Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Association of Zinc and Copper Status with Cardiovascular Diseases and their Assessment Methods: A Review Study

Author(s): Mahsa Malekahmadi, Safieh Firouzi, Majid Rezayi*, Hamideh Ghazizadeh, Golnaz Ranjbar, Gordon A. Ferns and Majid Ghayour Mobarhan*

Volume 20, Issue 19, 2020

Page: [2067 - 2078] Pages: 12

DOI: 10.2174/1389557520666200729160416

Price: $65

conference banner
Abstract

Cardiovascular disease (CVD) is the leading cause of mortality, morbidity, and financial losses and has a high prevalence across the world. Several studies have investigated the association between various CVD types with zinc and copper status as the essential minerals for the human body, proposing contradictory and similar results. This narrative review aimed to survey the correlations between zinc and copper status in the human body and some risk factors of CVD, as well as the assessment methods of zinc and copper status in the human body. According to the reviewed articles, zinc and copper deficiency may increase the risk of coronary heart disease, valvular regurgitation, and myocardial lesions, cardiac hypertrophy. Furthermore, it could lead to the expanded mitochondrial compartments of the heart, acute and chronic heart failure, and elevation of inflammation markers, such as interleukin-1 (IL-1) and IL-6. Two methods are primarily used for the assessment of zinc and copper in the human body, including the direct method (measurement of their concentrations) and indirect method (determining the activity of zinc- and copper-containing enzymes). Both these methods are considered reliable for the assessment of the zinc and copper levels in healthy individuals. Serum or plasma levels of these elements are also commonly used for the assessment of the correlation between zinc and copper status and CVD. But, which one is a more accurate indicator in relation to CVD is not yet clear; therefore, further studies are required in this field.

Keywords: Zinc, copper, cardiovascular disease, assessment, serum, plasma, enzymes.

« Previous
Graphical Abstract
[1]
Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J. F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. Journal of trace elements in medicine and biology: organ of the Society for Minerals and Trace Elements (GMS),2016, 35, 107-15..
[2]
Little, P.J.; Bhattacharya, R.; Moreyra, A.E.; Korichneva, I.L. Zinc and cardiovascular disease. Nutrition, 2010, 26(11-12), 1050-1057.
[http://dx.doi.org/10.1016/j.nut.2010.03.007] [PMID: 20950764]
[3]
Bonham, M.; O’Connor, J.M.; Hannigan, B.M.; Strain, J.J. The immune system as a physiological indicator of marginal copper status? Br. J. Nutr., 2002, 87(5), 393-403.
[http://dx.doi.org/10.1079/BJN2002558] [PMID: 12010579]
[4]
Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Aspects Med., 2005, 26(4-5), 268-298.
[http://dx.doi.org/10.1016/j.mam.2005.07.015] [PMID: 16112185]
[5]
Strain, J.J. Newer aspects of micronutrients in chronic disease: copper. Proc. Nutr. Soc., 1994, 53(3), 583-598.
[http://dx.doi.org/10.1079/PNS19940067] [PMID: 7886057]
[6]
Yin, J-J.; Fu, P.P.; Lutterodt, H.; Zhou, Y-T.; Antholine, W.E.; Wamer, W. Dual role of selected antioxidants found in dietary supplements: crossover between anti- and pro-oxidant activities in the presence of copper. J. Agric. Food Chem., 2012, 60(10), 2554-2561.
[http://dx.doi.org/10.1021/jf204724w] [PMID: 22339379]
[7]
Andrzejewska, M.R.; Vuram, P.K.; Pottabathini, N.; Gurram, V.; Relangi, S.S.; Korvinson, K.A.; Doddipalla, R.; Stahl, L.; Neary, M.C.; Pradhan, P.; Sharma, S.; Lakshman, M.K. The Disappearing Director: The Case of Directed N-Arylation via a Removable Hydroxyl Group. Adv. Synth. Catal., 2018, 360(13), 2503-2510.
[http://dx.doi.org/10.1002/adsc.201701611] [PMID: 30559638]
[8]
Saper, R.B.; Rash, R. Zinc: an essential micronutrient. Am. Fam. Physician, 2009, 79(9), 768-772.
[PMID: 20141096]
[9]
Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: a multipurpose trace element. Arch. Toxicol., 2006, 80(1), 1-9.
[http://dx.doi.org/10.1007/s00204-005-0009-5] [PMID: 16187101]
[10]
Maret, W.; Sandstead, H. H. Zinc requirements and the risks and benefits of zinc supplementation., Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 2006, 20(1), 3-18..
[11]
Zou, M.H.; Shi, C.; Cohen, R.A. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J. Clin. Invest., 2002, 109(6), 817-826.
[http://dx.doi.org/10.1172/JCI0214442] [PMID: 11901190]
[12]
Yanagisawa, H.; Kawashima, T.; Miyazawa, M.; Ohshiro, T. Validity of the copper/zinc ratio as a diagnostic marker for taste disorders associated with zinc deficiency. J. Trace Elem. Med. Biol., 2016, 36, 80-83.
[http://dx.doi.org/10.1016/j.jtemb.2016.04.012] [PMID: 27259356]
[13]
Ghayour-Mobarhan, M.; Shapouri-Moghaddam, A.; Azimi-Nezhad, M.; Esmaeili, H.; Parizadeh, S.M.R.; Safarian, M.; Kazemi-Bajestani, S.M.R.; Khodaei, G.H.; Hosseini, S.J.; Parizadeh, S.M.J.; Ferns, G.A. The relationship between established coronary risk factors and serum copper and zinc concentrations in a large Persian cohort. J. Trace Elem. Med. Biol., 2009, 23(3), 167-175.
[http://dx.doi.org/10.1016/j.jtemb.2009.03.006] [PMID: 19486826]
[14]
Klevay, L.M. Coronary heart disease: the zinc/copper hypothesis. Am. J. Clin. Nutr., 1975, 28(7), 764-774.
[http://dx.doi.org/10.1093/ajcn/28.7.764] [PMID: 1146731]
[15]
Ferns, G.A.A.; Lamb, D.J.; Taylor, A. The possible role of copper ions in atherogenesis: the Blue Janus. Atherosclerosis, 1997, 133(2), 139-152.
[http://dx.doi.org/10.1016/S0021-9150(97)00130-5] [PMID: 9298674]
[16]
Svensson, P.A.; Englund, M.C.; Markström, E.; Ohlsson, B.G.; Jernås, M.; Billig, H.; Torgerson, J.S.; Wiklund, O.; Carlsson, L.M.; Carlsson, B. Copper induces the expression of cholesterogenic genes in human macrophages. Atherosclerosis, 2003, 169(1), 71-76.
[http://dx.doi.org/10.1016/S0021-9150(03)00145-X PMID: 12860252]
[17]
Roth, H-P.; Kirchgessner, M. Zinc and insulin metabolism. Biol. Trace Elem. Res., 1981, 3(1), 13-32.
[http://dx.doi.org/10.1007/BF02789121] [PMID: 24271559]
[18]
Nazeminezhad, R.; Tajfard, M.; Latiff, L.A.; Mouhebati, M.; Esmaeily, H.; Ferns, G.A.A.; Ghayour-Mobarhan, M.; Rahimi, H.R. Dietary intake of patients with angiographically defined coronary artery disease and that of healthy controls in Iran. Eur. J. Clin. Nutr., 2014, 68(1), 109-113.
[http://dx.doi.org/10.1038/ejcn.2013.205] [PMID: 24219895]
[19]
Khayyatzadeh, S.S.; Moohebati, M.; Mazidi, M.; Avan, A.; Tayefi, M.; Parizadeh, S.M.R.; Ebrahimi, M.; Heidari-Bakavoli, A.; Azarpazhooh, M.R.; Esmaily, H.; Ferns, G.A.; Nematy, M.; Safarian, M.; Ghayour-Mobarhan, M. Nutrient patterns and their relationship to metabolic syndrome in Iranian adults. Eur. J. Clin. Invest., 2016, 46(10), 840-852.
[http://dx.doi.org/10.1111/eci.12666] [PMID: 27529331]
[20]
Ghayour-Mobarhan, M.; Taylor, A.; Kazemi-Bajestani, S.M.R.; Lanham-New, S.; Lamb, D.J.; Vaidya, N.; Livingstone, C.; Wang, T.; Ferns, G.A.A. Serum zinc and copper status in dyslipidaemic patients with and without established coronary artery disease. Clin. Lab., 2008, 54(9-10), 321-329.
[PMID: 19097489]
[21]
Ghayour-Mobarhan, M.; Taylor, A.; New, S.A.; Lamb, D.J.; Ferns, G.A. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem., 2005, 42(Pt 5), 364-375.
[http://dx.doi.org/10.1258/0004563054889990] [PMID: 16168192]
[22]
Kazemi-Bajestani, S.M.R.; Ghayour-Mobarhan, M.; Ebrahimi, M.; Moohebati, M.; Esmaeili, H.A.; Parizadeh, M.R.; Aghacizadeh, R.; Ferns, G.A.A. Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram. J. Trace Elem. Med. Biol., 2007, 21(1), 22-28.
[http://dx.doi.org/10.1016/j.jtemb.2006.11.005] [PMID: 17317522]
[23]
Tungtrongchitr, R.; Pongpaew, P.; Phonrat, B.; Tungtrongchitr, A.; Viroonudomphol, D.; Vudhivai, N.; Schelp, F. P. Serum copper, zinc, ceruloplasmin and superoxide dismutase in Thai overweight and obese., Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 2003, 86(6), 543-51..
[24]
Craig, W.Y.; Poulin, S.E.; Palomaki, G.E.; Neveux, L.M.; Ritchie, R.F.; Ledue, T.B. Oxidation-related analytes and lipid and lipoprotein concentrations in healthy subjects. Arterioscler. Thromb. Vasc. Biol., 1995, 15(6), 733-739.
[http://dx.doi.org/10.1161/01.ATV.15.6.733] [PMID: 7773726]
[25]
He, J.A.; Tell, G.S.; Tang, Y-C.; Mo, P.S.; He, G-Q. Relation of serum zinc and copper to lipids and lipoproteins: the Yi People Study. J. Am. Coll. Nutr., 1992, 11(1), 74-78.
[http://dx.doi.org/10.1080/07315724.1992.10718199 PMID: 1311730]
[26]
Adam, B.; Aslan, S.; Bedir, A.; Alvur, M. The interaction between copper and coronary risk indicators. Jpn. Heart J., 2001, 42(3), 281-286.
[http://dx.doi.org/10.1536/jhj.42.281] [PMID: 11605766]
[27]
Lewandrowski, K.B. Cardiac markers of myocardial necrosis: a history and discussion of milestones and emerging new trends. Clin. Lab. Med., 2014, 34(1), 31-41.
[http://dx.doi.org/10.1016/j.cll.2013.11.001] [PMID: 24507785]
[28]
Huang, L.; Teng, T.; Zhao, J.; Bian, B.; Yao, W.; Yu, X.; Wang, Z.; Xu, Z.; Sun, Y. The Relationship Between Serum Zinc Levels, Cardiac Markers and the Risk of Acute Myocardial Infarction by Zinc Quartiles. Heart Lung Circ., 2017.
[PMID: 28408092]
[29]
Salazar, G.; Huang, J.; Feresin, R.G.; Zhao, Y.; Griendling, K.K. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells. Free Radic. Biol. Med., 2017, 108, 225-235.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.032 PMID: 28363602]
[30]
Liu, B.; Cai, Z.Q.; Zhou, Y.M. Deficient zinc levels and myocardial infarction: association between deficient zinc levels and myocardial infarction: a meta-analysis. Biol. Trace Elem. Res., 2015, 165(1), 41-50.
[http://dx.doi.org/10.1007/s12011-015-0244-4] [PMID: 25627421]
[31]
Alexanian, I.; Parissis, J.; Farmakis, D.; Athanaselis, S.; Pappas, L.; Gavrielatos, G.; Mihas, C.; Paraskevaidis, I.; Sideris, A.; Kremastinos, D.; Spiliopoulou, C.; Anastasiou-Nana, M.; Lekakis, J.; Filippatos, G. Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin. Res. Cardiol., 2014, 103(11), 938-949.
[http://dx.doi.org/10.1007/s00392-014-0735-x] [PMID: 24908339]
[32]
Shields, G.S.; Coulson, W.F.; Kimball, D.A.; Carnes, W.H.; Cartwright, G.E.; Wintrobe, M.M. Studies on copper metabolism. 32. Cardiovascular lesions in copper-deficient swine. Am. J. Pathol., 1962, 41, 603-621.
[PMID: 13977282]
[33]
Kelly, W.A.; Kesterson, J.W.; Carlton, W.W. Myocardial lesions in the offspring of female rats fed a copper deficient diet. Exp. Mol. Pathol., 1974, 20(1), 40-56.
[http://dx.doi.org/10.1016/0014-4800(74)90042-2] [PMID: 4361723]
[34]
Medeiros, D.M.W.R. Advanced human nutrition, 3rd ed; Burlington, MA, 2015.
[35]
Pyatskowit, J.W.; Prohaska, J.R. Copper deficient rats and mice both develop anemia but only rats have lower plasma and brain iron levels. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2008, 147(3), 316-323.
[http://dx.doi.org/10.1016/j.cbpc.2007.11.008] [PMID: 18178529]
[36]
Medeiros, D.M.; Bagby, D.; Ovecka, G.; McCormick, R. Myofibrillar, mitochondrial and valvular morphological alterations in cardiac hypertrophy among copper-deficient rats. J. Nutr., 1991, 121(6), 815-824.
[http://dx.doi.org/10.1093/jn/121.6.815] [PMID: 1827839]
[37]
Medeiros, D.M.; Liao, Z.; Hamlin, R.L. Electrocardiographic activity and cardiac function in copper-restricted rats. Proceedings of the Society for Experimental Biology and Medicine, 1992, pp. 78-84.
[http://dx.doi.org/10.3181/00379727-200-43396]
[38]
Medeiros, D.M.; Davidson, J.; Jenkins, J.E. A unified perspective on copper deficiency and cardiomyopathy. Proceedings of the Society for Experimental Biology and Medicine, 1993, pp. 262-73.
[http://dx.doi.org/10.3181/00379727-203-43599]
[39]
Medeiros, D.M. Perspectives on the Role and Relevance of Copper in Cardiac Disease. Biol. Trace Elem. Res., 2017, 176(1), 10-19.
[http://dx.doi.org/10.1007/s12011-016-0807-z] [PMID: 27444302]
[40]
Medeiros, D.M.; Beard, J.L. Dietary iron deficiency results in cardiac eccentric hypertrophy in rats. Proceedings of the Society for Experimental Biology and Medicine, 1998, pp. 370-5.
[http://dx.doi.org/10.3181/00379727-218-44306]
[41]
Wildman, R.E.; Medeiros, D.M.; Hamlin, R.L.; Stills, H.; Jones, D.A.; Bonagura, J.D. Aspects of cardiomyopathy in copper-deficient pigs. Electrocardiography, echocardiography, and ultrastructural findings. Biol. Trace Elem. Res., 1996, 55(1-2), 55-70.
[http://dx.doi.org/10.1007/BF02784168] [PMID: 8971354]
[42]
Anderson, J.J.; Garner, S.C.; Klemmer, P.J. Diet, nutrients, and bone health; CRC Press, 2011.
[43]
Wu, B.N.; Medeiros, D.M.; Lin, K-N.; Thorne, B.M. Long term effects of dietary copper and sodium upon blood pressure in the Long-Evans rat. Nutr. Res., 1984, 4(2), 305-314.
[http://dx.doi.org/10.1016/S0271-5317(84)80015-9]
[44]
Behmoaras, J.; Slove, S.; Seve, S.; Vranckx, R.; Sommer, P.; Jacob, M-P. Differential expression of lysyl oxidases LOXL1 and LOX during growth and aging suggests specific roles in elastin and collagen fiber remodeling in rat aorta. Rejuvenation Res., 2008, 11(5), 883-889.
[http://dx.doi.org/10.1089/rej.2008.0760] [PMID: 18803461]
[45]
Prohaska, J.R.; Heller, L.J. Mechanical properties of the copper-deficient rat heart. J. Nutr., 1982, 112(11), 2142-2150.
[PMID: 6215471]
[46]
Loyke, H.F. Copper and zinc in experimental hypertension. Biol. Trace Elem. Res., 1991, 29(1), 45-49.
[http://dx.doi.org/10.1007/BF03032673] [PMID: 1711361]
[47]
Ozumi, K.; Sudhahar, V.; Kim, H.W.; Chen, G-F.; Kohno, T.; Finney, L.; Vogt, S.; McKinney, R.D.; Ushio-Fukai, M.; Fukai, T. Role of copper transport protein antioxidant 1 in angiotensin II-induced hypertension: a key regulator of extracellular superoxide dismutase. Hypertension, 2012, 60(2), 476-486.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.189571] [PMID: 22753205]
[48]
Klevay, L.M. Copper, coronary heart disease, and dehydroepiandrosterone. J. Am. Coll. Cardiol., 2015, 65(19), 2151-2152.
[http://dx.doi.org/10.1016/j.jacc.2015.02.065] [PMID: 25975482]
[49]
Hu, H.; Liu, Z.; Li, J.; Li, S.; Tian, X.; Lin, Y.; Chen, X.; Yang, J.; Deng, Y.; Li, N.; Wang, Y.; Yuan, P.; Li, X.; Zhu, J. Correlation between congenital heart defects and maternal copper and zinc concentrations. Birth Defects Res. A Clin. Mol. Teratol., 2014, 100(12), 965-972.
[http://dx.doi.org/10.1002/bdra.23284] [PMID: 25131520]
[50]
Cao, L.; Huang, W.; Liu, J.; Ye, Z.; Dou, S. Toxicity of short-term copper exposure to early life stages of red sea bream, Pagrus major. Environ. Toxicol. Chem., 2010, 29(9), 2044-2052.
[http://dx.doi.org/10.1002/etc.247] [PMID: 20821662]
[51]
Duffy, J.Y.; Overmann, G.J.; Keen, C.L.; Clegg, M.S.; Daston, G.P. Cardiac abnormalities induced by zinc deficiency are associated with alterations in the expression of genes regulated by the zinc-finger transcription factor GATA-4. Birth Defects Res. B Dev. Reprod. Toxicol., 2004, 71(2), 102-109.
[http://dx.doi.org/10.1002/bdrb.20004] [PMID: 15098203]
[52]
Peña, M.M.; Lee, J.; Thiele, D.J. A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr., 1999, 129(7), 1251-1260.
[http://dx.doi.org/10.1093/jn/129.7.1251] [PMID: 10395584]
[53]
Yuasa, S.; Onizuka, T.; Shimoji, K.; Ohno, Y.; Kageyama, T.; Yoon, S.H.; Egashira, T.; Seki, T.; Hashimoto, H.; Nishiyama, T.; Kaneda, R.; Murata, M.; Hattori, F.; Makino, S.; Sano, M.; Ogawa, S.; Prall, O.W.; Harvey, R.P.; Fukuda, K. Zac1 is an essential transcription factor for cardiac morphogenesis. Circ. Res., 2010, 106(6), 1083-1091.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.214130 PMID: 20167925]
[54]
Morgan, S.C.; Relaix, F.; Sandell, L.L.; Loeken, M.R. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. Birth Defects Res. A Clin. Mol. Teratol., 2008, 82(6), 453-463.
[http://dx.doi.org/10.1002/bdra.20457] [PMID: 18435457]
[55]
Leonard, S.S.; Harris, G.K.; Shi, X. Metal-induced oxidative stress and signal transduction. Free Radic. Biol. Med., 2004, 37(12), 1921-1942.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.09.010 PMID: 15544913]
[56]
Khaliulin, I.; Schneider, A.; Houminer, E.; Borman, J.B.; Schwalb, H. Apomorphine prevents myocardial ischemia/reperfusion-induced oxidative stress in the rat heart. Free Radic. Biol. Med., 2004, 37(7), 969-976.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.029 PMID: 15336313]
[57]
Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J. Proteome Res., 2008, 7(1), 209-216.
[http://dx.doi.org/10.1021/pr070480u] [PMID: 17988086]
[58]
Wang, Y.; Hodgkinson, V.; Zhu, S.; Weisman, G.A.; Petris, M.J. Advances in the understanding of mammalian copper transporters. Adv. Nutr., 2011, 2(2), 129-137.
[http://dx.doi.org/10.3945/an.110.000273] [PMID: 22332042]
[59]
Cordano, A. Clinical manifestations of nutritional copper deficiency in infants and children. Am. J. Clin. Nutr., 1998, 67(5)(Suppl.), 1012S-1016S.
[http://dx.doi.org/10.1093/ajcn/67.5.1012S] [PMID: 9587144]
[60]
Henry, R.W.; Elmes, M.E. Plasma zinc in acute starvation. BMJ, 1975, 4(5997), 625-626.
[http://dx.doi.org/10.1136/bmj.4.5997.625-a] [PMID: 1203707]
[61]
Wieringa, F.T.; Dijkhuizen, M.A.; Fiorentino, M.; Laillou, A.; Berger, J. Determination of zinc status in humans: which indicator should we use? Nutrients, 2015, 7(5), 3252-3263.
[http://dx.doi.org/10.3390/nu7053252] [PMID: 25954900]
[62]
Brown, K.H.; Wuehler, S.E.; Peerson, J.M. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr. Bull., 2001, 22(2), 113-125.
[http://dx.doi.org/10.1177/156482650102200201]
[63]
Lowe, N.M.; Fekete, K.; Decsi, T. Methods of assessment of zinc status in humans: a systematic review. Am. J. Clin. Nutr., 2009, 89(6), 2040S-2051S.
[http://dx.doi.org/10.3945/ajcn.2009.27230G] [PMID: 19420098]
[64]
Hambidge, M. Biomarkers of trace mineral intake and status. J. Nutr., 2003, 133(3), 948S-955S.
[http://dx.doi.org/10.1093/jn/133.3.948S] [PMID: 12612181]
[65]
Scott, B.J.; Bradwell, A.R. Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin. Chem., 1983, 29(4), 629-633.
[http://dx.doi.org/10.1093/clinchem/29.4.629] [PMID: 6831689]
[66]
Liuzzi, J.P.; Cousins, R.J. Mammalian zinc transporters. Annu. Rev. Nutr., 2004, 24, 151-172.
[http://dx.doi.org/10.1146/annurev.nutr.24.012003.132402 PMID: 15189117]
[67]
Hess, S.Y.; Peerson, J.M.; King, J.C.; Brown, K.H. Use of serum zinc concentration as an indicator of population zinc status. Food and nutrition bulletin,, 2007, 28(3), S403-S429.
[http://dx.doi.org/10.1177/15648265070283S303]
[68]
Wieringa, F.T.; Dijkhuizen, M.A.; West, C.E.; Northrop-Clewes, C.A. Muhilal, Estimation of the effect of the acute phase response on indicators of micronutrient status in Indonesian infants. J. Nutr., 2002, 132(10), 3061-3066.
[http://dx.doi.org/10.1093/jn/131.10.3061] [PMID: 12368396]
[69]
Thompson, R.P. Assessment of zinc status. Proc. Nutr. Soc., 1991, 50(1), 19-28.
[http://dx.doi.org/10.1079/PNS19910005] [PMID: 1881926]
[70]
Schuhmacher, M.; Domingo, J.L.; Corbella, J. Zinc and copper levels in serum and urine: relationship to biological, habitual and environmental factors. Sci. Total Environ., 1994, 148(1), 67-72.
[http://dx.doi.org/10.1016/0048-9697(94)90376-X] [PMID: 8016641]
[71]
Dabbaghmanesh, M.H.; Taheri Boshrooyeh, H.; Kalantarhormozi, M.R.; Ranjbar Omrani, G.H. Assessment of zinc concentration in random samples of the adult population in shiraz, iran. Iran. Red Crescent Med. J., 2011, 13(4), 249-255.
[PMID: 22737474]
[72]
Hotz, C.; Brown, K. H. Assessment of the risk of zinc deficiency in populations and options for its control. International nutrition foundation: for UNU, , 2004.
[73]
Delves, H.T. Assessment of trace element status. Clin. Endocrinol. Metab., 1985, 14(3), 725-760.
[http://dx.doi.org/10.1016/S0300-595X(85)80014-1 PMID: 3905085]
[74]
Kiilerich, S.; Christensen, M. S.; Naestoft, J.; Christiansen, C. Determination of zinc in serum and urine by atomic absorptionspectrophotometry; relationship between serum levels of zinc and proteins in 104 normal subjects. Clinica chimica acta; international journal of clinical chemistry, 1980, 105(2), 231-9..
[75]
King, J.C.; Shames, D.M.; Lowe, N.M.; Woodhouse, L.R.; Sutherland, B.; Abrams, S.A.; Turnlund, J.R.; Jackson, M.J. Effect of acute zinc depletion on zinc homeostasis and plasma zinc kinetics in men. Am. J. Clin. Nutr., 2001, 74(1), 116-124.
[http://dx.doi.org/10.1093/ajcn/74.1.116] [PMID: 11451726]
[76]
Baer, M.T.; King, J.C. Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. Am. J. Clin. Nutr., 1984, 39(4), 556-570.
[http://dx.doi.org/10.1093/ajcn/39.4.556] [PMID: 6711466]
[77]
King, J.C.; Brown, K.H.; Gibson, R.S.; Krebs, N.F.; Lowe, N.M.; Siekmann, J.H.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—zinc review. J. Nutr., 2015, 146(4), 858S-885S.
[http://dx.doi.org/10.3945/jn.115.220079] [PMID: 26962190]
[78]
Gibson, R.S. Principles of nutritional assessment; Oxford university press: USA, 2005.
[79]
Klingberg, W. G. Zinc deficiency following penicillamine therapy., Trace elements in human health and disease, 1976, 1, 51-65..
[80]
Whitehouse, R.C.; Prasad, A.S.; Rabbani, P.I.; Cossack, Z.T. Zinc in plasma, neutrophils, lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry. Clin. Chem., 1982, 28(3), 475-480.
[http://dx.doi.org/10.1093/clinchem/28.3.475] [PMID: 7067090]
[81]
Jones, R.; Keeling, P.; Hilton, P.; Thompson, R. The relationship between leucocyte and muscle zinc in health and disease., Clinical science (London, England: 1979), 1981, 60(2), 237-239..
[82]
Prasad, A.S.; Rabbani, P.; Abbasii, A.; Bowersox, E.; Fox, M.R. Experimental zinc deficiency in humans. Ann. Intern. Med., 1978, 89(4), 483-490.
[http://dx.doi.org/10.7326/0003-4819-89-4-483] [PMID: 697227]
[83]
Versieck, J.; Barbier, F.; Speecke, A.; Hoste, J. Influence of myocardial infarction on serum manganese, copper, and zinc concentrations. Clin. Chem., 1975, 21(4), 578-581.
[http://dx.doi.org/10.1093/clinchem/21.4.578] [PMID: 1116293]
[84]
Bell, S.G.; Vallee, B.L. The metallothionein/thionein system: an oxidoreductive metabolic zinc link. ChemBioChem, 2009, 10(1), 55-62.
[http://dx.doi.org/10.1002/cbic.200800511] [PMID: 19089881]
[85]
King, J.C. Assessment of zinc status. J. Nutr., 1990, 120(Suppl. 11), 1474-1479.
[http://dx.doi.org/10.1093/jn/120.suppl_11.1474] [PMID: 2243291]
[86]
Allan, A.K.; Hawksworth, G.M.; Woodhouse, L.R.; Sutherland, B.; King, J.C.; Beattie, J.H. Lymphocyte metallothionein mRNA responds to marginal zinc intake in human volunteers. Br. J. Nutr., 2000, 84(5), 747-756.
[http://dx.doi.org/10.1017/S0007114500002117] [PMID: 11177190]
[87]
Sullivan, V.K.; Burnett, F.R.; Cousins, R.J. Metallothionein expression is increased in monocytes and erythrocytes of young men during zinc supplementation. J. Nutr., 1998, 128(4), 707-713.
[http://dx.doi.org/10.1093/jn/128.4.707] [PMID: 9521632]
[88]
Grider, A.; Bailey, L.B.; Cousins, R.J. Erythrocyte metallothionein as an index of zinc status in humans. Proc. Natl. Acad. Sci. USA, 1990, 87(4), 1259-1262.
[http://dx.doi.org/10.1073/pnas.87.4.1259] [PMID: 2304897]
[89]
Prasad, A.S.; Meftah, S.; Abdallah, J.; Kaplan, J.; Brewer, G.J.; Bach, J.F.; Dardenne, M. Serum thymulin in human zinc deficiency. J. Clin. Invest., 1988, 82(4), 1202-1210.
[http://dx.doi.org/10.1172/JCI113717] [PMID: 3262625]
[90]
Hambidge, K.M. Hair analyses: worthless for vitamins, limited for minerals. Am. J. Clin. Nutr., 1982, 36(5), 943-949.
[http://dx.doi.org/10.1093/ajcn/36.5.943] [PMID: 7137078]
[91]
Gibson, R.S.; Ferguson, E.L. Assessment of dietary zinc in a population. Am. J. Clin. Nutr., 1998, 68(2)(Suppl.), 430S-434S.
[http://dx.doi.org/10.1093/ajcn/68.2.430S] [PMID: 9701157]
[92]
Bradfield, R.B.; Hambidge, K.M. Problems with hair zinc as an indicator of body zinc status. Lancet, 1980, 1(8164), 363.
[http://dx.doi.org/10.1016/S0140-6736(80)90905-8] [PMID: 6101810]
[93]
Kazi, T. G.; Afridi, H. I.; Kazi, N.; Jamali, M. K.; Arain, M. B.; Sarfraz, R. A.; Jalbani, N.; Ansari, R.; Shah, A. Q.; Memon, A. U.; Khandhro, G. A. .Distribution of zinc, copper and iron in biological samples of Pakistani myocardial infarction (1st, 2nd and 3rd heart attack) patients and controls. Clinica chimica acta; international journal of clinical chemistry, 2008, 389(1-2), 114-9..
[94]
Hambidge, K.M.; Krebs, N.F.; Jacobs, M.A.; Favier, A.; Guyette, L.; Ikle, D.N. Zinc nutritional status during pregnancy: a longitudinal study. Am. J. Clin. Nutr., 1983, 37(3), 429-442.
[http://dx.doi.org/10.1093/ajcn/37.3.429] [PMID: 6829485]
[95]
Tan, C.; Chen, H.; Xia, C. The prediction of cardiovascular disease based on trace element contents in hair and a classifier of boosting decision stumps. Biol. Trace Elem. Res., 2009, 129(1-3), 9-19.
[http://dx.doi.org/10.1007/s12011-008-8279-4] [PMID: 19066736]
[96]
Martin-Moreno, J.M.; Gorgojo, L.; Riemersma, R.A.; Gomez-Aracena, J.; Kark, J.D.; Guillen, J.; Jimenez, J.; Ringstad, J.J.; Fernandez-Crehuet, J.; Bode, P.; Kok, F.J. Heavy Metals and Myocardial Infarction Study Group. Myocardial infarction risk in relation to zinc concentration in toenails. Br. J. Nutr., 2003, 89(5), 673-678.
[http://dx.doi.org/10.1079/BJN2003825] [PMID: 12720587]
[97]
Freeland-Graves, J.H.; Bodzy, P.W.; Eppright, M.A. Zinc status of vegetarians. J. Am. Diet. Assoc., 1980, 77(6), 655-661.
[PMID: 7440860]
[98]
Wang, D.; Du, X.; Zheng, W. Alteration of saliva and serum concentrations of manganese, copper, zinc, cadmium and lead among career welders. Toxicol. Lett., 2008, 176(1), 40-47.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.003] [PMID: 18054180]
[99]
Milne, D.B.; Johnson, P.E.; Klevay, L.M.; Sandstead, H.H. Effect of copper intake on balance, absorption, and status indices of copper in men. Nutr. Res., 1990, 10(9), 975-986.
[http://dx.doi.org/10.1016/S0271-5317(05)80039-9]
[100]
Klevay, L.M.; Inman, L.; Johnson, L.K.; Lawler, M.; Mahalko, J.R.; Milne, D.B.; Lukaski, H.C.; Bolonchuk, W.; Sandstead, H.H. Increased cholesterol in plasma in a young man during experimental copper depletion. Metabolism, 1984, 33(12), 1112-1118.
[http://dx.doi.org/10.1016/0026-0495(84)90096-9] [PMID: 6503710]
[101]
Milne, D.B.; Johnson, P.E. Assessment of copper status: effect of age and gender on reference ranges in healthy adults. Clin. Chem., 1993, 39(5), 883-887.
[http://dx.doi.org/10.1093/clinchem/39.5.883] [PMID: 8387409]
[102]
Solomons, N.W. On the assessment of zinc and copper nutriture in man; American Journal of Clinical Nutrition: USA, 1979..
[http://dx.doi.org/10.1093/ajcn/32.4.856]
[103]
Diaz Romero, C.; Henriquez Sanchez, P.; Lopez Blanco, F.; Rodriguez Rodriguez, E.; Serra Majem, L. Serum copper and zinc concentrations in a representative sample of the Canarian population., Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 2002, 16(2), 75-81..
[104]
Kil, M.S.; Kim, C.W.; Kim, S.S. Analysis of serum zinc and copper concentrations in hair loss. Ann. Dermatol., 2013, 25(4), 405-409.
[http://dx.doi.org/10.5021/ad.2013.25.4.405] [PMID: 24371385]
[105]
Evans, G.W. Copper homeostasis in the mammalian system. Physiol. Rev., 1973, 53(3), 535-570.
[http://dx.doi.org/10.1152/physrev.1973.53.3.535] [PMID: 4354642]
[106]
Vertongen, F.; Neve, J.; Cauchie, P.; Molle, L. Zinc, copper, selenium and glutathione peroxidase in plasma and erythrocytes of Down's syndrome (trisomy 21) patients: interpretation of some variations.1984..
[107]
Danks, D.M. In Copper deficiency in humans Ciba Foundation Symposium, 1980, pp. 209-225.
[108]
Boosalis, M.G.; McCall, J.T.; Solem, L.D.; Ahrenholz, D.H.; McClain, C.J. Serum copper and ceruloplasmin levels and urinary copper excretion in thermal injury. Am. J. Clin. Nutr., 1986, 44(6), 899-906.
[http://dx.doi.org/10.1093/ajcn/44.6.899] [PMID: 3788837]
[109]
Bradfield, R.B.; Cordano, A.; Baertl, J.; Graham, G.G. Hair copper in copper deficiency. Lancet, 1980, 2(8190), 343-344.
[http://dx.doi.org/10.1016/S0140-6736(80)90341-4] [PMID: 6105479]
[110]
Vivoli, G.; Borella, P.; Bergomi, M.; Fantuzzi, G. Zinc and copper levels in serum, urine, and hair of humans in relation to blood pressure. Sci. Total Environ., 1987, 66, 55-64.
[http://dx.doi.org/10.1016/0048-9697(87)90077-5] [PMID: 3685958]
[111]
Sachdev, H.P.; Mittal, N.K.; Yadav, H.S. Oral zinc supplementation in persistent diarrhoea in infants. Ann. Trop. Paediatr., 1990, 10(1), 63-69.
[http://dx.doi.org/10.1080/02724936.1990.11747411 PMID: 1694647]
[112]
Meftah, S.; Prasad, A.S.; Lee, D.Y.; Brewer, G.J. Ecto 5′ nucleotidase (5'NT) as a sensitive indicator of human zinc deficiency. J. Lab. Clin. Med., 1991, 118(4), 309-316.
[PMID: 1940572]
[113]
Superoxide dismutase as an index of copper, zinc and manganese status. Nutr. Rev., 1980, 38(9), 326-327.
[PMID: 7432713]
[114]
Wirth, P.L.; Linder, M.C. Distribution of copper among components of human serum. J. Natl. Cancer Inst., 1985, 75(2), 277-284.
[PMID: 3860683]
[115]
Denko, C.W. Protective role of ceruloplasmin in inflammation. Agents Actions, 1979, 9(4), 333-336.
[http://dx.doi.org/10.1007/BF01970657] [PMID: 517330]
[116]
Barber, E.F.; Cousins, R.J. Interleukin-1--stimulated induction of ceruloplasmin synthesis in normal and copper-deficient rats. J. Nutr., 1988, 118(3), 375-381.
[http://dx.doi.org/10.1093/jn/118.3.375] [PMID: 3258371]
[117]
Milne, D.B.; Klevay, L.M.; Hunt, J.R. Effects of ascorbic acid supplements and a diet marginal in copper on indices of copper nutriture in women. Nutr. Res., 1988, 8(8), 865-873.
[http://dx.doi.org/10.1016/S0271-5317(88)80126-X]
[118]
Sunderman, F.W., Jr; Nomoto, S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin. Chem., 1970, 16(11), 903-910.
[http://dx.doi.org/10.1093/clinchem/16.11.903] [PMID: 5473551]
[119]
Mancini, G.; Carbonara, A. t.; Heremans, J. Immunochemical quantitation of antigens by single radial immunodiffusion. immunochemistry, 1965, 2(3) .
[120]
GIBBS, K.; Walshe, J. A study of the caeruloplasmin concentrations found in 75 patients with Wilson’s disease, their kinships and various control groups. QJM: An International Journal of Medicine, 1979, 48(3), 447-463.
[121]
Buffone, G.J.; Brett, E.M.; Lewis, S.A.; Iosefsohn, M.; Hicks, J.M. Limitations of immunochemical measurement of ceruloplasmin. Clin. Chem., 1979, 25(5), 749-751.
[http://dx.doi.org/10.1093/clinchem/25.5.749] [PMID: 436245]
[122]
Bettger, W.J.; Fish, T.J.; O’dell, B.L. Effects of copper and zinc status of rats on erythrocyte stability and superoxide dismutase activity. Proc. Soc. Exp. Biol. Med., 1978, 158(2), 279-282.
[http://dx.doi.org/10.3181/00379727-158-40188] [PMID: 674233]
[123]
Reiser, S.; Smith, J.C., Jr; Mertz, W.; Holbrook, J.T.; Scholfield, D.J.; Powell, A.S.; Canfield, W.K.; Canary, J.J. Indices of copper status in humans consuming a typical American diet containing either fructose or starch. Am. J. Clin. Nutr., 1985, 42(2), 242-251.
[http://dx.doi.org/10.1093/ajcn/42.2.242] [PMID: 4025196]
[124]
Fischer, P.W.; L’Abbé, M.R.; Giroux, A. Effects of age, smoking, drinking, exercise and estrogen use on indices of copper status in healthy adults. Nutr. Res., 1990, 10(10), 1081-1090.
[http://dx.doi.org/10.1016/S0271-5317(05)80330-6]
[125]
Saik, L.A.; Hsieh, H-L.; Baricos, W.H.; Shapira, E. Enzymatic and immunologic quantitation of erythrocyte superoxide dismutase in adults and in neonates of different gestational ages. Pediatr. Res., 1982, 16(11), 933-937.
[http://dx.doi.org/10.1203/00006450-198211000-00006 PMID: 6818513]
[126]
Beyer, W.F., Jr; Fridovich, I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem., 1987, 161(2), 559-566.
[http://dx.doi.org/10.1016/0003-2697(87)90489-1] [PMID: 3034103]
[127]
Corbisier, P.; Houbion, A.; Remacle, J. A new technique for highly sensitive detection of superoxide dismutase activity by chemiluminescence. Anal. Biochem., 1987, 164(1), 240-247.
[http://dx.doi.org/10.1016/0003-2697(87)90392-7] [PMID: 2823632]
[128]
Segura-Aguilar, J. A new direct method for determining superoxide dismutase activity by measuring hydrogen peroxide formation. Chem. Biol. Interact., 1993, 86(1), 69-78.
[http://dx.doi.org/10.1016/0009-2797(93)90112-C] [PMID: 8381720]
[129]
Bolann, B.J.; Ulvik, R.J. Improvement of a direct spectrophotometric assay for routine determination of superoxide dismutase activity. Clin. Chem., 1991, 37(11), 1993-1999.
[http://dx.doi.org/10.1093/clinchem/37.11.1993] [PMID: 1657455]
[130]
Siwik, D.A.; Tzortzis, J.D.; Pimental, D.R.; Chang, D.L.; Pagano, P.J.; Singh, K.; Sawyer, D.B.; Colucci, W.S. Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ. Res., 1999, 85(2), 147-153.
[http://dx.doi.org/10.1161/01.RES.85.2.147] [PMID: 10417396]
[131]
Turnlund, J.R.; Keen, C.L.; Smith, R.G. Copper status and urinary and salivary copper in young men at three levels of dietary copper. Am. J. Clin. Nutr., 1990, 51(4), 658-664.
[http://dx.doi.org/10.1093/ajcn/51.4.658] [PMID: 2321573]
[132]
DiMauro, S.; Bonilla, E.; Zeviani, M.; Nakagawa, M.; DeVivo, D.C. Mitochondrial myopathies. Ann. Neurol., 1985, 17(6), 521-538.
[http://dx.doi.org/10.1002/ana.410170602] [PMID: 3927817]
[133]
Milne, D.B.; Nielsen, F.H. Effects of a diet low in copper on copper-status indicators in postmenopausal women. Am. J. Clin. Nutr., 1996, 63(3), 358-364.
[http://dx.doi.org/10.1093/ajcn/63.3.358] [PMID: 8602593]
[134]
Mártin-Lagos, F.; Navarro-Alarcón, M.; Terrés-Martos, C. López-G de la Serrana, H.; López-Martínez, M.C. Serum copper and zinc concentrations in serum from patients with cancer and cardiovascular disease. Sci. Total Environ., 1997, 204(1), 27-35.
[http://dx.doi.org/10.1016/S0048-9697(97)00163-0] [PMID: 9299767]
[135]
Jones, A.A.; DiSilvestro, R.A.; Coleman, M.; Wagner, T.L. Copper supplementation of adult men: effects on blood copper enzyme activities and indicators of cardiovascular disease risk. Metabolism, 1997, 46(12), 1380-1383.
[http://dx.doi.org/10.1016/S0026-0495(97)90135-9] [PMID: 9439530]
[136]
Ford, E.S. Serum copper concentration and coronary heart disease among US adults. Am. J. Epidemiol., 2000, 151(12), 1182-1188.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a010168 PMID: 10905530]
[137]
Kelishadi, R.; Alikhassy, H.; Amiri, M. Zinc and copper status in children with high family risk of premature cardiovascular disease. Ann. Saudi Med., 2002, 22(5-6), 291-294.
[http://dx.doi.org/10.5144/0256-4947.2002.291] [PMID: 17146244]
[138]
Afridi, H.I.; Kazi, T.G.; Kazi, G.H.; Jamali, M.K.; Shar, G.Q. Essential trace and toxic element distribution in the scalp hair of Pakistani myocardial infarction patients and controls. Biol. Trace Elem. Res., 2006, 113(1), 19-34.
[http://dx.doi.org/10.1385/BTER:113:1:19] [PMID: 17114812]
[139]
Leone, N.; Courbon, D.; Ducimetiere, P.; Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology, 2006, 17(3), 308-314.
[http://dx.doi.org/10.1097/01.ede.0000209454.41466.b7 PMID: 16570028]
[140]
Shokrzadeh, M.; Ghaemian, A.; Salehifar, E.; Aliakbari, S.; Saravi, S.S.; Ebrahimi, P. Serum zinc and copper levels in ischemic cardiomyopathy. Biol. Trace Elem. Res., 2009, 127(2), 116-123.
[http://dx.doi.org/10.1007/s12011-008-8237-1] [PMID: 18953508]
[141]
Revoredo, C.M.S.; Aguiar, H.D.S.P.; Lima, S.M.T.; Sousa, E.; Saffnauer, K.G.S.A.; do Nascimento Holanda, A.O.; Guedes, C.; de Araújo, B.; do Nascimento Nogueira, N.; do Nascimento Marreiro, D. Zinc Status of and its Association to Cardiovascular Risk Biomarkers. Int. J. Cardiovasc. Sci., 2016, 29(5), 355-361.
[http://dx.doi.org/10.5935/2359-4802.20160054]
[142]
Freitas, E.P.; Cunha, A.T.; Aquino, S.L.; Pedrosa, L.F.; Lima, S.C.; Lima, J.G.; Almeida, M.G.; Sena-Evangelista, K.C. Zinc status biomarkers and cardiometabolic risk factors in metabolic syndrome: a case control study. Nutrients, 2017, 9(2), 175.
[http://dx.doi.org/10.3390/nu9020175] [PMID: 28241426]
[143]
Huang, L.; Teng, T.; Bian, B.; Yao, W.; Yu, X.; Wang, Z.; Xu, Z.; Sun, Y. Zinc Levels in Left Ventricular Hypertrophy. Biol. Trace Elem. Res., 2017, 176(1), 48-55.
[http://dx.doi.org/10.1007/s12011-016-0808-y] [PMID: 27452612]
[144]
Giacconi, R.; Costarelli, L.; Piacenza, F.; Basso, A.; Rink, L.; Mariani, E.; Fulop, T.; Dedoussis, G.; Herbein, G.; Provinciali, M.; Jajte, J.; Lengyel, I.; Mocchegiani, E.; Malavolta, M. Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from ZincAge study. Eur. J. Nutr., 2017, 56(8), 2457-2466.
[http://dx.doi.org/10.1007/s00394-016-1281-2] [PMID: 27459881]
[145]
Huang, L.; Teng, T.; Zhao, J.; Bian, B.; Yao, W.; Yu, X.; Wang, Z.; Xu, Z.; Sun, Y. The Relationship Between Serum Zinc Levels, Cardiac Markers and the Risk of Acute Myocardial Infarction by Zinc Quartiles. Heart Lung Circ., 2018, 27(1), 66-72.
[http://dx.doi.org/10.1016/j.hlc.2017.01.022] [PMID: 28408092]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy