharm. Pharm. Sci., 2015, 7(10), 316-319.
[20]
Chaudhary, M.; Pareek, D.; Pareek, P.K.; Kant, R.; Ojha, K.G.; Pareek, A. Synthesis of some new biologically active benzothiazole derivatives containing benzimidazole and imidazoline moieties. Bull. Korean Chem. Soc., 2011, 32(1), 131-136.
[http://dx.doi.org/10.5012/bkcs.2011.32.1.131]
[21]
Baluja, S.; Chanda, S.; Kulshrestha, A. Synthesis, physical characterization and antibacterial activity of some derivatives of 2-amino benzothiazole. Acta Chim. Pharm. Ind., 2017, 7(4), 1-13.
[22]
Raju, G.N.; Prathyusha, T.G.; Sowmya, P.L.; Mounika, S.J.; Der Nadendla, R.R. Synthesis, characterization and biological activity of some 1,3,4-oxadiazole derivatives with benzothiazole moity. Pharm. Sin., 2015, 6(6), 1-8.
[23]
Swarnkar, P.K.; Kriplani, P.; Gupta, G.N.; Ojha, K.G. Synthesis and antibacterial activity of some new phenothiazine derivatives. E-J. Chem., 2007, 4(1), 14-20.
[http://dx.doi.org/10.1155/2007/402673]
[24]
Kumar, V.; Sharma, S.; Husain, A. Synthesis and in vivo anti-inflammatory and analgesic activities of oxadiazoles clubbed with benzothiazole nucleus. Int. Curr. Pharm. J., 2015, 4(12), 457-461.
[http://dx.doi.org/10.3329/icpj.v4i12.25597]
[25]
Siddiqui, N.; Rana, A.; Khan, S.A.; Ahsan, W.; Alam, M.S.; Ahmed, S. Analgesic and antidepressant activities of benzothiazole-benzamides. Bio. Pharm. J., 2008, 1(2), 297-300.
[26]
Verma, A.K.; Martin, A.; Singh, A.K. Synthesis, characterization and evaluation of anti-inflammatory and analgesic activity benzothiazole derivatives. Ind. J. Pharm. Biol. Res., 2014, 2(3), 84-89.
[http://dx.doi.org/10.30750/ijpbr.2.3.14]
[27]
Kumar, K.R.; Karthik, K.N.S.; Begum, P.R.; Rao, P. Synthesis, characterization and biological evaluation of benzothiazole derivatives as potential antimicrobial and analgesic agents. Asian J. Res. Pharm. Sci., 2017, 7, 1-5.
[http://dx.doi.org/10.5958/2231-5659.2017.00018.2]
[28]
Deodhar, M.N.; Dongre, A.C.; Kudale, D.S. Analgesic and antiinflammatory activity of derivatives of 2-aminobenzothiazole. Asian J. Chem., 2012, 24(6), 2747-2752.
[29]
Gote, S.A.; Shivkumar, B.; Gaviraj, E.L. Synthesis and evaluation of new pyrazolines of benzimidazole as potent analgesic and anti-inflammatory agent. Der Pharma Chem., 2016, 8(5), 33-37.
[30]
Gupta, A.; Rawat, S. Synthesis and anti-inflammatory study of novel fluorobenzothiazole derivatives. J. Chem. Pharm. Res., 2010, 2(5), 244-258.
[31]
Bele, D.S.; Singhvi, I. Synthesis, anti-inflammatory and ulcerogenic activity of some mannich bases of 6-substituted-2aminobenzothiazole. Int. J. Res. Pharm. Chem., 2011, 1, 1058-1065.
[32]
Ali, R.; Siddiqui, N. Preliminary anticonvulsant and toxicity screening of substituted. The Sci. World J., 2014, •••, 244-258.
[33]
Liu, D.; Zhang, H.; Jin, C.; Quan, Z. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents. Molecules, 2016, 21(164), 1-13.
[http://dx.doi.org/10.3390/molecules21030164]
[34]
Raju, G.N.; Nadendla, R.R. Synthesis and anticonvulsant activity of newer benzothiazole derivatives. World J. Pharm. Pharm. Sci., 2017, 6, 1701-1713.
[http://dx.doi.org/10.20959/wjpps20174-8963]
[35]
Choudhary, S.; Kalra, N.; Jeyabalan, G. Synthesis, characterization & pharmacological evaluation of some newer benzothiazole. Ind. J. Pharm. Biol. Res., 2018, 6(2), 31-36.
[http://dx.doi.org/10.30750/ijpbr.6.2.6]
[36]
Saleh, O.A.; El-Beherya, M.F.; Aboul-Eneina, M.N.; El-Sattar, A.D. Anticonvulsant potential of certain N-(6-substituted benzo[d]thiazol-2-yl)-2-(4-substituted piperazin-1-yl)acetamides. Egypt. Pharm. J., 2016, 15, 62-69.
[http://dx.doi.org/10.4103/1687-4315.190404]
[37]
Tripathi, L.; Juneja, R. Synthesis and anticonvulsant evaluation of benzothiazole derivatives. MIT Int. J. Pharm. Sci., 2015, 1(2), 26-30.
[http://dx.doi.org/10.3390/molecules21030164]
[38]
Bhat, M.; Belagali, S.L. Synthesis of azo-bridged benzothiazole-phenyl ester derivatives via steglich esterification. Int. J. Cur. Eng. Tech., 2014, 4, 2711-2715.
[39]
Sarkar, S. Design, synthesis, and evaluation of antitubercular activity of a novel benzothiazole- containing an azetidinone ring. Istanbul. J. Pharm. (Cairo), 2018, 48(2), 28-31.
[http://dx.doi.org/10.5152/IstanbulJPharm.2018.320135]
[40]
Suresh, A.J.; Kumar, B.; Surya, P.R. Design, synthesis, characterization and biological evaluation of some novel benzothiazole derivatives as anti tubercular agents targeting glutamine synthetase-I. J. Pharm. Chem. Biol. Sci., 2017, 5(4), 312-319.
[http://dx.doi.org/10.21203/rs.3.rs-52122/v1]
[41]
Sarkar, S.; Saha, S.J.; Mazumdar, S. Antimalarial activity of small-molecule benzothiazole hydrazones. Antimicr. Chem, 2016, 60(7), 4217-4228.
[http://dx.doi.org/10.1128/AAC.01575-15]
[42]
Hout, S.; Azas, N.; Darque, A.; Robin, M.; Di Giorgio, C.; Gasquet, M.; Galy, J.; Timon-David, P. Activity of benzothiazoles and chemical derivatives on Plasmodium falciparum. Parasitology, 2004, 129(Pt 5), 525-535.
[http://dx.doi.org/10.1017/S0031182004006031]
[43]
Kumar, S.; Rathore, D.S.; Garg, G.; Khatri, K.; Saxena, R.; Sahu, S.K. Synthesis and evaluation of some benzothiazole derivatives as antidiabetic agents. Int. J. Pharm. Pharm. Sci., 2017, 9(2), 60-68.
[http://dx.doi.org/10.22159/ijpps.2017v9i2.14359]
[44]
Mariappan, G. Synthesis and antidiabetic evaluation of benzothiazole derivatives. J. Korean Chem. Soc., 2012, 56(2), 251-256.
[http://dx.doi.org/10.5012/jkcs.2012.56.2.251]
[45]
Saipriya, D.; Prakash, A.; Kini, S.G.; Bhatt, D.S.; Pai, S.R.; Biswas, S.; Shameer, M. Design, synthesis, antioxidant and anticancer activity of novel schiff’s bases of 2-amino benzothiazole. Ind. J. Pharm. Edu. Res, 2018, 52(4s), S333-S342.
[http://dx.doi.org/10.5530/ijper.52.4s.114]
[46]
Choudhary, S.; Kini, S.G.; Mubeen, M. Antioxidant activity of novel coumarin substituted benzothiazole. Der Pharma Chem., 2013, 5(4), 213-222.
[47]
Zhao, S.; Zhao, L.; Zhang, X.; Liu, C.; Hao, C.; Xie, H.; Sun, B.; Zhao, D.; Cheng, M. Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents. Eur. J. Med. Chem., 2016, 123, 514-522.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.067]
[48]
Choi, S.J.; Park, H.J.; Lee, S.K.; Kim, S.W.; Han, G.; Choo, H.Y. Solid phase combinatorial synthesis of benzothiazoles and evaluation of topoisomerase II inhibitory activity. Bioorg. Med. Chem., 2006, 14(4), 1229-1235.
[http://dx.doi.org/10.1016/j.bmc.2005.09.051]
[49]
Ma, J.; Chen, D.; Lu, K.; Wang, L.; Han, X.; Zhao, Y.; Gong, P. Design, synthesis, and structure–activity relationships of novel benzothiazole derivatives bearing the ortho-hydroxy N-carbamoylhydrazone moiety as potent antitumor agents. Eur. J. Med. Chem., 2014, 86, 257-269.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.058]
[50]
Zhang, L.; Fan, J.; Vu, K.; Hong, K.Le; Brazidec, J.Y. Shi. J. 7‘-Substituted Benzothiazolothio- and Pyridinothiazolothio-Purines as Potent Heat Shock Protein 90 inhibitors. J. Med. Chem., 2006, 49(17), 5352-5362.
[http://dx.doi.org/10.1021/jm051146h]
[51]
Paul, G.; Song, J.Y.; Swedo, S.E. Review of the use of the glutamate antagonist riluzole in psychiatric disorders and a description of recent use in childhood obsessive-compulsive disorder. J. Child Adolesc. Psychopharmacol., 2010, 20(4), 309-315.
[http://dx.doi.org/10.1089/cap.2010.0009]
[52]
Khurana, R.; Coleman, C.; Zanetti, C.; Carter, S.A.; Krishna, V.; Grover, R.K.; Roy, R.; Singh, S. Mechanism of thioflavin T binding to amyloid fibrils. J. Str. Biol., 2000, 151(3), 229-238.
[http://dx.doi.org/10.1016/j.jsb.2005.06.006]
[53]
Sharp, A.; Crabb, S.J.; Johnson, P.W.; Hague, A.; Cutress, R.; Townsend, P.A. NSC71948 (thioflavin S) interferes with BAG-1-mediated protein:protein interactions. J. Pharmacol. Exp. Ther., 2009, 331, 680-689.
[http://dx.doi.org/10.1124/jpet.109.153601]
[54]
Azam, M.A. Suresh, B. Biological activities of 2-mercaptobenzothiazole derivatives: A review. Sci. Pharm., 2012, 80(4), 789-823.
[http://dx.doi.org/10.3797/scipharm.1204-27]
[55]
Köhler, K.; Hillebrecht, A.; Schulze Wischeler, J.; Innocenti, A.; Heine, A.; Supuran, C.T.; Klebe, G. Saccharin inhibits carbonic anhydrases: possible explanation for its unpleasant metallic aftertaste. Angew. Chem. Int. Ed. Engl., 2007, 46(40), 7697-7699.
[http://dx.doi.org/10.1002/anie.200701189]
[56]
Sanderson, B.E. The effects of anthelmintics on nematode metabolism. Comp. Gen. Pharmacol., 1970, 1(2), 135-151.
[http://dx.doi.org/10.1016/0010-4035(70)90047-9]
[57]
Sanders, N.G.; Sullivan, D.J.; Mlambo, G.; Dimopoulos, G.; Tripathi, A.K. Gametocytocidal screen identifies novel chemical classes with plasmodium falciparum transmission blocking activity. PLoS One, 2014, 9(8)e105817
[http://dx.doi.org/10.1371/journal.pone.0105817]
[58]
Panch, S.R.; Bozik, M.E.; Brown, T.; Makiya, M.; Prussin, C.; Archibald, D.G.; Hebrank, G.T.; Sullivan, M.; Sun, X.; Wetzler, L.; Ware, J.; Fay, M.P.; Dunbar, C.E.; Dworetzky, S.I.; Khoury, P.; Maric, I.; Klion, A.D. Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood, 2018, 132(5), 501-509.
[http://dx.doi.org/10.1182/blood-2018-02-835330]
[59]
Walsh, T.J.; Viviani, M-A.; Arathoon, E.; Chiou, C.; Ghannoum, M.; Groll, A.H.; Odds, F.C. New targets and delivery systems for antifungal therapy. Med. Mycol., 2000, 38(Suppl. 1), 335-347.
[http://dx.doi.org/10.1080/mmy.38.s1.335.347]
[60]
Cohen, A.D.; Rabinovici, G.D.; Mathis, C.A.; Jagust, W.J.; Klunk, W.E.; Ikonomovic, M.D. Using pittsburgh compound b for in vivo pet imaging of fibrillar amyloid-beta. Adv. Pharmacol., 2012, 64, 27-81.
[http://dx.doi.org/10.1016/B978-0-12-394816-8.00002-7]
[61]
Ikonomovic, M.D.; Fantoni, E.R.; Farrar, G.; Salloway, S. Infrequent false positive [18F]flutemetamol PET signal is resolved by combined histological assessment of neuritic and diffuse plaques. Alzheimers Res. Ther., 2018, 10(1), 1-4.
[http://dx.doi.org/10.1186/s13195-018-0387-6]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy