Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

CDKN2B-AS1: An Indispensable Long Non-coding RNA in Multiple Diseases

Author(s): Chaoying Song, Yuying Qi, Jiali Zhang, Chong Guo* and Chengfu Yuan*

Volume 26, Issue 41, 2020

Page: [5335 - 5346] Pages: 12

DOI: 10.2174/1381612826666200806102424

Price: $65

conference banner
Abstract

Background: In view of the roles of long non-coding RNA CDKN2B antisense RNA 1 (CDKN2BAS1) in various human diseases, we investigated the function of CDKN2B-AS1 and explored its therapeutic and prognostic target value in multiple biological processes. The aim of this review was to explore the molecular mechanism and clinical significance of CDKN2B-AS1 in various types of diseases.

Materials and Methods: In this review, the biological functions and mechanisms of lncRNA CDKN2B-AS1 in a variety of pathophysiological processes were summarized and analyzed. The correlated studies were collected via a systematic search of PubMed, Wiley Online Library, and ScienceDirect.

Results: CDKN2B-AS1 is a potential long non-coding RNA that has been shown to be aberrantly expressed in various malignancies, containing hepatocellular carcinoma, intrahepatic cholangiocarcinoma, esophageal squamous cell carcinoma, gastric cancer, colonic adenocarcinoma, cervical cancer, ovarian cancer, breast cancer, glioma, lung cancer, laryngeal squamous cell carcinoma and osteosarcoma, involving in the processes of tumor cells proliferation, migration, invasion and inhibition of tumor cells apoptosis. Besides, CDKN2B-AS1 has been proved implicated in numerous non-malignant diseases, such as idiopathic pulmonary fibrosis, endometriosis, inflammatory bowel disease, intracranial aneurysm, diabetes mellitus and its complications, primary open angle glaucoma, ischemic stroke, atherosclerosis, coronary artery diseases, hypertension and heart failure, participating in the procession of lipid, carbohydrate metabolism and inflammation regulation.

Conclusion: Long non-coding RNA CDKN2B-AS1 likely serves as a promising therapeutic target or prognosis biomarker in multiple human diseases.

Keywords: LncRNAs, CDKN2B-AS1, tumor, non-malignant diseases, malignancies, prognosis biomarker.

[1]
Bergmann JH, Spector DL. Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 2014; 26: 10-8.
[http://dx.doi.org/10.1016/j.ceb.2013.08.005] [PMID: 24529241]
[2]
Nakano M, Ikeda Y, Tokuda Y, et al. Common variants in CDKN2B-AS1 associated with optic-nerve vulnerability of glaucoma identified by genome-wide association studies in Japanese. PLoS One 2012; 7(3)e33389
[http://dx.doi.org/10.1371/journal.pone.0033389] [PMID: 22428042]
[3]
Al-Nafie AN, Al-Shehri A. Intronic polymorphisms in the CDKN2B-AS1 gene are strongly associated with the risk of myocardial infarction and coronary artery disease in the saudi population. Int J Mol Sci 2016; 17: 395.
[4]
Zhuang H, Cao G, Kou C, Li D. Overexpressed lncRNA CDKN2B-AS1 is an independent prognostic factor for liver cancer and promotes its proliferation. J BUON 2019; 24(4): 1441-8.
[PMID: 31646789]
[5]
Sui J, Miao Y, Han J, et al. Systematic analyses of a novel lncRNA-associated signature as the prognostic biomarker for hepatocellular carcinoma. Cancer Med 2018.
[http://dx.doi.org/10.1002/cam4.1541] [PMID: 29761859]
[6]
Huang Y, Xiang B, Liu Y, Wang Y, Kan H. LncRNA CDKN2B-AS1 promotes tumor growth and metastasis of human hepatocellular carcinoma by targeting let-7c-5p/NAP1L1 axis. Cancer Lett 2018; 437: 56-66.
[http://dx.doi.org/10.1016/j.canlet.2018.08.024] [PMID: 30165194]
[7]
Chen Z, Gao W, Pu L, et al. PRDM8 exhibits antitumor activities toward hepatocellular carcinoma by targeting NAP1L1. Hepatology 2018; 68(3): 994-1009.
[http://dx.doi.org/10.1002/hep.29890] [PMID: 29572888]
[8]
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15(2): 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[9]
Angenard G, Merdrignac A, Louis C, Edeline J, Coulouarn C. Expression of long non-coding RNA ANRIL predicts a poor prognosis in intrahepatic cholangiocarcinoma. Dig Liver Dis 2019; 51(9): 1337-43.
[http://dx.doi.org/10.1016/j.dld.2019.03.019] [PMID: 31040073]
[10]
Lv L, Wei M, Lin P, et al. Integrated mRNA and lncRNA expression profiling for exploring metastatic biomarkers of human intrahepatic cholangiocarcinoma. Am J Cancer Res 2017; 7(3): 688-99.
[PMID: 28401021]
[11]
Yu Y, Chen Q, Zhang X, et al. Long noncoding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression. Cancer Sci 2020.
[http://dx.doi.org/10.1111/cas.14447] [PMID: 32378752]
[12]
Lin X, Yan C, Gao Y, et al. Genetic variants at 9p21.3 are associated with risk of esophageal squamous cell carcinoma in a Chinese population. Cancer Sci 2017; 108(2): 250-5.
[http://dx.doi.org/10.1111/cas.13130] [PMID: 27960044]
[13]
Li Z, Yu X, Shen J. ANRIL: a pivotal tumor suppressor long non-coding RNA in human cancers. Tumour Biol 2016; 37(5): 5657-61.
[http://dx.doi.org/10.1007/s13277-016-4808-5] [PMID: 26753962]
[14]
Hu Z, Wu H, Li Y, et al. β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression. Anticancer Drugs 2015; 26(5): 531-9.
[http://dx.doi.org/10.1097/CAD.0000000000000216] [PMID: 25646744]
[15]
Fock KM. Review article: the epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther 2014; 40(3): 250-60.
[http://dx.doi.org/10.1111/apt.12814] [PMID: 24912650]
[16]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[17]
Thrift AP, El-Serag HB. Burden of Gastric Cancer. Clin Gastroenterol Hepatol 2020; 18(3): 534-42.
[http://dx.doi.org/10.1016/j.cgh.2019.07.045] [PMID: 31362118]
[18]
Kangarlouei R, Irani S, Noormohammadi Z, Memari F, Mirfakhraie R. ANRIL and ANRASSF1 long noncoding RNAs are upregulated in gastric cancer. J Cell Biochem 2019; 120(8): 12544-8.
[http://dx.doi.org/10.1002/jcb.28520] [PMID: 30834580]
[19]
Li T, Mo X, Fu L, Xiao B, Guo J. Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget 2016; 7(8): 8601-12.
[http://dx.doi.org/10.18632/oncotarget.6926] [PMID: 26788991]
[20]
Li WQ, Pfeiffer RM, Hyland PL, et al. Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. Carcinogenesis 2014; 35(12): 2698-705.
[http://dx.doi.org/10.1093/carcin/bgu203] [PMID: 25239644]
[21]
Zhang EB, Kong R, Yin DD, et al. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a. Oncotarget 2014; 5(8): 2276-92.
[http://dx.doi.org/10.18632/oncotarget.1902] [PMID: 24810364]
[22]
Deng W, Zhang Y, Cai J, et al. LncRNA-ANRIL promotes gastric cancer progression by enhancing NF-kB signaling. Exp Biol Med (Maywood) 2019; 244(12): 953-9.
[http://dx.doi.org/10.1177/1535370219860207] [PMID: 31242038]
[23]
Deng W, Wang J, Zhang J, Cai J, Bai Z, Zhang Z. TET2 regulates LncRNA-ANRIL expression and inhibits the growth of human gastric cancer cells. IUBMB Life 2016; 68(5): 355-64.
[http://dx.doi.org/10.1002/iub.1490] [PMID: 27027260]
[24]
Wu M, Li W, Huang F, et al. Comprehensive analysis of the expression profiles of long non-coding RNAs with associated ceRNA network involved in the colon cancer staging and progression. Sci Rep 2019; 9(1): 16910.
[http://dx.doi.org/10.1038/s41598-019-52883-2] [PMID: 31729423]
[25]
Huang W, Liu Z, Li Y, Liu L, Mai G. Identification of long noncoding RNAs biomarkers for diagnosis and prognosis in patients with colon adenocarcinoma. J Cell Biochem 2019; 120(3): 4121-31.
[http://dx.doi.org/10.1002/jcb.27697] [PMID: 30269368]
[26]
Naemura M, Murasaki C, Inoue Y, Okamoto H, Kotake Y. Long noncoding RNA. Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells. Anticancer Res 2015; 35(10): 5377-82.
[PMID: 26408699]
[27]
Zhang D, Sun G, Zhang H, Tian J, Li Y. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomed Pharmacother 2017; 85: 511-6.
[http://dx.doi.org/10.1016/j.biopha.2016.11.058] [PMID: 27899255]
[28]
Zhang JJ, Wang DD, Du CX, Wang Y. Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of mir-186. Oncol Res 2018; 26(3): 345-52.
[http://dx.doi.org/10.3727/096504017X14953948675449] [PMID: 28550682]
[29]
Zhu L, Zhang Q, Li S, Jiang S, Cui J, Dang G. Interference of the long noncoding RNA CDKN2B-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells. Cancer Med 2019; 8(4): 1721-30.
[http://dx.doi.org/10.1002/cam4.2040] [PMID: 30884187]
[30]
Duska LR, Kohn EC. The new classifications of ovarian, fallopian tube, and primary peritoneal cancer and their clinical implications Ann Oncol 2017; 28(2017): viii8-viii12.
[31]
Qiu JJ, Wang Y, Liu YL, Zhang Y, Ding JX, Hua KQ. The long non-coding RNA ANRIL promotes proliferation and cell cycle progression and inhibits apoptosis and senescence in epithelial ovarian cancer. Oncotarget 2016; 7(22): 32478-92.
[http://dx.doi.org/10.18632/oncotarget.8744] [PMID: 27095571]
[32]
Qiu JJ, Lin YY, Ding JX, Feng WW, Jin HY, Hua KQ. Long non-coding RNA ANRIL predicts poor prognosis and promotes invasion/metastasis in serous ovarian cancer. Int J Oncol 2015; 46(6): 2497-505.
[http://dx.doi.org/10.3892/ijo.2015.2943] [PMID: 25845387]
[33]
Fehringer G, Kraft P, Pharoah PD, et al. Cross-cancer genome-wide analysis of lung, ovary, breast, prostate, and colorectal cancer reveals novel pleiotropic associations. Cancer Res 2016; 76(17): 5103-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2980] [PMID: 27197191]
[34]
Xu C, Zhai J, Fu Y. LncRNA CDKN2B-AS1 promotes the progression of ovarian cancer by miR-143-3p/SMAD3 axis and predicts a poor prognosis. Neoplasma 2020. 190617N515
[http://dx.doi.org/10.4149/neo_2020_190617N515] [PMID: 32305052]
[35]
Wang Y, Huang Y, Liu H, Su D, Luo F, Zhou F. Long noncoding RNA CDKN2B-AS1 interacts with miR-411-3p to regulate ovarian cancer in vitro and in vivo through HIF-1a/VEGF/P38 pathway. Biochem Biophys Res Commun 2019; 514(1): 44-50.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.141] [PMID: 31014670]
[36]
Doherty JA, Peres LC, Wang C, Way GP, Greene CS, Schildkraut JM. Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr Epidemiol Rep 2017; 4(3): 211-20.
[http://dx.doi.org/10.1007/s40471-017-0115-y] [PMID: 29226065]
[37]
Harbeck N, Gnant M. Breast cancer. Lancet 2017; 389(10074): 1134-50.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[38]
Aloraifi F, McDevitt T, Martiniano R, et al. Detection of novel germline mutations for breast cancer in non-BRCA1/2 families. FEBS J 2015; 282(17): 3424-37.
[http://dx.doi.org/10.1111/febs.13352] [PMID: 26094658]
[39]
Lee JY, Kim J, Kim SW, et al. BRCA1/2-negative, high-risk breast cancers (BRCAX) for Asian women: genetic susceptibility loci and their potential impacts. Sci Rep 2018; 8(1): 15263.
[http://dx.doi.org/10.1038/s41598-018-31859-8] [PMID: 30323354]
[40]
Tripathi R, Soni A, Varadwaj PK. Integrated analysis of dysregulated lncRNA expression in breast cancer cell identified by RNA-seq study. Noncoding RNA Res 2016; 1(1): 35-42.
[http://dx.doi.org/10.1016/j.ncrna.2016.09.002] [PMID: 30159409]
[41]
Meseure D, Vacher S, Alsibai KD, et al. Expression of ANRIL-polycomb complexes-CDKN2A/B/ARF genes in breast tumors: Identification of a two-gene (EZH2/CBX7) signature with independent prognostic value. Mol Cancer Res 2016; 14(7): 623-33.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0418] [PMID: 27102007]
[42]
Iranpour M, Soudyab M, Geranpayeh L, et al. Expression analysis of four long noncoding RNAs in breast cancer. Tumour Biol 2016; 37(3): 2933-40.
[http://dx.doi.org/10.1007/s13277-015-4135-2] [PMID: 26409453]
[43]
Liu M, Xing LQ, Liu YJ. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine (Baltimore) 2017; 96(9)e6222
[http://dx.doi.org/10.1097/MD.0000000000006222] [PMID: 28248879]
[44]
Subik K, Lee JF, Baxter L, et al. The Expression Patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by Immunohistochemical Analysis in Breast Cancer Cell Lines. Breast Cancer (Auckl) 2010; 4: 35-41.
[http://dx.doi.org/10.1177/117822341000400004] [PMID: 20697531]
[45]
Xu ST, Xu JH, Zheng ZR, et al. Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed Pharmacother 2017; 96: 14-21.
[http://dx.doi.org/10.1016/j.biopha.2017.09.107] [PMID: 28961506]
[46]
Dahlin AM, Wibom C, Andersson U, et al. Genetic variants in the 9p21.3 locus associated with glioma risk in children, adolescents, and young adults: a case-control study. Cancer Epidemiol Biomarkers Prev 2019; 28(7): 1252-8.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-1026] [PMID: 31040135]
[47]
Dahlin AM, Wibom C, Ghasimi S, Brännström T, Andersson U, Melin B. Relation between established glioma risk variants and DNA methylation in the tumor. PLoS One 2016; 11(10)e0163067
[http://dx.doi.org/10.1371/journal.pone.0163067] [PMID: 27780202]
[48]
Wibom C, Späth F, Dahlin AM, et al. Investigation of established genetic risk variants for glioma in prediagnostic samples from a population-based nested case-control study. Cancer Epidemiol Biomarkers Prev 2015; 24(5): 810-6.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-1106] [PMID: 25713050]
[49]
Lv X, Cui Z, Li H, et al. Association between polymorphism in CDKN2B-AS1 gene and its interaction with smoking on the risk of lung cancer in a Chinese population. Hum Genomics 2019; 13(1): 58.
[http://dx.doi.org/10.1186/s40246-019-0240-4] [PMID: 31775885]
[50]
Xie Y, Zhang Y, Du L, et al. Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Mol Oncol 2018; 12(5): 648-58.
[http://dx.doi.org/10.1002/1878-0261.12188] [PMID: 29504701]
[51]
Majem M, Hernández-Hernández J, Hernando-Trancho F, et al. Multidisciplinary consensus statement on the clinical management of patients with stage III non-small cell lung cancer. Clin Transl Oncol 2020; 22(1): 21-36.
[http://dx.doi.org/10.1007/s12094-019-02134-7] [PMID: 31172444]
[52]
Lu Y, Zhou X, Xu L, Rong C, Shen C, Bian W. Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. OncoTargets Ther 2016; 9: 3077-84.
[PMID: 27307748]
[53]
Nie FQ, Sun M, Yang JS, et al. Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 2015; 14(1): 268-77.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0492] [PMID: 25504755]
[54]
Tian Z, Wen S, Zhang Y, et al. Identification of dysregulated long non-coding RNAs/microRNAs/mRNAs in TNM I stage lung adenocarcinoma. Oncotarget 2017; 8(31): 51703-18.
[http://dx.doi.org/10.18632/oncotarget.18512] [PMID: 28881680]
[55]
Zhang LM, Ju HY, Wu YT, et al. Long non-coding RNA ANRIL promotes tumorgenesis through regulation of FGFR1 expression by sponging miR-125a-3p in head and neck squamous cell carcinoma. Am J Cancer Res 2018; 8(11): 2296-310.
[PMID: 30555745]
[56]
Cui X, Yu T, Shang J, Xiao D, Wang X. Long Non-Coding RNA. Long non-coding RNA CDKN2B-AS1 facilitates laryngeal squamous cell cancer through regulating mir-497/cdk6 pathway. OncoTargets Ther 2019; 12: 8853-62.
[http://dx.doi.org/10.2147/OTT.S221620] [PMID: 31754305]
[57]
Liu F, Xiao Y, Ma L, Wang J. Regulating of cell cycle progression by the lncRNA CDKN2B-AS1/miR-324-5p/ROCK1 axis in laryngeal squamous cell cancer. Int J Biol Markers 2020; 35(1): 47-56.
[http://dx.doi.org/10.1177/1724600819898489] [PMID: 31960744]
[58]
Luo Y, Tao H, Jin L, Xiang W, Guo W. CDKN2B-AS1 exerts oncogenic role in osteosarcoma by promoting cell proliferation and epithelial to mesenchymal transition. Cancer Biother Radiopharm 2020; 35(1): 58-65.
[http://dx.doi.org/10.1089/cbr.2019.2885] [PMID: 31724892]
[59]
Gui D, Cao H. Long non-coding RNA CDKN2B-AS1 promotes osteosarcoma by increasing the expression of MAP3K3 via sponging miR-4458. In Vitro Cell Dev Biol Anim 2020; 56(1): 24-33.
[http://dx.doi.org/10.1007/s11626-019-00415-7] [PMID: 31950433]
[60]
Manichaikul A, Wang XQ, Sun L, et al. Genome-wide association study of subclinical interstitial lung disease in MESA. Respir Res 2017; 18(1): 97.
[http://dx.doi.org/10.1186/s12931-017-0581-2] [PMID: 28521775]
[61]
Du Y, Hao X, Liu X. Low expression of long noncoding RNA CDKN2B-AS1 in patients with idiopathic pulmonary fibrosis predicts lung cancer by regulating the p53-signaling pathway. Oncol Lett 2018; 15(4): 4912-8.
[http://dx.doi.org/10.3892/ol.2018.7910] [PMID: 29541247]
[62]
Osiński M, Mostowska A, Wirstlein P, Wender-Ożegowska E, Jagodziński PP, Szczepańska M. The assessment of GWAS - identified polymorphisms associated with infertility risk in Polish women with endometriosis. Ginekol Pol 2018; 89(6): 304-10.
[http://dx.doi.org/10.5603/GP.a2018.0052] [PMID: 30010178]
[63]
Sapkota Y, Fassbender A, Bowdler L, et al. Independent replication and meta-analysis for endometriosis risk loci. Twin Res Hum Genet 2015; 18(5): 518-25.
[http://dx.doi.org/10.1017/thg.2015.61] [PMID: 26337243]
[64]
Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update 2014; 20(5): 702-16.
[http://dx.doi.org/10.1093/humupd/dmu015] [PMID: 24676469]
[65]
Lee HS, Lee SB, Kim BM, et al. Association of CDKN2A/CDKN2B with inflammatory bowel disease in Koreans. J Gastroenterol Hepatol 2018; 33(4): 887-93.
[http://dx.doi.org/10.1111/jgh.14031] [PMID: 29063720]
[66]
Zacharopoulou E, Gazouli M, Tzouvala M, Vezakis A, Karamanolis G. The contribution of long non-coding RNAs in inflammatory bowel diseases. Dig Liver Dis 2017; 49(10): 1067-72.
[http://dx.doi.org/10.1016/j.dld.2017.08.003] [PMID: 28869157]
[67]
Rankin CR, Lokhandwala ZA, Huang R, Pekow J, Pothoulakis C, Padua D. Linear and circular CDKN2B-AS1 expression is associated with Inflammatory Bowel Disease and participates in intestinal barrier formation. Life Sci 2019.231116571
[http://dx.doi.org/10.1016/j.lfs.2019.116571] [PMID: 31207308]
[68]
Wu F, Huang Y, Dong F, Kwon JH. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm Bowel Dis 2016; 22(4): 782-95.
[http://dx.doi.org/10.1097/MIB.0000000000000691] [PMID: 26937624]
[69]
Qiao C, Yang L, Wan J, et al. Long noncoding RNA ANRIL contributes to the development of ulcerative colitis by miR-323b-5p/TLR4/MyD88/NF-κB pathway. Biochem Biophys Res Commun 2019; 508(1): 217-24.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.100] [PMID: 30477744]
[70]
Ge Q, Dong Y, Lin G, Cao Y. Long noncoding RNA antisense noncoding RNA in the INK4 locus correlates with risk, severity, inflammation and infliximab efficacy in crohn’s disease. Am J Med Sci 2019; 357(2): 134-42.
[http://dx.doi.org/10.1016/j.amjms.2018.10.016] [PMID: 30665494]
[71]
Li B, Hu C, Liu J, et al. Associations among Genetic Variants and Intracranial Aneurysm in a Chinese Population. Yonsei Med J 2019; 60(7): 651-8.
[http://dx.doi.org/10.3349/ymj.2019.60.7.651] [PMID: 31250579]
[72]
Synowiec E, Wojcik KA, Wójcik R, et al. Expression and variability of lipid metabolism genes in intracranial aneurysm. Cell Mol Biol 2016; 62(4): 73-82.
[PMID: 27188739]
[73]
Samuel N, Radovanovic I. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era. Neurosurg Focus 2019; 47(1)E10
[http://dx.doi.org/10.3171/2019.4.FOCUS19204] [PMID: 31261114]
[74]
Cheung CY, Tang CS, Xu A, et al. Exome-chip association analysis reveals an Asian-specific missense variant in PAX4 associated with type 2 diabetes in Chinese individuals. Diabetologia 2017; 60(1): 107-15.
[http://dx.doi.org/10.1007/s00125-016-4132-z] [PMID: 27744525]
[75]
Thomas AA, Feng B, Chakrabarti S. ANRIL regulates production of extracellular matrix proteins and vasoactive factors in diabetic complications. Am J Physiol Endocrinol Metab 2018; 314(3): E191-200.
[http://dx.doi.org/10.1152/ajpendo.00268.2017] [PMID: 29118015]
[76]
Li Y, Zheng LL, Huang DG, Cao H, Gao YH, Fan ZC. LNCRNA CDKN2B-AS1 regulates mesangial cell proliferation and extracellular matrix accumulation via miR-424-5p/HMGA2 axis. Biomed Pharmacother 2020.121109622
[http://dx.doi.org/10.1016/j.biopha.2019.109622] [PMID: 31707340]
[77]
Toraih EA, Abdelghany AA, Abd El Fadeal NM, Al Ageeli E, Fawzy MS. Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients. Graefes Arch Clin Exp Ophthalmol 2019; 257(9): 1897-913.
[http://dx.doi.org/10.1007/s00417-019-04409-9] [PMID: 31327036]
[78]
Pasquale LR, Loomis SJ, Kang JH, et al. CDKN2B-AS1 genotypeglaucoma feature correlations in primary open-angle glaucoma patients from the United States Am J Ophthalmol 2013; 155(2013): 342-53.
[79]
Shiga Y, Nishiguchi KM, Kawai Y, et al. Genetic analysis of Japanese primary open-angle glaucoma patients and clinical characterization of risk alleles near CDKN2B-AS1, SIX6 and GAS7. PLoS One 2017; 12(12)e0186678
[http://dx.doi.org/10.1371/journal.pone.0186678] [PMID: 29261660]
[80]
Burdon KP, Crawford A, Casson RJ, et al. Glaucoma risk alleles at CDKN2B-AS1 are associated with lower intraocular pressure, normal-tension glaucoma, and advanced glaucoma. Ophthalmology 2012; 119(8): 1539-45.
[http://dx.doi.org/10.1016/j.ophtha.2012.02.004] [PMID: 22521085]
[81]
Li Z, Allingham RR, Nakano M, et al. A common variant near TGFBR3 is associated with primary open angle glaucoma. Hum Mol Genet 2015; 24(13): 3880-92.
[http://dx.doi.org/10.1093/hmg/ddv128] [PMID: 25861811]
[82]
Bozpolat A, Unal E, Topaloglu T, et al. The relationship between the prognosis of children with acute arterial stroke and polymorphisms of CDKN2B, HDAC9, NINJ2, NAA25 genes. J Thromb Thrombolysis 2019; 47(4): 578-84.
[http://dx.doi.org/10.1007/s11239-018-01802-9] [PMID: 30656483]
[83]
Ferreira LE, Secolin R, Lopes-Cendes I, Cabral NL, França PHC. Association and interaction of genetic variants with occurrence of ischemic stroke among Brazilian patients. Gene 2019; 695: 84-91.
[http://dx.doi.org/10.1016/j.gene.2019.01.041] [PMID: 30738964]
[84]
Xiong L, Liu W, Gao L, et al. The ANRIL genetic variants and their interactions with environmental risk factors on atherothrombotic stroke in a han chinese population. J Stroke Cerebrovasc Dis 2018; 27(9): 2336-47.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.04.020] [PMID: 29773352]
[85]
Lei JJ, Li HQ, Mo ZH, et al. Long noncoding RNA CDKN2B-AS1 interacts with transcription factor BCL11A to regulate progression of cerebral infarction through mediating MAP4K1 transcription. FASEB J 2019; 33(6): 7037-48.
[http://dx.doi.org/10.1096/fj.201802252R] [PMID: 30870006]
[86]
Goncharova IA, Pecherina TB, Markov AV, et al. Fibrogenesis genes and susceptibility to coronary atherosclerosis In. Kardiologiia 2018; 17(8): 33-44.
[http://dx.doi.org/10.18087/cardio.2018.8.10160] [PMID: 30131040]
[87]
Holdt LM, Teupser D. From genotype to phenotype in human atherosclerosis-recent findings. Curr Opin Lipidol 2013; 24(5): 410-8.
[http://dx.doi.org/10.1097/MOL.0b013e3283654e7c] [PMID: 24005217]
[88]
Cho H, Shen GQ, Wang X, et al. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J Biol Chem 2019; 294(11): 3881-98.
[http://dx.doi.org/10.1074/jbc.RA118.005050] [PMID: 30655286]
[89]
Harismendy O, Notani D, Song X, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature 2011; 470(7333): 264-8.
[http://dx.doi.org/10.1038/nature09753] [PMID: 21307941]
[90]
Matoo S, Fallah MS, Daneshpour MS, et al. Increased risk of CHD in the presence of rs7865618 (A allele): Tehran lipid and glucose study. Arch Iran Med 2017; 20(3): 153-7.
[PMID: 28287809]
[91]
Huang K, Zhong J, Li Q, et al. Effects of CDKN2B-AS1 polymorphisms on the susceptibility to coronary heart disease. Mol Genet Genomic Med 2019; 7(11)e955
[http://dx.doi.org/10.1002/mgg3.955] [PMID: 31496134]
[92]
Temel SG, Ergoren MC. The association between the chromosome 9p21 CDKN2B-AS1 gene variants and the lipid metabolism: A pre-diagnostic biomarker for coronary artery disease. Anatol J Cardiol 2018.
[http://dx.doi.org/10.14744/AnatolJCardiol.2018.90907] [PMID: 30587704]
[93]
Guo F, Tang C, Li Y, et al. The interplay of LncRNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-κB signalling pathway. J Cell Mol Med 2018; 22(10): 5062-75.
[http://dx.doi.org/10.1111/jcmm.13790] [PMID: 30079603]
[94]
Bayoglu B, Yuksel H, Cakmak HA, Dirican A, Cengiz M. Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem 2016; 49(10-11): 821-7.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.02.012] [PMID: 26944720]
[95]
Kunnas T, Piesanen J, Nikkari ST. Association of a chromosome locus 9p21.3 CDKN2B-AS1 variant rs4977574 with hypertension: The TAMRISK study. Genet Test Mol Biomarkers 2018; 22(5): 327-30.
[http://dx.doi.org/10.1089/gtmb.2017.0249] [PMID: 29791233]
[96]
Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 2013; 9(7)e1003588
[http://dx.doi.org/10.1371/journal.pgen.1003588] [PMID: 23861667]
[97]
Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med 2016; 14(1): 183.
[http://dx.doi.org/10.1186/s12967-016-0926-5] [PMID: 27317124]
[98]
Aragam KG, Chaffin M, Levinson RT, et al. Phenotypic refinement of heart failure in a national biobank facilitates genetic discovery. Circulation 2018.
[PMID: 30586722]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy