Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Benzimidazole Derivative Ameliorates Opioid-Mediated Tolerance during Anticancer- Induced Neuropathic Pain in Mice

Author(s): Sana Akhtar, Muzaffar Abbas*, Komal Naeem, Muhammad Faheem, Humaira Nadeem and Amber Mehmood

Volume 21, Issue 3, 2021

Published on: 18 August, 2020

Page: [365 - 371] Pages: 7

DOI: 10.2174/1871520620999200818155031

Price: $65

conference banner
Abstract

Background: Cancer is known to be the second significant cause of death worldwide. Chemotherapeutic agents such as platinum-based compounds are frequently used single-handedly or accompanied by additional chemotherapies to treat cancer patients. Chemotherapy-induced peripheral painful neuropathy is seen in around 40% of patients who are treated with platinum-based compounds, including cisplatin. This not only decreases the quality of life of patients but also patients’ compliance with cisplatin.

Objectives: Nalbuphine, an opioid, is frequently used to treat acute and chronic pain, coupled with cisplatin in cancer patients. However, long term use of nalbuphine induces tolerance to its analgesic effects. We employed the same strategy to induce tolerance in mice.

Methods: Here, we investigated analgesic effects of 2-[(pyrrolidin-1-yl) methyl]-1H-benzimidazole (BNZ), a benzimidazole derivative, on nalbuphine-induced tolerance during cisplatin-induced neuropathic pain using hot plate test, tail-flick tests and von Frey filament in mouse models. Furthermore, we investigated the effects of BNZ on the expression of Tumor Necrosis Factor-alpha (TNF-α) in the spinal cord.

Results: The results showed that BNZ reduced tolerance to analgesic effects of nalbuphine and TNF-α expression in mice.

Conclusion: BNZ could be a potential drug candidate for the management of nalbuphine-induced tolerance in cisplatin-induced neuropathic pain.

Keywords: Cisplatin, neuropathic pain, nalbuphine, tolerance, TNF-α, benzimidazole derivative.

Graphical Abstract
[1]
Vencappa, S.; Donaldson, L.F.; Hulse, R.P. Cisplatin induced sensory neuropathy is prevented by vascular endothelial growth factor-A. Am. J. Transl. Res., 2015, 7(6), 1032-1044.
[PMID: 26279748]
[2]
Seto, Y.; Takase, M.; Tsuji, Y.; To, H. Pregabalin reduces cisplatin-induced mechanical allodynia in rats. J. Pharmacol. Sci., 2017, 134(3), 175-180.
[http://dx.doi.org/10.1016/j.jphs.2017.06.003] [PMID: 28689961]
[3]
Zacny, J.P.; Conley, K.; Marks, S. Comparing the subjective, psychomotor and physiological effects of intravenous nalbuphine and morphine in healthy volunteers. J. Pharmacol. Exp. Ther., 1997, 280(3), 1159-1169.
[PMID: 9067299]
[4]
Kim, D.H.; Yoo, H.S.; Jang, C.G.; Kang, J.S.; Kim, D.S.; Choi, K.H.; Jang, S.Y.; Oh, S. Inhibitory action of the ginseng total saponin on the nalbuphine-induced tolerance and withdrawal syndrome. J. Ginseng Res, 2005, 29(2), 86-93.
[http://dx.doi.org/10.5142/JGR.2005.29.2.086]
[5]
Bennett, B.L.; Sasaki, D.T.; Murray, B.W.; O’Leary, E.C.; Sakata, S.T.; Xu, W.; Leisten, J.C.; Motiwala, A.; Pierce, S.; Satoh, Y.; Bhagwat, S.S.; Manning, A.M.; Anderson, D.W. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13681-13686.
[http://dx.doi.org/10.1073/pnas.251194298] [PMID: 11717429]
[6]
Akhtar, W.; Khan, M.F.; Verma, G.; Shaquiquzzaman, M.; Rizvi, M.A.; Mehdi, S.H.; Akhter, M.; Alam, M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem., 2017, 126, 705-753.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.010] [PMID: 27951484]
[7]
Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Hypervalent iodine-mediated synthesis of benzoxazoles and benzimidazoles via an oxidative rearrangement. Tetrahedron, 2015, 71, 700-708.
[http://dx.doi.org/10.1016/j.tet.2014.11.066]
[8]
Seto, Y.; Okazaki, F.; Horikawa, K.; Zhang, J.; Sasaki, H.; To, H. Influence of dosing times on cisplatin-induced peripheral neuropathy in rats. BMC Cancer, 2016, 16(1), 756.
[http://dx.doi.org/10.1186/s12885-016-2777-0] [PMID: 27678475]
[9]
Marcus, D.J.; Zee, M.; Hughes, A.; Yuill, M.B.; Hohmann, A.G.; Mackie, K.; Guindon, J.; Morgan, D.J. Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase. Mol. Pain, 2015, 11, 34.
[http://dx.doi.org/10.1186/s12990-015-0031-4] [PMID: 26065412]
[10]
Idris, Z.; Abbas, M.; Nadeem, H.; Khan, A.U. The benzimidazole derivatives, B1 (N-[(1H-benzimidazol-2-yl)methyl]-4-methoxyaniline) and B8 (N-4-[(1H-benzimidazol-2-yl)methoxy]phenylacetamide) attenuate morphine-induced paradoxical pain in mice. Front. Neurosci., 2019, 13, 101.
[http://dx.doi.org/10.3389/fnins.2019.00101] [PMID: 30809119]
[11]
Zayed, M.F.; Hassan, M.H. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm. J., 2014, 22(2), 157-162.
[http://dx.doi.org/10.1016/j.jsps.2013.03.004] [PMID: 24648828]
[12]
Kayser, V.; Besson, J.M.; Guilbaud, G. Effects of the analgesic agent tramadol in normal and arthritic rats: Comparison with the effects of different opioids, including tolerance and cross-tolerance to morphine. Eur. J. Pharmacol., 1991, 195(1), 37-45.
[http://dx.doi.org/10.1016/0014-2999(91)90379-5] [PMID: 2065712]
[13]
Gunion, M.W.; Marchionne, A.M.; Anderson, C.T. Use of the mixed agonist-antagonist nalbuphine in opioid based analgesia. Acute Pain, 2004, 6, 29-39.
[http://dx.doi.org/10.1016/j.acpain.2004.02.002]
[14]
Gringauz, M.; Rabinowitz, R.; Stav, A.; Korczyn, A.D. Tolerance to the analgesic effect of buprenorphine, butorphanol, nalbuphine, and cyclorphan, and cross-tolerance to morphine. J. Anesth., 2001, 15(4), 204-209.
[http://dx.doi.org/10.1007/s005400170004] [PMID: 14569437]
[15]
Ekabe, C.J.; Kehbila, J.; Abanda, M.H.; Kadia, B.M.; Sama, C.B.; Monekosso, G.L. Vitamin B12 deficiency neuropathy; a rare diagnosis in young adults: A case report. BMC Res. Notes, 2017, 10(1), 72.
[http://dx.doi.org/10.1186/s13104-017-2393-3] [PMID: 28129784]
[16]
Mao, J.; Price, D.D.; Mayer, D.J. Mechanisms of hyperalgesia and morphine tolerance: A current view of their possible interactions. Pain, 1995, 62(3), 259-274.
[http://dx.doi.org/10.1016/0304-3959(95)00073-2] [PMID: 8657426]
[17]
Mayer, D.J.; Mao, J.; Holt, J.; Price, D.D. Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc. Natl. Acad. Sci. USA, 1999, 96(14), 7731-7736.
[http://dx.doi.org/10.1073/pnas.96.14.7731] [PMID: 10393889]
[18]
Stefano, G.B. Autoimmunovascular regulation: Morphine and anandamide and ancondamide stimulated nitric oxide release. J. Neuroimmunol., 1998, 83(1-2), 70-76.
[http://dx.doi.org/10.1016/S0165-5728(97)00223-3] [PMID: 9610675]
[19]
Reeve, A.J.; Patel, S.; Fox, A.; Walker, K.; Urban, L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain, 2000, 4(3), 247-257.
[http://dx.doi.org/10.1053/eujp.2000.0177] [PMID: 10985868]
[20]
DeLeo, J.A.; Colburn, R.W.; Nichols, M.; Malhotra, A. Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res., 1996, 16(9), 695-700.
[http://dx.doi.org/10.1089/jir.1996.16.695] [PMID: 8887053]
[21]
Shen, C.H.; Tsai, R.Y.; Shih, M.S.; Lin, S.L.; Tai, Y.H.; Chien, C.C.; Wong, C.S. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth. Analg., 2011, 112(2), 454-459.
[http://dx.doi.org/10.1213/ANE.0b013e3182025b15] [PMID: 21081778]
[22]
Wang, N.; Pang, H.; Peng, H.; Li, G.; Chen, X. Hydrothermal synthesis and electrochemical properties of MnO2 nanostructures. Cryst. Res. Technol., 2009, 44, 1230-1234.
[http://dx.doi.org/10.1002/crat.200800619]
[23]
Moreno, S.; Farioli-Vecchioli, S.; Cerù, M.P. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience, 2004, 123(1), 131-145.
[http://dx.doi.org/10.1016/j.neuroscience.2003.08.064] [PMID: 14667448]
[24]
Landreth, G.E.; Heneka, M.T. Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol. Aging, 2001, 22(6), 937-944.
[http://dx.doi.org/10.1016/S0197-4580(01)00296-2] [PMID: 11755002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy