Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

ATF4, DLX3, FRA1, MSX2, C/EBP-ζ, and C/EBP-α Shape the Molecular Basis of Therapeutic Effects of Zoledronic Acid in Bone Disorders

Author(s): Faroogh Marofi , Jalal Choupani , Saeed Solali , Ghasem Vahedi , Ali Hassanzadeh , Tohid Gharibi and Majid F. Hagh*

Volume 20, Issue 18, 2020

Page: [2274 - 2284] Pages: 11

DOI: 10.2174/1871520620666200721101904

Price: $65

conference banner
Abstract

Objective: Zoledronic Acid (ZA) is one of the common treatment choices used in various boneassociated conditions. Also, many studies have investigated the effect of ZA on Osteoblastic-Differentiation (OSD) of Mesenchymal Stem Cells (MSCs), but its clear molecular mechanism(s) has remained to be understood. It seems that the methylation of the promoter region of key genes might be an important factor involved in the regulation of genes responsible for OSD. The present study aimed to evaluate the changes in the mRNA expression and promoter methylation of central Transcription Factors (TFs) during OSD of MSCs under treatment with ZA.

Materials and Methods: MSCs were induced to be differentiated into the osteoblastic cell lineage using routine protocols. MSCs received ZA during OSD and then the methylation and mRNA expression levels of target genes were measured by Methylation Specific-quantitative Polymerase Chain Reaction (MS-qPCR) and real-time PCR, respectively. The osteoblastic differentiation was confirmed by Alizarin Red Staining and the related markers to this stage.

Results: Gene expression and promoter methylation level for DLX3, FRA1, ATF4, MSX2, C/EBPζ, and C/EBPa were up or down-regulated in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21. ATF4, DLX3, and FRA1 genes were significantly up-regulated during the OSD processes, while the result for MSX2, C/EBPζ, and C/EBPa was reverse. On the other hand, ATF4 and DLX3 methylation levels gradually reduced in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21, while the pattern was increasing for MSX2 and C/EBPa. The methylation pattern of C/EBPζ was upward in untreated groups while it had a downward pattern in ZA-treated groups at the same scheduled time. The result for FRA1 was not significant in both groups at the same scheduled time (days 0-21).

Conclusion: The results indicated that promoter-hypomethylation of ATF4, DLX3, and FRA1 genes might be one of the mechanism(s) controlling their gene expression. Moreover, we found that promoter-hypermethylation led to the down-regulation of MSX2, C/EBP-ζ and C/EBP-α. The results implicate that ATF4, DLX3 and FRA1 may act as inducers of OSD while MSX2, C/EBP-ζ and C/EBP-α could act as the inhibitor ones. We also determined that promoter-methylation is an important process in the regulation of OSD. However, yet there was no significant difference in the promoter-methylation level of selected TFs in ZA-treated and control cells, a methylation- independent pathway might be involved in the regulation of target genes during OSD of MSCs.

Keywords: DNA methylation, osteoblastic differentiation, mesenchymal stem cells, zoledronic acid, MS-qPCR, bone disorders.

Graphical Abstract
[1]
Brandi, M.L. Current treatment approaches for Paget’s Disease of Bone. Discov. Med., 2010, 10(52), 209-212.
[PMID: 20875342]
[2]
Bone, H.G.; Hosking, D.; Devogelaer, J.P.; Tucci, J.R.; Emkey, R.D.; Tonino, R.P.; Rodriguez-Portales, J.A.; Downs, R.W.; Gupta, J.; Santora, A.C.; Liberman, U.A. Alendronate Phase III Osteoporosis Treatment Study Group. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N. Engl. J. Med., 2004, 350(12), 1189-1199.
[http://dx.doi.org/10.1056/NEJMoa030897] [PMID: 15028823]
[3]
Farshdousti Hagh, M.; Noruzinia, M.; Mortazavi, Y.; Soleimani, M.; Kaviani, S.; Mahmodinia Maymand, M. Zoledrinic acid induces steoblastic differentiation of mesenchymal stem cells without change in hypomethylation status of OSTERIX promoter. Cell J., 2012, 14(2), 90-97.
[PMID: 23508196]
[4]
Bellido, T.; Plotkin, L.I. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone, 2011, 49(1), 50-55.
[http://dx.doi.org/10.1016/j.bone.2010.08.008] [PMID: 20727997]
[5]
Forlino, A.; Cabral, W.A.; Barnes, A.M.; Marini, J.C. New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol., 2011, 7(9), 540-557.
[http://dx.doi.org/10.1038/nrendo.2011.81] [PMID: 21670757]
[6]
Yang, X.; Lu, Y.; Li, Z.; Wang, Y.; Zhao, F.; Han, J. Low concentrations of zoledronic acid are better at regulating bone formation and repair. Intractable Rare Dis. Res., 2013, 2(1), 18-23.
[http://dx.doi.org/10.5582/irdr.2013.v2.1.18] [PMID: 25343096]
[7]
Ponader, S.; Brandt, H.; Vairaktaris, E.; von Wilmowsky, C.; Nkenke, E.; Schlegel, K.A.; Neukam, F.W.; Holst, S.; Müller, F.A.; Greil, P. In vitro response of hFOB cells to pamidronate modified sodium silicate coated cellulose scaffolds. Colloids Surf. B Biointerfaces, 2008, 64(2), 275-283.
[http://dx.doi.org/10.1016/j.colsurfb.2008.02.002] [PMID: 18346882]
[8]
Reinholz, G.G.; Getz, B.; Pederson, L.; Sanders, E.S.; Subramaniam, M.; Ingle, J.N.; Spelsberg, T.C. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res., 2000, 60(21), 6001-6007.
[PMID: 11085520]
[9]
Pan, B.; To, L.B.; Farrugia, A.N.; Findlay, D.M.; Green, J.; Gronthos, S.; Evdokiou, A.; Lynch, K.; Atkins, G.J.; Zannettino, A.C. The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone, 2004, 34(1), 112-123.
[http://dx.doi.org/10.1016/j.bone.2003.08.013] [PMID: 14751568]
[10]
Pettway, G.J.; Meganck, J.A.; Koh, A.J.; Keller, E.T.; Goldstein, S.A.; McCauley, L.K. Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone, 2008, 42(4), 806-818.
[http://dx.doi.org/10.1016/j.bone.2007.11.017] [PMID: 18234576]
[11]
Ebert, R.; Zeck, S.; Krug, R.; Meissner-Weigl, J.; Schneider, D.; Seefried, L.; Eulert, J.; Jakob, F. Pulse treatment with zoledronic acid causes sustained commitment of bone marrow derived mesenchymal stem cells for osteogenic differentiation. Bone, 2009, 44(5), 858-864.
[http://dx.doi.org/10.1016/j.bone.2009.01.009] [PMID: 19442618]
[12]
Marofi, F.; Vahedi, G.; Biglari, A.; Esmaeilzadeh, A.; Athari, S.S. Mesenchymal stromal/stem cells: A new era in the cell-based targeted gene therapy of cancer. Front. Immunol., 2017, 8, 1770.
[http://dx.doi.org/10.3389/fimmu.2017.01770] [PMID: 29326689]
[13]
Marofi, F.; Vahedi, G. hasanzadeh, A.; Salarinasab, S.; Arzhanga, P.; Khademi, B.; Farshdousti Hagh, M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J. Cell. Physiol., 2019, 234(2), 1268-1288.
[14]
Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4), 315-317.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[15]
Marofi, F.; Vahedi, G.; Solali, S.; Alivand, M.; Salarinasab, S.; Zadi Heydarabad, M.; Farshdousti Hagh, M. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. J. Cell. Physiol., 2019, 234(5), 6230-6243.
[PMID: 30246336]
[16]
Cheng, S.L.; Shao, J.S.; Charlton-Kachigian, N.; Loewy, A.P.; Towler, D.A. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J. Biol. Chem., 2003, 278(46), 45969-45977.
[http://dx.doi.org/10.1074/jbc.M306972200] [PMID: 12925529]
[17]
Ichida, F.; Nishimura, R.; Hata, K.; Matsubara, T.; Ikeda, F.; Hisada, K.; Yatani, H.; Cao, X.; Komori, T.; Yamaguchi, A.; Yoneda, T. Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J. Biol. Chem., 2004, 279(32), 34015-34022.
[http://dx.doi.org/10.1074/jbc.M403621200] [PMID: 15175325]
[18]
Xiao, G.; Jiang, D.; Ge, C.; Zhao, Z.; Lai, Y.; Boules, H.; Phimphilai, M.; Yang, X.; Karsenty, G.; Franceschi, R.T. Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J. Biol. Chem., 2005, 280(35), 30689-30696.
[http://dx.doi.org/10.1074/jbc.M500750200] [PMID: 16000305]
[19]
Yang, X.; Matsuda, K.; Bialek, P.; Jacquot, S.; Masuoka, H.C.; Schinke, T.; Li, L.; Brancorsini, S.; Sassone-Corsi, P.; Townes, T.M.; Hanauer, A.; Karsenty, G. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell, 2004, 117(3), 387-398.
[http://dx.doi.org/10.1016/S0092-8674(04)00344-7] [PMID: 15109498]
[20]
Soltanoff, C.S.; Yang, S.; Chen, W.; Li, Y.P. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit. Rev. Eukaryot. Gene Expr., 2009, 19(1), 1-46.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v19.i1.10] [PMID: 19191755]
[21]
Hassan, M.Q.; Javed, A.; Morasso, M.I.; Karlin, J.; Montecino, M.; van Wijnen, A.J.; Stein, G.S.; Stein, J.L.; Lian, J.B. Dlx3 transcriptional regulation of osteoblast differentiation: Temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell. Biol., 2004, 24(20), 9248-9261.
[http://dx.doi.org/10.1128/MCB.24.20.9248-9261.2004] [PMID: 15456894]
[22]
Viale-Bouroncle, S.; Felthaus, O.; Schmalz, G.; Brockhoff, G.; Reichert, T.E.; Morsczeck, C. The transcription factor DLX3 regulates the osteogenic differentiation of human dental follicle precursor cells. Stem Cells Dev., 2012, 21(11), 1936-1947.
[http://dx.doi.org/10.1089/scd.2011.0422] [PMID: 22107079]
[23]
Collas, P. Epigenetic states in stem cells. Biochim. Biophys. Acta, 2009, 1790(9), 900-905.
[http://dx.doi.org/10.1016/j.bbagen.2008.10.006] [PMID: 19013220]
[24]
Tarfiei, G.; Noruzinia, M.; Soleimani, M.; Kaviani, S.; Mahmoodinia Maymand, M.; Farshdousti Hagh, M.; Pujol, P. ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells. Cell J., 2011, 13(1), 11-15.
[PMID: 23671822]
[25]
Saki, N.; Farshdousti Hagh, M.; Mortaz, E.; Ardeshiry Lajimi, A. Does DNA methylation plays a critical role in osteoblastic differentiation of Mesenchymal Stem Cells (MSCs)? Iran. Red Crescent Med. J., 2013, 15(8), 755-756.
[http://dx.doi.org/10.5812/ircmj.4615] [PMID: 24578849]
[26]
Freshney, R.I. John Wiley and Sons, inc.,
[27]
Tarfiei, G.; Noruzinia, M.; Soleimani, M.; Kaviani, S.; Maymand, M.M.; Hagh, M.F.; Pujol, P. ROR2 promoter methylation change in osteoblastic differentiation of mesenchymal stem cells. Cell J. (Yakhteh), 2011, 13(1), 11-15.
[28]
Wang, L.; Huang, C.; Li, Q.; Xu, X.; Liu, L.; Huang, K.; Cai, X.; Xiao, J. Osteogenic differentiation potential of adipose-derived stem cells from ovariectomized mice. Cell Prolif., 2017, 50(2)e12328
[http://dx.doi.org/10.1111/cpr.12328] [PMID: 28090705]
[29]
Hagh, M.F.; Noruzinia, M.; Mortazavi, Y.; Soleimani, M.; Kaviani, S.; Abroun, S.; Fard, A.D.; Maymand, M.M. Different methylation patterns of RUNX2, OSX, DLX5 and BSP in osteoblastic differentiation of mesenchymal stem cells. Cell J. (Yakhteh), 2015, 17(1), 71-82.
[30]
Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem., 2004, 329(1), 77-84.
[http://dx.doi.org/10.1016/j.ab.2004.02.002] [PMID: 15136169]
[31]
Wu, L.N.; Ishikawa, Y.; Sauer, G.R.; Genge, B.R.; Mwale, F.; Mishima, H.; Wuthier, R.E. Morphological and biochemical characterization of mineralizing primary cultures of avian growth plate chondrocytes: evidence for cellular processing of Ca2+ and Pi prior to matrix mineralization. J. Cell. Biochem., 1995, 57(2), 218-237.
[http://dx.doi.org/10.1002/jcb.240570206] [PMID: 7759559]
[32]
Lian, J.B.; Stein, G.S. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop. J., 1995, 15, 118-140.
[PMID: 7634023]
[33]
Yu, M.; Wang, L.; Ba, P.; Li, L.; Sun, L.; Duan, X.; Yang, P.; Yang, C.; Sun, Q. Osteoblast progenitors enhance osteogenic differentiation of periodontal ligament stem cells. J. Periodontol., 2017, 88(10), e159-e168.
[http://dx.doi.org/10.1902/jop.2017.170016] [PMID: 28517970]
[34]
Gokosmanoglu, F.; Varim, C.; Atmaca, A.; Atmaca, M.H.; Colak, R. The effects of zoledronic acid treatment on depression and quality of life in women with postmenopausal osteoporosis: A clinical trial study. J. Res. Med. Sci., 2016, 21, 112.
[35]
Bobyn, J.; Rasch, A.; Kathy, M.; Little, D.G.; Schindeler, A. Maximizing bone formation in posterior spine fusion using rhBMP-2 and zoledronic acid in wild type and NF1 deficient mice. J. Orthop. Res., 2014, 32(8), 1090-1094.
[http://dx.doi.org/10.1002/jor.22628]
[36]
Nancollas, G.H.; Tang, R.; Phipps, R.J.; Henneman, Z.; Gulde, S.; Wu, W.; Mangood, A.; Russell, R.G.; Ebetino, F.H. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone, 2006, 38(5), 617-627.
[http://dx.doi.org/10.1016/j.bone.2005.05.003] [PMID: 16046206]
[37]
Giuliani, N.; Pedrazzoni, M.; Negri, G.; Passeri, G.; Impicciatore, M.; Girasole, G. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone, 1998, 22(5), 455-461.
[http://dx.doi.org/10.1016/S8756-3282(98)00033-7] [PMID: 9600778]
[38]
Huang, X.; Huang, S.; Guo, F.; Xu, F.; Cheng, P.; Ye, Y.; Dong, Y.; Xiang, W.; Chen, A. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Mol. Med. Rep., 2016, 13(1), 613-622.
[http://dx.doi.org/10.3892/mmr.2015.4627] [PMID: 26648136]
[39]
Orriss, I.R.; Key, M.L.; Colston, K.W.; Arnett, T.R. Inhibition of osteoblast function in vitro by aminobisphosphonates. J. Cell. Biochem., 2009, 106(1), 109-118.
[http://dx.doi.org/10.1002/jcb.21983] [PMID: 19003973]
[40]
Robledo, R.F.; Rajan, L.; Li, X.; Lufkin, T. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev., 2002, 16(9), 1089-1101.
[http://dx.doi.org/10.1101/gad.988402] [PMID: 12000792]
[41]
Tadic, T.; Dodig, M.; Erceg, I.; Marijanovic, I.; Mina, M.; Kalajzic, Z.; Velonis, D.; Kronenberg, M.S.; Kosher, R.A.; Ferrari, D.; Lichtler, A.C. Overexpression of Dlx5 in chicken calvarial cells accelerates osteoblastic differentiation. J. Bone Miner. Res., 2002, 17(6), 1008.
[http://dx.doi.org/10.1359/jbmr.2002.17.6.1008]
[42]
Holleville, N.; Matéos, S.; Bontoux, M.; Bollerot, K.; Monsoro-Burq, A.H. Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev. Biol., 2007, 304(2), 860-874.
[http://dx.doi.org/10.1016/j.ydbio.2007.01.003] [PMID: 17335796]
[43]
Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A.L.; Karsenty, G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5), 747-754.
[http://dx.doi.org/10.1016/S0092-8674(00)80257-3] [PMID: 9182762]
[44]
Yu, S.; Zhu, K.; Lai, Y.; Zhao, Z.; Fan, J. Im, H.J.; Chen, D.; Xiao, G. atf4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int. J. Biol. Sci., 2013, 9(3), 256-266.
[http://dx.doi.org/10.7150/ijbs.5898] [PMID: 23494915]
[45]
Ye, L.; Fan, Z.; Yu, B.; Chang, J.; Al Hezaimi, K.; Zhou, X.; Park, N.H.; Wang, C.Y. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell, 2012, 11(1), 50-61.
[http://dx.doi.org/10.1016/j.stem.2012.04.009] [PMID: 22770241]
[46]
Pérez-Campo, F.M.; Riancho, J.A. Epigenetic mechanisms regulating mesenchymal stem cell differentiation. Curr. Genomics, 2015, 16(6), 368-383.
[http://dx.doi.org/10.2174/1389202916666150817202559] [PMID: 27019612]
[47]
Towler, D.A.; Rutledge, S.J.; Rodan, G.A. Msx-2/Hox 8.1: A transcriptional regulator of the rat osteocalcin promoter. Mol. Endocrinol., 1994, 8(11), 1484-1493.
[PMID: 7877617]
[48]
Ryoo, H.M.; Hoffmann, H.M.; Beumer, T.; Frenkel, B.; Towler, D.A.; Stein, G.S.; Stein, J.L.; van Wijnen, A.J.; Lian, J.B. Stage-specific expression of Dlx-5 during osteoblast differentiation: Involvement in regulation of osteocalcin gene expression. Mol. Endocrinol., 1997, 11(11), 1681-1694.
[http://dx.doi.org/10.1210/mend.11.11.0011] [PMID: 9328350]
[49]
Shirakabe, K.; Terasawa, K.; Miyama, K.; Shibuya, H.; Nishida, E. Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells: Devoted Mol. Cell. Mechan., 2001, 6(10), 851-856.
[50]
Satokata, I.; Ma, L.; Ohshima, H.; Bei, M.; Woo, I.; Nishizawa, K.; Maeda, T.; Takano, Y.; Uchiyama, M.; Heaney, S.; Peters, H.; Tang, Z.; Maxson, R.; Maas, R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat. Genet., 2000, 24(4), 391-395.
[http://dx.doi.org/10.1038/74231] [PMID: 10742104]
[51]
Chen, Y.; Chen, L.; Yin, Q.; Gao, H.; Dong, P.; Zhang, X.; Kang, J. Reciprocal interferences of TNF-alpha and Wnt1/beta-catenin signaling axes shift bone marrow-derived stem cells towards osteoblast lineage after ethanol exposure Int. J. Experim. Cell. Physiol. Biochem. Pharmacol., 2013, 32(3), 755-765.
[52]
Cai, R.; Nakamoto, T.; Hoshiba, T.; Kawazoe, N.; Chen, G. Control of simultaneous osteogenic and adipogenic differentiation of mesenchymal stem cells. J. Stem Cell Res. Ther., 2014, 4, 8.
[http://dx.doi.org/10.4172/2157-7633.1000223]
[53]
Shirakawa, K.; Maeda, S.; Gotoh, T.; Hayashi, M.; Shinomiya, K.; Ehata, S.; Nishimura, R.; Mori, M.; Onozaki, K.; Hayashi, H.; Uematsu, S.; Akira, S.; Ogata, E.; Miyazono, K.; Imamura, T. CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation. Mol. Cell. Biol., 2006, 26(16), 6105-6116.
[http://dx.doi.org/10.1128/MCB.02429-05] [PMID: 16880521]
[54]
Wang, Z.Q.; Ovitt, C.; Grigoriadis, A.E.; Möhle-Steinlein, U.; Rüther, U.; Wagner, E.F. Bone and haematopoietic defects in mice lacking c-fos. Nature, 1992, 360(6406), 741-745.
[http://dx.doi.org/10.1038/360741a0] [PMID: 1465144]
[55]
Fleischmann, A.; Hafezi, F.; Elliott, C.; Remé, C.E.; Rüther, U.; Wagner, E.F. Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev., 2000, 14(21), 2695-2700.
[http://dx.doi.org/10.1101/gad.187900] [PMID: 11069886]
[56]
Jochum, W.; David, J.P.; Elliott, C.; Wutz, A.; Plenk, H., Jr; Matsuo, K.; Wagner, E.F. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat. Med., 2000, 6(9), 980-984.
[http://dx.doi.org/10.1038/79676] [PMID: 10973316]
[57]
Eferl, R.; Hoebertz, A.; Schilling, A.F.; Rath, M.; Karreth, F.; Kenner, L.; Amling, M.; Wagner, E.F. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J., 2004, 23(14), 2789-2799.
[http://dx.doi.org/10.1038/sj.emboj.7600282] [PMID: 15229648]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy