Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Chemistry of Antibiofilm Phytocompounds

Author(s): Dibyajit Lahiri, Moupriya Nag, Sayantani Garai and Rina Rani Ray*

Volume 21, Issue 9, 2021

Published on: 07 August, 2020

Page: [1034 - 1047] Pages: 14

DOI: 10.2174/1389557520666200807135243

Price: $65

conference banner
Abstract

Phytocompounds are long known for their therapeutic uses due to their competence as antimicrobial agents. The antimicrobial activity of these bioactive compounds manifests their ability as an antibiofilm agent and is thereby proved to be competent to treat the widespread biofilm-associated chronic infections. The rapid development of antibiotic resistance in bacteria has made the treatment of these infections almost impossible by conventional antibiotic therapy, which forced a switch-over to the use of phytocompounds. The present overview deals with the classification of a huge array of phytocompounds according to their chemical nature, detection of their target pathogen, and elucidation of their mode of action.

Keywords: Biofilm, antibiotic resistance, phytocompounds, antibiofilm, antimicrobial agents.

Graphical Abstract
[1]
Masák, J.; Čejková, A.; Schreiberová, O.; Rezanka, T. Pseudomonas biofilms: Possibilities of their control. FEMS Microbiol. Ecol., 2014, 89(1), 1-14.
[http://dx.doi.org/10.1111/1574-6941.12344] [PMID: 24754832]
[2]
Li, X.H.; Lee, J.H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol., 2017, 55(10), 753-766.
[http://dx.doi.org/10.1007/s12275-017-7274-x] [PMID: 28956348]
[3]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science, 1999, 284(5418), 1318-1322.
[http://dx.doi.org/10.1126/science.284.5418.1318] [PMID: 10334980]
[4]
Jakobsen, T.H.; Tolker-Nielsen, T.; Givskov, M. Bacterial bioflm control by perturbation of bacterial signaling processes. Int. J. Mol. Sci., 2017, 18(9), 1970.
[http://dx.doi.org/10.3390/ijms18091970] [PMID: 28902153]
[5]
Ivanova, A.; Ivanova, K.; Tzanov, T. “Inhibition of quorum-sensing: A new paradigm,” in controlling bacterial virulence and biofilm formation. Biotechnological Applications of Quorum Sensing Inhibitors; Kalia, V.C., Ed.; Springer Nature: Berlin, 2018, pp. 5-10.
[http://dx.doi.org/10.1007/978-981-10-9026-4_1]
[6]
Coenye, T.; Nelis, H.J. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods, 2010, 83(2), 89-105.
[http://dx.doi.org/10.1016/j.mimet.2010.08.018] [PMID: 20816706]
[7]
Deep, A.; Chaudhary, U.; Gupta, V. Quorum sensing and bacterial pathogenicity: From molecules to disease. J. Lab. Physicians, 2011, 3(1), 4-11.
[http://dx.doi.org/10.4103/0974-2727.78553] [PMID: 21701655]
[8]
Kabir, A.H.; Roy, A.G.; Alam, M.F.; Islam, R. Detection of quorum sensing signals in gram-negative bacteria by using reporter strain CV026. Not. Sci. Biol., 2010, 2, 72-75.
[http://dx.doi.org/10.15835/nsb244863]
[9]
Krishnan, T.; Yin, W.F.; Chan, K.G. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors (Basel), 2012, 12(4), 4016-4030.
[http://dx.doi.org/10.3390/s120404016] [PMID: 22666015]
[10]
Xavier, K.B.; Bassler, B.L. LuxS quorum sensing: More than just a numbers game. Curr. Opin. Microbiol., 2003, 6(2), 191-197.
[http://dx.doi.org/10.1016/S1369-5274(03)00028-6 ] [PMID: 12732311]
[11]
Zhang, R.G.; Pappas, K.M.; Brace, J.L.; Miller, P.C.; Oulmassov, T.; Molyneaux, J.M.; Anderson, J.C.; Bashkin, J.K.; Winans, S.C.; Joachimiak, A. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature, 2002, 417(6892), 971-974.
[http://dx.doi.org/10.1038/nature00833] [PMID: 12087407]
[12]
Choudhary, S.; Schmidt-Dannert, C. Applications of quorum sensing in biotechnology. Appl. Microbiol. Biotechnol., 2010, 86(5), 1267-1279.
[http://dx.doi.org/10.1007/s00253-010-2521-7] [PMID: 20306190]
[13]
Wadood, A.; Ghufran, M.; Jamal, S.B.; Naeem, M.; Khan, A. Phytochemical analysis of medicinal plants occurring in local area of Mardan. Biochem. Anal. Biochem., 2013, 2, 144.
[http://dx.doi.org/10.4172/2161-1009.1000144]
[14]
Gor, M.C.; Ismail, I.; Mustapha, W.A.W.; Zainal, Z.; Noor, N.M.; Othman, R. Identification of cDNAs for jasmonic acid-responsive genes in Polygonum minus roots by suppression subtractive hybridization. Acta Physiol. Plant., 2011, 33, 283-294.
[http://dx.doi.org/10.1007/s11738-010-0546-2]
[15]
Bunawan, H.; Talip, N.; Noor, N.M. Foliar anatomy and micromorphology of Polygonum minus Huds and their taxonomic implications. Aust. J. Crop Sci., 2011, 5, 123-127.
[16]
Mendoza, N.; Silva, E.M.E. Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance; Phytochemicals - Source of antioxidants and role in disease prevention,, 2018.
[17]
Agbafor, K.N.; Nwachukwu, N. Phytochemical analysis and antioxidant property of leaf extract of Vitex doniana and Mucuna pruriens. Biochem. Res. Int., 2011.459839
[http://dx.doi.org/10.1155/2011/459839] [PMID: 21547085]
[18]
Choo, J.H.; Rukayadi, Y.; Hwang, J.K. Inhibition of bacterial quorum sensing by vanilla extract. Lett. Appl. Microbiol., 2006, 42(6), 637-641.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01928.x ] [PMID: 16706905]
[19]
Dewick, P. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed; John Wiley & Sons: New York, 2002.
[20]
Hayek, S.A.; Gyawali, R.; Ibrahim, S.A. Antimicrobial natural products.. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain,; , 2013, 2, pp. 910-921.
[21]
Chevrot, R.; Rosen, R.; Haudecoeur, E.; Cirou, A.; Shelp, B.J.; Ron, E.; Faure, D. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7460-7464.
[http://dx.doi.org/10.1073/pnas.0600313103] [PMID: 16645034]
[22]
Manefield, M.; Rasmussen, T.B.; Henzter, M.; Andersen, J.B.; Steinberg, P.; Kjelleberg, S.; Givskov, M. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology, 2002, 148(Pt 4), 1119-1127.
[http://dx.doi.org/10.1099/00221287-148-4-1119 ] [PMID: 11932456]
[23]
Ni, N.; Choudhary, G.; Li, M.; Wang, B. Pyrogallol and its analogs can antagonize bacterial quorum sensing in Vibrio harveyi. Bioorg. Med. Chem. Lett., 2008, 18(5), 1567-1572.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.081] [PMID: 18262415]
[24]
Gao, M.; Teplitski, M.; Robinson, J.B.; Bauer, W.D. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant Microbe Interact., 2003, 16(9), 827-834.
[http://dx.doi.org/10.1094/MPMI.2003.16.9.827 ] [PMID: 12971606]
[25]
Ding, T.; Li, T.; Wang, Z.; Li, J. Curcumin liposomes interfere with quorum sensing system of Aeromonas sobria and in silico analysis. Sci. Rep., 2017, 7(1), 1-16.
[26]
Adonizio, A.; Kong, K.F.; Mathee, K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother., 2008, 52(1), 198-203.
[http://dx.doi.org/10.1128/AAC.00612-07] [PMID: 17938186]
[27]
Issac Abraham, S.V.; Palani, A.; Khadar Syed, M.; Shunmugiah, K.P.; Arumugam, V.R. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens. Food Res. Int., 2012, 45, 85-92.
[http://dx.doi.org/10.1016/j.foodres.2011.10.022]
[28]
Fajardo, A.; Martı’nez-Martı’n, N.; Mercadillo, M.; Galan, J.C.; Ghysels, B.; Matthijs, S.; Cornelis, P.; Wiehlmann, L.; Tummler, B. € F. Baquero and J. L. Martı’nez. The neglected intrinsic resistome of bacterial pathogens. PLoS One, 2008, 3(2)e1619
[http://dx.doi.org/10.1371/journal.pone.0001619] [PMID: 18286176]
[29]
Hurdle, J.G.; O’Neill, A.J.; Mody, L.; Chopra, I.; Bradley, S.F. In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. J. Antimicrob. Chemother., 2005, 56(6), 1166-1168.
[http://dx.doi.org/10.1093/jac/dki387] [PMID: 16275681]
[30]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[31]
Li, G.H.; Wang, D.L.; Hu, Y.D.; Pu, P.; Li, D.Z.; Wang, W.D.; Zhu, B.; Hao, P.; Wang, J.; Xu, X.Q.; Wan, J.Q.; Zhou, Y.B.; Chen, Z.T. Berberine inhibits acute radiation intestinal syndrome in human with abdomen radiotherapy. Med. Oncol., 2010, 27(3), 919-925.
[http://dx.doi.org/10.1007/s12032-009-9307-8] [PMID: 19757213]
[32]
Zhao, L.X.; Li, D.D.; Hu, D.D.; Hu, G.H.; Yan, L.; Wang, Y.; Jiang, Y.Y. Effect of tetrandrine against Candida albicans biofilms. PLoS One, 2013, 8(11)e79671
[http://dx.doi.org/10.1371/journal.pone.0079671] [PMID: 24260276]
[33]
Magesh, H.; Kumar, A.; Alam, A. Priyam, Sekar U, Sumantran VN, Vaidyanathan R. Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumonia. Indian J. Exp. Biol., 2013, 51(9), 764-772.
[PMID: 24377137]
[34]
Huigens, R.W., III; Ma, L.; Gambino, C.; Moeller, P.D.R.; Basso, A.; Cavanagh, J.; Wozniak, D.J.; Melander, C. Control of bacterial biofilms with marine alkaloid derivatives. Mol. Biosyst., 2008, 4(6), 614-621.
[http://dx.doi.org/10.1039/b719989a] [PMID: 18493660]
[35]
Xing, M.; Shen, F.; Liu, L.; Chen, Z.; Guo, N.; Wang, X.; Wang, W.; Zhang, K.; Wu, X.; Wang, X.; Li, Y.; Sun, S.; Yu, L. Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett. Appl. Microbiol., 2012, 54(5), 475-482.
[http://dx.doi.org/10.1111/j.1472-765X.2012.03233.x ] [PMID: 22394164]
[36]
Sato, M.; Fujiwara, S.; Tsuchiya, H.; Fujii, T.; Iinuma, M.; Tosa, H.; Ohkawa, Y. Flavones with antibacterial activity against cariogenic bacteria. J. Ethnopharmacol., 1996, 54(2-3), 171-176.
[http://dx.doi.org/10.1016/S0378-8741(96)01464-X ] [PMID: 8953432]
[37]
Vetvicka, V.; Vetvickova, J.; Fernandez-Botran, R. Effects of curcumin on Helicobacter pylori infection. Ann. Transl. Med., 2016, 4(24), 479. [published correction appears in Ann Transl Med. 2017 Mar;5(6):153
[http://dx.doi.org/10.21037/atm.2016.12.52] [PMID: 28149841]
[38]
Yanti; Rukayadi, Y.; Lee, K.H.; Hwang, J.K. Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro. J. Oral Sci., 2009, 51(1), 87-95.
[http://dx.doi.org/10.2334/josnusd.51.87] [PMID: 19325204]
[39]
Dwivedi, D.; Singh, V. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans. J. Tradit. Complement. Med., 2015, 6(1), 57-61.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.025] [PMID: 26870681]
[40]
Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 1996, 50(1), 27-34.
[http://dx.doi.org/10.1016/0378-8741(96)85514-0] [PMID: 8778504]
[41]
Gopu, V.; Shetty, P.H. Cyanidin inhibits quorum signalling pathway of a food borne opportunistic pathogen. J. Food Sci. Technol., 2016, 53(2), 968-976.
[http://dx.doi.org/10.1007/s13197-015-2031-9] [PMID: 27162376]
[42]
Rajendran, N.; Subramaniam, S.; Christena, L.R.; Muthuraman, M.S.; Subramanian, N.S.; Pemiah, B.; Sivasubramanian, A. Antimicrobial flavonoids isolated from Indian medicinal plant Scutellaria oblonga inhibit biofilms formed by common food pathogens. Nat. Prod. Res., 2016, 30(17), 2002-2006.
[http://dx.doi.org/10.1080/14786419.2015.1104673 ] [PMID: 26508034]
[43]
Kot, B.; Wicha, J.; Piechota, M.; Wolska, K.; Gruzewska, A. Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turk. J. Med. Sci., 2015, 45(4), 919-924.
[http://dx.doi.org/10.3906/sag-1406-112] [PMID: 26422868]
[44]
Nagata, H.; Inagaki, Y.; Yamamoto, Y.; Maeda, K.; Kataoka, K.; Osawa, K.; Shizukuishi, S. Inhibitory effects of macrocarpals on the biological activity of Porphyromonas gingivalis and other periodontopathic bacteria. Oral Microbiol. Immunol., 2006, 21(3), 159-163.
[http://dx.doi.org/10.1111/j.1399-302X.2006.00269.x ] [PMID: 16626372]
[45]
Bakkiyaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling, 2013, 29(8), 929-937.
[http://dx.doi.org/10.1080/08927014.2013.820825] [PMID: 23906229]
[46]
Niu, C.; Gilbert, E.S. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl. Environ. Microbiol., 2004, 70(12), 6951-6956.
[http://dx.doi.org/10.1128/AEM.70.12.6951-6956.2004 ] [PMID: 15574886]
[47]
Yang, L.; Liu, Y.; Sternberg, C.; Molin, S. Evaluation of enoyl-acyl carrier protein reductase inhibitors as Pseudomonas aeruginosa quorum-quenching reagents. Molecules, 2010, 15(2), 780-792.
[http://dx.doi.org/10.3390/molecules15020780] [PMID: 20335945]
[48]
Vandeputte, O.M.; Kiendrebeogo, M.; Rajaonson, S.; Diallo, B.; Mol, A.; El Jaziri, M.; Baucher, M. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 2010, 76(1), 243-253.
[http://dx.doi.org/10.1128/AEM.01059-09] [PMID: 19854927]
[49]
Miron, T.; Rabinkov, A.; Mirelman, D.; Wilchek, M.; Weiner, L. The mode of action of allicin: Its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim. Biophys. Acta, 2000, 1463(1), 20-30.
[http://dx.doi.org/10.1016/S0005-2736(99)00174-1 ] [PMID: 10631291]
[50]
Jennings, B.R.; Ridler, P.J. Interaction of chromosomal stains with DNA. An electrofluorescence study. Biophys. Struct. Mech., 1983, 10(1-2), 71-79.
[http://dx.doi.org/10.1007/BF00535543] [PMID: 6193819]
[51]
Ultee, A.; Kets, E.P.; Smid, E.J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 1999, 65(10), 4606-4610.
[http://dx.doi.org/10.1128/AEM.65.10.4606-4610.1999 ] [PMID: 10508096]
[52]
Nohynek, L.J.; Alakomi, H.L. K€ahkonen, M.P; Heinonen, M.; Helander, M.; Oksman-Caldentev, K.M.; Puupponen-Pimia, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer, 2006, 54(1), 18-32.
[http://dx.doi.org/10.1207/s15327914nc5401_4] [PMID: 16800770]
[53]
Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry, 1987, 26(8), 2231-2234.
[http://dx.doi.org/10.1016/S0031-9422(00)84689-0]
[54]
Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother., 2005, 49(6), 2474-2478.
[http://dx.doi.org/10.1128/AAC.49.6.2474-2478.2005 ] [PMID: 15917549]
[55]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006 ] [PMID: 16436753]
[56]
Aeschlimann, J.R.; Dresser, L.D.; Kaatz, G.W.; Rybak, M.J. Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother., 1999, 43(2), 335-340.
[http://dx.doi.org/10.1128/AAC.43.2.335] [PMID: 9925528]
[57]
Sinha Babu, S.P.; Sarkar, D.; Ghosh, N.K.; Saha, A.; Sukul, N.C.; Bhattacharya, S. Enhancement of membrane damage by saponins isolated from Acacia auriculiformis. Jpn. J. Pharmacol., 1997, 75(4), 451-454.
[http://dx.doi.org/10.1254/jjp.75.451] [PMID: 9469654]
[58]
Almey, A.A.A.; Khan, C.A.J.; Zahir, I.S.; Suleiman, K.M.; Aisyah, M.R.; Rahim, K.K. Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants leaves. Int. Food Res. J., 2010, 17, 1077-1084.
[59]
Uyub, A.M.; Nwachukwu, I.N.; Azlan, A.A.; Fariza, S.S. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole-resistant-Helicobacter pylori and some pathogenic bacteria. Ethnobot. Res. Appl., 2010, 8, 95-106.
[http://dx.doi.org/10.17348/era.8.0.95-106]
[60]
Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J. Biosci., 2019, 44(2), 52.
[http://dx.doi.org/10.1007/s12038-019-9868-4] [PMID: 31180065]
[61]
Jain, P.K.; Agrawal, R.K. Antioxidant and free radical scavenging properties of developed mono- and polyherbal formulations. Asian J. Exp. Sci., 2008, 22(3), 213-220.
[62]
Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. Food Sci. Technol. (Campinas), 1997, 30, 609-615.
[63]
Kala, S.; Johnson, M.; Raj, I.; Bosco, D.; Jeeva, S.; Janakiraman, N. Preliminary phytochemical analysis of some medicinal plants of South India. J. Natura Conscientia., 2011, 2(5), 478-481.
[64]
Mackeen, M.M.; Ali, A.M.; El-Sharkawy, S.H.; Manap, M.Y.; Salleh, K.M.; Lajis, N.H. Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables (Ulam). Pharm. Biol., 1997, 35, 174-178.
[65]
Lalenti, A.; Moncada, A.; De Rosa, M. Modulation of perspective for the 1990s. Nature, 1994, 234, 462.
[66]
Ross, R. Atherosclerosis: An inflammatory diseases’, N. Engl. J. Med. 340:115-126. Sies H (2009). Oxidative stress; oxidants and anti-oxidants, Academic press, London. umbelliprenin. Daru, 1999, 17(2), 99-103.
[67]
Vipin, C.; Mujeeburahiman, M.; Ashwini, P.; Arun, A.B.; Rekha, P.D. Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett. Appl. Microbiol., 2019, 68(5), 464-471.
[http://dx.doi.org/10.1111/lam.13129] [PMID: 30762887]
[68]
Vazquez-Armenta, F.J.; Hernandez-Oñate, M.A.; Martinez-Tellez, M.A.; Lopez-Zavala, A.A.; Gonzalez-Aguilar, G.A.; Gutierrez-Pacheco, M.M.; Ayala-Zavala, J.F. Quercetin repressed the stress response factor (sigB) and virulence genes (prfA, actA, inlA, and inlC), lower the adhesion, and biofilm development of L. monocytogenes. Food Microbiol., 2019, •••103377
[http://dx.doi.org/10.1016/j.fm.2019.103377] [PMID: 31948618]
[69]
Abd-Elsalam, K.A.; Khokhlov, A.R. Eugenol oil nanoemulsion: Antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl. Nanosci., 2015, 5(2), 255-265.
[http://dx.doi.org/10.1007/s13204-014-0398-y]
[70]
Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 2009, 16(11), 997-1005.
[http://dx.doi.org/10.1016/j.phymed.2009.04.006] [PMID: 19540744]
[71]
Kim, Y-G.; Lee, J-H.; Gwon, G.; Kim, S-I.; Park, J.G.; Lee, J. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci. Rep., 2016, 6(1), 36377.
[http://dx.doi.org/10.1038/srep36377] [PMID: 27808174]
[72]
Zhang, Y.; Wang, Y.; Zhu, X.; Cao, P.; Wei, S.; Lu, Y. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb. Pathog., 2017, 113, 396-402.
[http://dx.doi.org/10.1016/j.micpath.2017.10.054 ] [PMID: 29101062]
[73]
Venigalla, M.; Gyengesi, E.; Münch, G.; Münch, G. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regen. Res., 2015, 10(8), 1181-1185.
[http://dx.doi.org/10.4103/1673-5374.162686] [PMID: 26487830]
[74]
Koo, H.; Hayacibara, M.F.; Schobel, B.D.; Cury, J.A.; Rosalen, P.L.; Park, Y.K.; Vacca-Smith, A.M.; Bowen, W.H. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J. Antimicrob. Chemother., 2003, 52(5), 782-789.
[http://dx.doi.org/10.1093/jac/dkg449] [PMID: 14563892]
[75]
Harborne, J.B. The Terpenoids. Phytochemical Methods; Springer: Dordrecht, 1984.
[http://dx.doi.org/10.1007/978-94-009-5570-7_3]
[76]
Javanmardia, J.; Stushnoff, C.; Lockeb, E.; Vivancob, J.M. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem., 2003, 83, 547-550.
[http://dx.doi.org/10.1016/S0308-8146(03)00151-1]
[77]
Rukayadi, Y.; Hwang, J.K. In vitro activity of xanthorrhizol against Streptococcus mutans biofilms. Lett. Appl. Microbiol., 2006, 42(4), 400-404.
[http://dx.doi.org/10.1111/j.1472-765X.2006.01876.x ] [PMID: 16599995]
[78]
Hossain, M.A.; Ismail, Z. Isolation and characterization of triterpenes from the leaves of Orthosiphon stamineus. Arab. J. Chem., 2013, 6(3), 295-298.
[http://dx.doi.org/10.1016/j.arabjc.2010.10.009]
[79]
Zhou, L.; Ding, Y.; Chen, W.; Zhang, P.; Chen, Y.; Lv, X. The in vitro study of ursolic acid and oleanolic acid inhibiting cariogenic microorganisms as well as biofilm. Oral Dis., 2013, 19(5), 494-500.
[http://dx.doi.org/10.1111/odi.12031] [PMID: 23114261]
[80]
Fontanay, S.; Grare, M.; Mayer, J.; Finance, C.; Duval, R.E. Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes. J. Ethnopharmacol., 2008, 120(2), 272-276.
[http://dx.doi.org/10.1016/j.jep.2008.09.001] [PMID: 18835348]
[81]
Burt, S.A.; Ojo-Fakunle, V.T.A.; Woertman, J.; Veldhuizen, E.J.A. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One, 2014, 9(4)e93414
[http://dx.doi.org/10.1371/journal.pone.0093414] [PMID: 24691035]
[82]
Vikram, A.; Jesudhasan, P.R.; Jayaprakasha, G.K.; Pillai, S.D.; Patil, B.S. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology, 2011, 157(Pt 1), 99-110.
[http://dx.doi.org/10.1099/mic.0.041228-0] [PMID: 20864476]
[83]
Vikram, A.; Jesudhasan, P.R.; Pillai, S.D.; Patil, B.S. Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol., 2012, 12, 261.
[http://dx.doi.org/10.1186/1471-2180-12-261] [PMID: 23153211]
[84]
Lee, B.C.; Lee, S.Y.; Lee, H.J.; Sim, G.S.; Kim, J.H.; Kim, J.H.; Cho, Y.H.; Lee, D.H.; Pyo, H.B.; Choe, T.B.; Moon, D.C.; Yun, Y.P.; Hong, J.T. Anti-oxidative and photo-protective effects of coumarins isolated from Fraxinus chinensis. Arch. Pharm. Res., 2007, 30(10), 1293-1301.
[http://dx.doi.org/10.1007/BF02980270] [PMID: 18038908]
[85]
Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins — An important class of phytochemicals. phytochemicals - Isolation; Characterisation and Role in Human Health, 2015, pp. 113-140.
[http://dx.doi.org/10.5772/59982]
[86]
Zhang, S.; Liu, N.; Liang, W.; Han, Q.; Zhang, W.; Li, C. Quorum sensing-disrupting coumarin suppressing virulence phenotypes in Vibrio splendidus. Appl. Microbiol. Biotechnol., 2017, 101(8), 3371-3378.
[http://dx.doi.org/10.1007/s00253-016-8009-3] [PMID: 27942756]
[87]
Brackman, G.; Hillaert, U.; Van Calenbergh, S.; Nelis, H.J.; Coenye, T. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia.Res. Microbiol.,, 2009, 160(2), 144-151.
[http://dx.doi.org/10.1016/j.resmic.2008.12.0032008]
[88]
Elshafie, H.S.; Camele, I. An overview of the biological effects of some mediterranean essential oils on human health. BioMed Res. Int., 2017, 20179268468
[http://dx.doi.org/10.1155/2017/9268468] [PMID: 29230418]
[89]
Camele, I.; Altieri, L.; De Martino, L.; De Feo, V.; Mancini, E.; Rana, G.L. In vitro control of post-harvest fruit rot fungi by some plant essential oil components. Int. J. Mol. Sci., 2012, 13(2), 2290-2300.
[http://dx.doi.org/10.3390/ijms13022290] [PMID: 22408454]
[90]
Nieto, G. Biological activities of three essential oils of the lamiaceae family. Medicines (Basel), 2017, 4(3), 1-10.
[http://dx.doi.org/10.3390/medicines4030063 ] [PMID: 28930277]
[91]
Kerekes, E.B.; Vidács, A. TörökJenei, J. “Essential oils against bacterial biofilm formation and quorum sensing of food-borne pathogens and spoilage microorganisms,” in The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, ed. A. Méndez-Vilas (Bajadoz: Formatex Research Center),; , 2015, pp. 429-437.
[92]
Ayala-Zavala, J.F.; Oms-Oliu, G.; Odriozola-Serrano, I.; Gonzalez-Aguilar, G.A.; Alvarez-Parrilla, E.; Martin-Belloso, O. Biopreservation of fresh-cut tomatoes using natural antimicrobials. Eur. Food Res. Technol., 2007, 226, 1047-1055.
[http://dx.doi.org/10.1007/s00217-007-0630-z]
[93]
Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol., 2012, 3, 12.
[http://dx.doi.org/10.3389/fmicb.2012.00012 ] [PMID: 22291693]
[94]
Mancini, E.; Camele, I.; Elshafie, H.S.; De Martino, L.; Pellegrino, C.; Grulova, D.; De Feo, V. Chemical composition and biological activity of the essential oil of Origanum vulgare ssp. hirtum from different areas in the Southern Apennines (Italy). Chem. Biodivers., 2014, 11(4), 639-651.
[http://dx.doi.org/10.1002/cbdv.201300326] [PMID: 24706631]
[95]
Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of Origanum vulgare L. on hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules, 2017, 22(9), 1-16.
[http://dx.doi.org/10.3390/molecules22091435 ] [PMID: 28867805]
[96]
Raal, A.; Arak, E.; Orav, A. The content and composition of the essential oil Found in Carum carvi L. commercial fruits obtained from different countries. J. Essen. Oil Res., 2012, 24, 53-59.
[http://dx.doi.org/10.1080/10412905.2012.646016]
[97]
Bai, J.A.; Vittal, R.R. Quorum sensing inhibitory and anti-biofilm activity of essential oils and their in vivo efficacy in food systems. Food Biotechnol., 2012, 28, 269-292.
[http://dx.doi.org/10.1080/08905436.2014.932287]
[98]
Kerekes, E.B.; Deák, É.; Takó, M.; Tserennadmid, R.; Petkovits, T.; Vágvölgyi, C.; Krisch, J. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J. Appl. Microbiol., 2013, 115(4), 933-942.
[http://dx.doi.org/10.1111/jam.12289] [PMID: 23789847]
[99]
Poli, J.P.; Guinoiseau, E.; de Rocca Serra, D.; Sutour, S.; Paoli, M.; Tomi, F.; Quilichini, Y.; Berti, L.; Lorenzi, V. Anti-quorum sensing activity of 12 essential oils on Chromobacterium violaceum and specific action of cis-cis-p-menthenolide from corsican Mentha suaveolens ssp. Insularis. Molecules, 2018, 23(9), 2125.
[http://dx.doi.org/10.3390/molecules23092125] [PMID: 30142938]
[100]
Duke, J.A. Handbook of Phytochemical Constituent Grass, Herbs and other Economic Plants; CRC Press: Boca Raton, FL, 1992, p. 624.
[101]
Stashenko, E.E.; Martínez, J.R.; Cala, M.P.; Durán, D.C.; Caballero, D. Chromatographic and mass spectrometric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants. J. Sep. Sci., 2013, 36(1), 192-202.
[http://dx.doi.org/10.1002/jssc.201200877] [PMID: 23292852]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy