Abstract
Aim: Polyamidoamine (PAMAM) dendrimers are attracting interest of the scientists as vehicles for nucleic acid delivery due to their suitable properties. The highly positive surface charged of PAMAM enables an adequate interaction with negatively charged microRNAs.
Purpose: The purpose of this study is to investigate the anti-tumor effect of microRNA Mimic let-7b loaded in PAMAM dendrimers (G5) on Non-Small Cell Lung Cancer (NSCLC) cells.
Objective: In order to increase the anti-tumor effect, chloroquine is employed to enhance the endosomal escape which is counted as a limitation in the advancement of gene delivery. Nanoparticles (NPs) were coated with natural polysaccharide "Hyaluronic Acid (HA)" to develop biodegradable carriers with targeting moiety for over-expressed CD44 receptors on NSCLC cells. The size and zeta potential measurements, gel retardation, cellular uptake, cell viability and gene expression studies were investigated for the designed delivery system.
Results: DLS analysis showed monodispersed small nanoparticles, which was in agreement with TEM results. Remarkably, NPs in the cells pretreated with chloroquine exhibited the highest cytotoxicity and were capable of inducing apoptosis. In cellular uptake study, NPs labeled with Fluorescein Isothiocyanate (FITC), were successfully taken up in cancer cells. Moreover, the expression study of three genes linked with cancer initiation and development in NSCLC, including KRAS, p-21, and BCL-2 indicated a decrease in KRAS and BCL-2 (oncogenic and anti-apoptotic genes) and increase in p-21 (apoptotic gene).
Conclusion: All factors considered, the results declare that application of let-7b-loaded PAMAM-HA NPs in combination with chloroquine can be a promising therapeutic option in cancer cells inhibition. This fact has frequently been highlighted by many researchers upon the potentials of micro RNA delivery in cancer cells.
Keywords: Gene-delivery, NSCLC, PAMAM dendrimers, microRNA let-7b, chloroquine, cancer cells.
[http://dx.doi.org/10.2174/2211738507666190321112237] [PMID: 30907329]
[http://dx.doi.org/10.1016/j.cell.2005.01.014] [PMID: 15766527]
[http://dx.doi.org/10.1016/j.cell.2007.10.054] [PMID: 18083101]
[http://dx.doi.org/10.1007/s10549-010-0972-2] [PMID: 20535543]
[http://dx.doi.org/10.1248/bpb.29.903] [PMID: 16651716]
(b)Kumar, M.S.; Erkeland, S.J.; Pester, R.E.; Chen, C.Y.; Ebert, M.S.; Sharp, P.A.; Jacks, T. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc. Natl. Acad. Sci. USA, 2008, 105(10), 3903-3908.
[http://dx.doi.org/10.1073/pnas.0712321105] [PMID: 18308936]
[http://dx.doi.org/10.1038/onc.2009.445] [PMID: 19966857]
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[http://dx.doi.org/10.4161/cc.7.6.5834] [PMID: 18344688]
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[http://dx.doi.org/10.1016/j.jconrel.2013.09.015] [PMID: 24075926]
[http://dx.doi.org/10.1080/17425247.2020.1716729] [PMID: 31951752]
[http://dx.doi.org/10.1038/nrclinonc.2011.71] [PMID: 21587219]
[http://dx.doi.org/10.1038/onc.2015.511] [PMID: 26853465]
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0948] [PMID: 24785258]
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0914] [PMID: 26199389]
(b)Chen, W.; Liu, Y.; Liang, X.; Huang, Y.; Li, Q. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery.Acta Biomater, 2017.57, 238-250.
[http://dx.doi.org/10.1016/j.actbio.2017.05.030] [PMID: 28511876]
(c)Song, Z.; Liang, X.; Wang, Y.; Han, H.; Yang, J.; Fang, X.; Li, Q. Phenylboronic acid-functionalized polyamidoamine-mediated miR-34a delivery for the treatment of gastric cancer.Biomater. Sci., 2019,7(4), 1632-1642.
[http://dx.doi.org/10.1039/C8BM01385C] [PMID: 30720809]
(d)Han, H.; Yang, J.; Wang, Y.; Chen, W.; Chen, J.; Yang, Y.; Li, Q. Nucleobase-modified polyamidoamine-mediated miR-23b delivery to inhibit the proliferation and migration of lung cancer. Biomater. Sci., 2017, 5(11), 2268-2275.
[http://dx.doi.org/10.1039/C7BM00599G] [PMID: 28976503]
[http://dx.doi.org/10.1016/j.jconrel.2012.08.020] [PMID: 22940126]
(b)Urbiola, K.; Sanmartín, C.; Blanco-Fernández, L.; Tros de Ilarduya, C. Efficient targeted gene delivery by a novel PAMAM/DNA dendriplex coated with hyaluronic acid. Nanomedicine, 2014, 9(18), 2787-2801.
[http://dx.doi.org/10.2217/nnm.14.45] [PMID: 24959932]
[http://dx.doi.org/10.1016/j.jconrel.2016.12.024] [PMID: 28027947]
(b)Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishadi, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F.A. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J. Control. Release, 2016, 229, 10-22.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.012] [PMID: 26968799]
[http://dx.doi.org/10.1016/j.carbpol.2015.03.019] [PMID: 25933544]
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[http://dx.doi.org/10.1016/j.ejmech.2008.04.021] [PMID: 18550227]
(b)Denora, N.; Laquintana, V.; Lopalco, A.; Iacobazzi, R.M.; Lopedota, A.; Cutrignelli, A.; Iacobellis, G.; Annese, C.; Cascione, M.; Leporatti, S.; Franco, M. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM-FITC labeled dendrimer. J. Control. Release, 2013, 172(3), 1111-1125.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.024] [PMID: 24096015]
[http://dx.doi.org/10.3390/ijms161125956] [PMID: 26556337]
(b)Ma, P.; Zhang, X.; Ni, L.; Li, J.; Zhang, F.; Wang, Z.; Lian, S.; Sun, K. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab. Int. J. Nanomedicine, 2015, 10, 2173-2190.
[http://dx.doi.org/10.2147/IJN.S77152] [PMID: 25834432]
[http://dx.doi.org/10.1007/s11051-013-1776-1]
[http://dx.doi.org/10.1016/S0378-5173(01)00623-8] [PMID: 11337152]
[http://dx.doi.org/10.18632/oncotarget.26027] [PMID: 30214680]
(b)Bahcall, M.; Awad, M.M.; Sholl, L.M.; Wilson, F.H.; Xu, M.; Wang, S.; Palakurthi, S.; Choi, J.; Ivanova, E.V.; Leonardi, G.C.; Ulrich, B.C.; Paweletz, C.P.; Kirschmeier, P.T.; Watanabe, M.; Baba, H.; Nishino, M.; Nagy, R.J.; Lanman, R.B.; Capelletti, M.; Chambers, E.S.; Redig, A.J.; VanderLaan, P.A.; Costa, D.B.; Imamura, Y.; Jänne, P.A. Amplification of wild-type KRAS imparts resistance to crizotinib in MET exon 14 mutant non-small cell lung cancer., Clin. Cancer Res.,2018, 24(23), 5963-5976..
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0876] [PMID: 30072474]
(c)Suzawa, K.; Offin, M.; Lu, D.; Kurzatkowski, C.; Vojnic, M.; Smith, R.S.; Sabari, J.K.; Tai, H.; Mattar, M.; Khodos, I.; de Stanchina, E.; Rudin, C.M.; Kris, M.G.; Arcila, M.E.; Lockwood, W.W.; Drilon, A.; Ladanyi, M.; Somwar, R. Activation of KRAS mediates resistance to targeted therapy in MET exon 14-mutant non-small cell lung cancer. Clin. Cancer Res., 2019, 25(4), 1248-1260..
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1640] [PMID: 30352902]
(d)Braicu, C.; Gulei, D.; Cojocneanu, R.; Raduly, L.; Jurj, A.; Knutsen, E.; Calin, G.A.; Berindan-Neagoe, I. miR-181a/b therapy in lung cancer: reality or myth? Mol. Oncol., 2019, 13(1), 9-25..
[http://dx.doi.org/10.1002/1878-0261.12420] [PMID: 30548184]
(e)Zhang, M.L.; Nie, F.Q.; Sun, M.; Xia, R.; Xie, M.; Lu, K.H.; Li, W. HOXA5 indicates poor prognosis and suppresses cell proliferation by regulating p21 expression in non-small cell lung cancer., Tumour Biol., 2015, 36(5), 3521-3531.
[http://dx.doi.org/10.1007/s13277-014-2988-4] [PMID: 25549794]
(f)Pezzella, F.; Turley, H.; Kuzu, I.; Tungekar, M.F.; Dunnill, M.S.; Pierce, C.B.; Harris, A.; Gatter, K.C.; Mason, D.Y. bcl-2 protein in non-small-cell lung carcinoma. N. Engl. J. Med., 1993, 329(10), 690-694..
[http://dx.doi.org/10.1056/NEJM199309023291003] [PMID: 8393963]
(g)Gandhi, L.; Camidge, D.R.; Ribeiro de Oliveira, M.; Bonomi, P.; Gandara, D.; Khaira, D.; Hann, C.L.; McKeegan, E.M.; Litvinovich, E.; Hemken, P.M.; Dive, C.; Enschede, S.H.; Nolan, C.; Chiu, Y.L.; Busman, T.; Xiong, H.; Krivoshik, A.P.; Humerickhouse, R.; Shapiro, G.I.; Rudin, C.M. Phase I study of navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J. Clin. Oncol., 2011, 29(7), 909-916.
[http://dx.doi.org/10.1200/JCO.2010.31.6208] [PMID: 21282543]
[http://dx.doi.org/10.1016/j.apmt.2018.05.002]
[http://dx.doi.org/10.3892/ol.2018.8051] [PMID: 29552200]
[http://dx.doi.org/10.1021/acsnano.5b01263] [PMID: 25952271]
[http://dx.doi.org/10.1007/s11095-007-9415-0] [PMID: 17701324]
[http://dx.doi.org/10.1016/j.cis.2018.06.005] [PMID: 30008347]
[http://dx.doi.org/10.1016/j.carbpol.2019.01.018] [PMID: 30732795]
[http://dx.doi.org/10.1007/s00432-018-2678-5] [PMID: 29858680]
(b)Kesharwani, P.; Xie, L.; Banerjee, S.; Mao, G.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces, 2015, 136, 413-423..
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
(c)Du, X.; Yin, S.; Wang, Y.; Gu, X.; Wang, G.; Li, J. Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility. Carbohydr. Polym., 2018, 202, 513-522.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.015] [PMID: 30287030]
[http://dx.doi.org/10.1002/anie.201900099] [PMID: 30644615]
[http://dx.doi.org/10.4103/0973-1482.163830] [PMID: 26323902]
[http://dx.doi.org/10.18632/oncotarget.20955] [PMID: 29113423]
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00756] [PMID: 26636714]
(b)Wu, M.; Wang, G.; Tian, W.; Deng, Y.; Xu, Y. MiRNA-based therapeutics for lung cancer. Curr. Pharm. Des., 2018, 23(39), 5989-5996.
[http://dx.doi.org/10.2174/1381612823666170714151715] [PMID: 28714413]
[http://dx.doi.org/10.1016/j.taap.2007.07.009] [PMID: 17764713]
(b)Fuchs, S.; Kapp, T.; Otto, H.; Schöneberg, T.; Franke, P.; Gust, R.; Schlüter, A.D. A surface-modified dendrimer set for potential application as drug delivery vehicles: synthesis, in vitro toxicity, and intracellular localization., Chemistry, 2004, 10(5), 1167-1192.
[http://dx.doi.org/10.1002/chem.200305386] [PMID: 15007808]
(c)Prieto, M.J.; Temprana, C.F.; del Río Zabala, N.E.; Marotta, C.H. Alonso, Sdel, V. Optimization and in vitro toxicity evaluation of G4 PAMAM dendrimer-risperidone complexes. Eur. J. Med. Chem., 2011, 46(3), 845-850.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.021] [PMID: 21251731]
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.045] [PMID: 30513469]
[http://dx.doi.org/10.4049/jimmunol.1000702] [PMID: 21398612]
(b)Zhang, Y.; Wang, Q.; Ma, A.; Li, Y.; Li, R.; Wang, Y. Functional expression of TLR9 in esophageal cancer. Oncol. Rep., 2014, 31(5), 2298-2304.
[http://dx.doi.org/10.3892/or.2014.3095] [PMID: 24647486]
[http://dx.doi.org/10.1093/neuonc/nop046] [PMID: 20308316]
[http://dx.doi.org/10.1007/s00795-017-0175-6] [PMID: 29318388]
(b)Jin, L.; Alesi, G.N.; Kang, S. Glutaminolysis as a target for cancer therapy. Oncogene, 2016, 35(28), 3619-3625.
[http://dx.doi.org/10.1038/onc.2015.447] [PMID: 26592449]
[http://dx.doi.org/10.1016/j.gene.2018.09.014] [PMID: 30218747]
[http://dx.doi.org/10.1038/s41419-017-0243-9] [PMID: 29440633]
[http://dx.doi.org/10.1186/s12943-018-0789-x] [PMID: 29455666]
[http://dx.doi.org/10.1007/s00280-004-0811-4] [PMID: 15197486]
[http://dx.doi.org/10.1186/1471-2407-10-632] [PMID: 21087528]
[http://dx.doi.org/10.1038/s41598-017-14221-2] [PMID: 29062065]