Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

食管腺癌的分子动力学:谁在控制?

卷 20, 期 10, 2020

页: [789 - 801] 页: 13

弟呕挨: 10.2174/1568009620666200720011341

价格: $65

conference banner
摘要

食管腺癌(EAC)是世界上增长最快的癌症之一。它的发生主要是由于慢性胃食管反流病(GERD),在此期间食管上皮经常暴露于从胃上来的酸性液体。这引发食管细胞的基因突变,可能导致EAC的发展。当p53被激活以清除突变细胞时,NF -κB协调剩余的细胞来愈合伤口。然而,如果突变发生在TP53(一种常见情况),突变产物转而支持肿瘤发生。在这种情况下,NF -κB与突变体p53一起促进癌症进展。TRAIL是GERD发作产生的一种细胞因子,它可以选择性地杀死癌细胞,但临床应用并不像预期的那样成功,因为一些高度复杂的防御机制已经在恶性肿瘤中发展起来。为了清除后续行动的障碍,需要使用第二种药剂来解除癌细胞的武装。CCN1似乎就是这样一种分子。CCN1在支持正常食管细胞生长的同时,通过抑制NFκB抑制恶性转化,并通过TRAIL诱导凋亡杀死EAC细胞。

关键词: 食管癌,p53

图形摘要
[1]
Chai, J. Esophagus and esophageal cancer.Esophageal Cancer and Beyond; Chai, J., Ed.; IntechOpen: London, 2018, pp. 1-10.
[2]
Chai, J.; Jamal, M.M. Esophageal malignancy: a growing concern. World J. Gastroenterol., 2012, 18(45), 6521-6526.
[http://dx.doi.org/10.3748/wjg.v18.i45.6521] [PMID: 23236223]
[3]
Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; Abebe, N.D.; Abraha, H.N.; Abu-Raddad, L.J.; Abualhasan, A.; Adedeji, I.A.; Advani, S.M.; Afarideh, M.; Afshari, M.; Aghaali, M.; Agius, D.; Agrawal, S.; Ahmadi, A.; Ahmadian, E.; Ahmadpour, E.; Ahmed, M.B.; Akbari, M.E.; Akinyemiju, T.; Al-Aly, Z. AlAbdulKader, A.M.; Alahdab, F.; Alam, T.; Alamene, G.M.; Alemnew, B.T.T.; Alene, K.A.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Bakeshei, F.A.; Almadi, M.A.H.; Almasi-Hashiani, A.; Alsharif, U.; Alsowaidi, S.; Alvis-Guzman, N.; Amini, E.; Amini, S.; Amoako, Y.A.; Anbari, Z.; Anber, N.H.; Andrei, C.L.; Anjomshoa, M.; Ansari, F.; Ansariadi, A.; Appiah, S.C.Y.; Arab-Zozani, M.; Arabloo, J.; Arefi, Z.; Aremu, O.; Areri, H.A.; Artaman, A.; Asayesh, H.; Asfaw, E.T.; Ashagre, A.F.; Assadi, R.; Ataeinia, B.; Atalay, H.T.; Ataro, Z.; Atique, S.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Awoke, N.; Ayala Quintanilla, B.P.; Ayanore, M.A.; Ayele, H.T.; Babaee, E.; Bacha, U.; Badawi, A.; Bagherzadeh, M.; Bagli, E.; Balakrishnan, S.; Balouchi, A.; Bärnighausen, T.W.; Battista, R.J.; Behzadifar, M.; Behzadifar, M.; Bekele, B.B.; Belay, Y.B.; Belayneh, Y.M.; Berfield, K.K.S.; Berhane, A.; Bernabe, E.; Beuran, M.; Bhakta, N.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Birungi, C.; Bisignano, C.; Bitew, H.; Bjørge, T.; Bleyer, A.; Bogale, K.A.; Bojia, H.A.; Borzì, A.M.; Bosetti, C.; Bou-Orm, I.R.; Brenner, H.; Brewer, J.D.; Briko, A.N.; Briko, N.I.; Bustamante-Teixeira, M.T.; Butt, Z.A.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chanie, W.F.; Chattu, V.K.; Chaturvedi, P.; Chauhan, N.S.; Chehrazi, M.; Chiang, P.P.; Chichiabellu, T.Y.; Chido-Amajuoyi, O.G.; Chimed-Ochir, O.; Choi, J.J.; Christopher, D.J.; Chu, D.T.; Constantin, M.M.; Costa, V.M.; Crocetti, E.; Crowe, C.S.; Curado, M.P.; Dahlawi, S.M.A.; Damiani, G.; Darwish, A.H.; Daryani, A.; das Neves, J.; Demeke, F.M.; Demis, A.B.; Demissie, B.W.; Demoz, G.T.; Denova-Gutiérrez, E.; Derakhshani, A.; Deribe, K.S.; Desai, R.; Desalegn, B.B.; Desta, M.; Dey, S.; Dharmaratne, S.D.; Dhimal, M.; Diaz, D.; Dinberu, M.T.T.; Djalalinia, S.; Doku, D.T.; Drake, T.M.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Ebrahimi, H.; Effiong, A.; Eftekhari, A.; El Sayed, I.; Zaki, M.E.S.; El-Jaafary, S.I.; El-Khatib, Z.; Elemineh, D.A.; Elkout, H.; Ellenbogen, R.G.; Elsharkawy, A.; Emamian, M.H.; Endalew, D.A.; Endries, A.Y.; Eshrati, B.; Fadhil, I.; Fallah, V.; Faramarzi, M.; Farhangi, M.A.; Farioli, A.; Farzadfar, F.; Fentahun, N.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fisher, J.L.; Force, L.M.; Foroutan, M.; Freitas, M.; Fukumoto, T.; Futran, N.D.; Gallus, S.; Gankpe, F.G.; Gayesa, R.T.; Gebrehiwot, T.T.; Gebremeskel, G.G.; Gedefaw, G.A.; Gelaw, B.K.; Geta, B.; Getachew, S.; Gezae, K.E.; Ghafourifard, M.; Ghajar, A.; Ghashghaee, A.; Gholamian, A.; Gill, P.S.; Ginindza, T.T.G.; Girmay, A.; Gizaw, M.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goulart, B.N.G.; Grada, A.; Ribeiro Guerra, M.; Guimaraes, A.L.S.; Gupta, P.C.; Gupta, R.; Hadkhale, K.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hanfore, L.K.; Haro, J.M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Henok, A.; Henry, N.J.; Herteliu, C.; Hidru, H.D.; Hoang, C.L.; Hole, M.K.; Hoogar, P.; Horita, N.; Hosgood, H.D.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hussen, M.M.; Ileanu, B.; Ilic, M.D.; Innos, K.; Irvani, S.S.N.; Iseh, K.R.; Islam, S.M.S.; Islami, F.; Jafari Balalami, N.; Jafarinia, M.; Jahangiry, L.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; James, S.L.; Javanbakht, M.; Jayaraman, S.; Jee, S.H.; Jenabi, E.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joo, T.; Jungari, S.B.; Jürisson, M.; Kabir, A.; Kamangar, F.; Karch, A.; Karimi, N.; Karimian, A.; Kasaeian, A.; Kasahun, G.G.; Kassa, B.; Kassa, T.D.; Kassaw, M.W.; Kaul, A.; Keiyoro, P.N.; Kelbore, A.G.; Kerbo, A.A.; Khader, Y.S.; Khalilarjmandi, M.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khatab, K.; Khater, A.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khoja, A.T.; Khosravi, M.H.; Khubchandani, J.; Kianipour, N.; Kim, D.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Komaki, H.; Koyanagi, A.; Krohn, K.J.; Bicer, B.K.; Kugbey, N.; Kumar, V.; Kuupiel, D.; La Vecchia, C.; Lad, D.P.; Lake, E.A.; Lakew, A.M.; Lal, D.K.; Lami, F.H.; Lan, Q.; Lasrado, S.; Lauriola, P.; Lazarus, J.V.; Leigh, J.; Leshargie, C.T.; Liao, Y.; Limenih, M.A.; Listl, S.; Lopez, A.D.; Lopukhov, P.D.; Lunevicius, R.; Madadin, M.; Magdeldin, S.; El Razek, H.M.A.; Majeed, A.; Maleki, A.; Malekzadeh, R.; Manafi, A.; Manafi, N.; Manamo, W.A.; Mansourian, M.; Mansournia, M.A.; Mantovani, L.G.; Maroufizadeh, S.; Martini, S.M.S.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Maswabi, M.T.; Mathur, M.R.; McAlinden, C.; McKee, M.; Meheretu, H.A.A.; Mehrotra, R.; Mehta, V.; Meier, T.; Melaku, Y.A.; Meles, G.G.; Meles, H.G.; Melese, A.; Melku, M.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Mihretie, K.M.M.; Miller, T.R.; Mills, E.J.; Mir, S.M.; Mirzaei, H.; Mirzaei, H.R.; Mishra, R.; Moazen, B.; Mohammad, D.K.; Mohammad, K.A.; Mohammad, Y.; Darwesh, A.M.; Mohammadbeigi, A.; Mohammadi, H.; Mohammadi, M.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mohammadoo-Khorasani, M.; Mohammadpourhodki, R.; Mohammed, A.S.; Mohammed, J.A.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moossavi, M.; Moradi, G.; Moradi-Joo, M.; Moradi-Lakeh, M.; Moradpour, F.; Morawska, L.; Morgado-da-Costa, J.; Morisaki, N.; Morrison, S.D.; Mosapour, A.; Mousavi, S.M.; Muche, A.A.; Muhammed, O.S.S.; Musa, J.; Nabhan, A.R.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Nahvijou, A.; Naik, G.; Najafi, F.; Naldi, L.; Nam, H.S.; Nasiri, N.; Nazari, J.; Negoi, I.; Neupane, S.; Newcomb, P.A.; Nggada, H.A.; Ngunjiri, J.W.; Nguyen, C.T.; Nikniaz, L.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Nnaji, C.A.; Nojomi, M.; Nosratnejad, S.; Shiadeh, M.N.; Obsa, M.S.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I.H.; Olagunju, A.T.; Olagunju, T.O.; Oluwasanu, M.M.; Omonisi, A.E.; Onwujekwe, O.E.; Oommen, A.M.; Oren, E.; Ortega-Altamirano, D.D.V.; Ota, E.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhale, S.; Pakpour, A.H.; Pana, A.; Park, E.K.; Parsian, H.; Pashaei, T.; Patel, S.; Patil, S.T.; Pennini, A.; Pereira, D.M.; Piccinelli, C.; Pillay, J.D.; Pirestani, M.; Pishgar, F.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourshams, A.; Prakash, S.; Prasad, N.; Qorbani, M.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi, M.; Rahman, M.A.; Rajati, F.; Rana, S.M.; Raoofi, S.; Rath, G.K.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C.; Renzaho, A.M.N.; Rezaei, N.; Rezapour, A.; Ribeiro, A.I.; Ribeiro, D.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Saad, R.S.; Sabbagh, P.; Sabour, S.; Saddik, B.; Safiri, S.; Sahebkar, A.; Salahshoor, M.R.; Salehi, F.; Salem, H.; Salem, M.R.; Salimzadeh, H.; Salomon, J.A.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sayyah, M.; Schneider, I.J.C.; Schöttker, B.; Sekerija, M.; Sepanlou, S.G.; Sepehrimanesh, M.; Seyedmousavi, S.; Shaahmadi, F.; Shabaninejad, H.; Shahbaz, M.; Shaikh, M.A.; Shamshirian, A.; Shamsizadeh, M.; Sharafi, H.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Sharifi, H.; Sharma, R.; Sheikh, A.; Shirkoohi, R.; Shukla, S.R.; Si, S.; Siabani, S.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Sisay, S.; Sitas, F.; Sobngwi, E.; Soofi, M.; Soriano, J.B.; Stathopoulou, V.; Sufiyan, M.B.; Tabarés-Seisdedos, R.; Tabuchi, T.; Takahashi, K.; Tamtaji, O.R.; Tarawneh, M.R.; Tassew, S.G.; Taymoori, P.; Tehrani-Banihashemi, A.; Temsah, M.H.; Temsah, O.; Tesfay, B.E.; Tesfay, F.H.; Teshale, M.Y.; Tessema, G.A.; Thapa, S.; Tlaye, K.G.; Topor-Madry, R.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vacante, M.; Vaezi, M.; Varona Pérez, P.; Veisani, Y.; Vidale, S.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wabinga, H.; Wachamo, T.M.; Wagnew, F.S.; Waheed, Y.; Weldegebreal, F.; Weldesamuel, G.T.; Wijeratne, T.; Wondafrash, D.Z.; Wonde, T.E.; Wondmieneh, A.B.; Workie, H.M.; Yadav, R.; Yadegar, A.; Yadollahpour, A.; Yaseri, M.; Yazdi-Feyzabadi, V.; Yeshaneh, A.; Yimam, M.A.; Yimer, E.M.; Yisma, E.; Yonemoto, N.; Younis, M.Z.; Yousefi, B.; Yousefifard, M.; Yu, C.; Zabeh, E.; Zadnik, V.; Moghadam, T.Z.; Zaidi, Z.; Zamani, M.; Zandian, H.; Zangeneh, A.; Zaki, L.; Zendehdel, K.; Zenebe, Z.M.; Zewale, T.A.; Ziapour, A.; Zodpey, S.; Murray, C.J.L. Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol., 2019, 5, 1749-1768.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[4]
Malhotra, G.K.; Yanala, U.; Ravipati, A.; Follet, M.; Vijayakumar, M.; Are, C. Global trends in esophageal cancer. J. Surg. Oncol., 2017, 115(5), 564-579.
[http://dx.doi.org/10.1002/jso.24592] [PMID: 28320055]
[5]
Castellsagué, X.; Muñoz, N.; De Stefani, E.; Victora, C.G.; Castelletto, R.; Rolón, P.A.; Quintana, M.J. Independent and joint effects of tobacco smoking and alcohol drinking on the risk of esophageal cancer in men and women. Int. J. Cancer, 1999, 82(5), 657-664.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990827)82:5<657:AID-IJC7>3.0.CO;2-C] [PMID: 10417762]
[6]
Eriksen, M.P.; Mackay, J.; Schluger, N.W. The Tobacco Atlas. Georgia; American Cancer Society Publishing: Atlanta, 2015.
[7]
Corley, D.A. Obesity and the rising incidence of oesophageal and gastric adenocarcinoma: what is the link? Gut, 2007, 56(11), 1493-1494.
[http://dx.doi.org/10.1136/gut.2007.124255] [PMID: 17938426]
[8]
Milivojevic, V.; Milosavljevic, T. Burden of gastroduodenal diseases from the global perspective; Curr. Treat Options Gastro, 2020.
[9]
Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; Farzadfar, F.; Riley, L.M.; Ezzati, M. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group. (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet, 2011, 377(9765), 557-567.
[http://dx.doi.org/10.1016/S0140-6736(10)62037-5] [PMID: 21295846]
[10]
Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.; Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.; Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.; Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.; Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.; Feigin, V.L.; Flaxman, A.; Forouzanfar, M.H.; Goto, A.; Green, M.A.; Gupta, R.; Hafezi-Nejad, N.; Hankey, G.J.; Harewood, H.C.; Havmoeller, R.; Hay, S.; Hernandez, L.; Husseini, A.; Idrisov, B.T.; Ikeda, N.; Islami, F.; Jahangir, E.; Jassal, S.K.; Jee, S.H.; Jeffreys, M.; Jonas, J.B.; Kabagambe, E.K.; Khalifa, S.E.; Kengne, A.P.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Kimokoti, R.W.; Kinge, J.M.; Kokubo, Y.; Kosen, S.; Kwan, G.; Lai, T.; Leinsalu, M.; Li, Y.; Liang, X.; Liu, S.; Logroscino, G.; Lotufo, P.A.; Lu, Y.; Ma, J.; Mainoo, N.K.; Mensah, G.A.; Merriman, T.R.; Mokdad, A.H.; Moschandreas, J.; Naghavi, M.; Naheed, A.; Nand, D.; Narayan, K.M.; Nelson, E.L.; Neuhouser, M.L.; Nisar, M.I.; Ohkubo, T.; Oti, S.O.; Pedroza, A.; Prabhakaran, D.; Roy, N.; Sampson, U.; Seo, H.; Sepanlou, S.G.; Shibuya, K.; Shiri, R.; Shiue, I.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Stapelberg, N.J.; Sturua, L.; Sykes, B.L.; Tobias, M.; Tran, B.X.; Trasande, L.; Toyoshima, H.; van de Vijver, S.; Vasankari, T.J.; Veerman, J.L.; Velasquez-Melendez, G.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wang, C.; Wang, X.; Weiderpass, E.; Werdecker, A.; Wright, J.L.; Yang, Y.C.; Yatsuya, H.; Yoon, J.; Yoon, S.J.; Zhao, Y.; Zhou, M.; Zhu, S.; Lopez, A.D.; Murray, C.J.; Gakidou, E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2014, 384(9945), 766-781.
[http://dx.doi.org/10.1016/S0140-6736(14)60460-8] [PMID: 24880830]
[11]
Souza, R.F. From reflux esophagitis to esophageal adenocarcinoma. Dig. Dis., 2016, 34(5), 483-490.
[http://dx.doi.org/10.1159/000445225] [PMID: 27331918]
[12]
Ireland, A.P.; Peters, J.H.; Smyrk, T.C.; DeMeester, T.R.; Clark, G.W.; Mirvish, S.S.; Adrian, T.E. Gastric juice protects against the development of esophageal adenocarcinoma in the rat. Ann. Surg., 1996, 224(3), 358-370.
[http://dx.doi.org/10.1097/00000658-199609000-00012] [PMID: 8813264]
[13]
Debruyne, P.R.; Witek, M.; Gong, L.; Birbe, R.; Chervoneva, I.; Jin, T.; Domon-Cell, C.; Palazzo, J.P.; Freund, J.N.; Li, P.; Pitari, G.M.; Schulz, S.; Waldman, S.A. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology, 2006, 130(4), 1191-1206.
[http://dx.doi.org/10.1053/j.gastro.2005.12.032] [PMID: 16618413]
[14]
Dang, T.; Meng, X.; Modak, C.; Wu, J.; Chang, Z.; Che, N.; Narvaez, R.; Chai, J. Overexpression of CCN1 in Het1A cells attenuates bile-induced esophageal metaplasia through suppressing non-canonical NFκB activation. Cytokine, 2019, 116, 61-69.
[http://dx.doi.org/10.1016/j.cyto.2018.12.020] [PMID: 30685604]
[15]
Kauer, W.K.; Peters, J.H.; DeMeester, T.R.; Feussner, H.; Ireland, A.P.; Stein, H.J.; Siewert, R.J. Composition and concentration of bile acid reflux into the esophagus of patients with gastroesophageal reflux disease. Surgery, 1997, 122(5), 874-881.
[http://dx.doi.org/10.1016/S0039-6060(97)90327-5] [PMID: 9369886]
[16]
Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; Bos, J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med., 1988, 319(9), 525-532.
[http://dx.doi.org/10.1056/NEJM198809013190901] [PMID: 2841597]
[17]
Sottoriva, A.; Kang, H.; Ma, Z.; Graham, T.A.; Salomon, M.P.; Zhao, J.; Marjoram, P.; Siegmund, K.; Press, M.F.; Shibata, D.; Curtis, C. A Big Bang model of human colorectal tumor growth. Nat. Genet., 2015, 47(3), 209-216.
[http://dx.doi.org/10.1038/ng.3214] [PMID: 25665006]
[18]
Cross, W.Ch.; Graham, T.A.; Wright, N.A. New paradigms in clonal evolution: punctuated equilibrium in cancer. J. Pathol., 2016, 240(2), 126-136.
[http://dx.doi.org/10.1002/path.4757] [PMID: 27282810]
[19]
Chai, J. Gastric ulcer healing – Role of serum response factor.Peptic Ulcer Disease; Chai, J., Ed.; IntechOpen: London, 2011, pp. 143-164.
[20]
Modak, C.; Chai, J. Serum response factor: look into the gut. World J. Gastroenterol., 2010, 16(18), 2195-2201.
[http://dx.doi.org/10.3748/wjg.v16.i18.2195] [PMID: 20458756]
[21]
Chai, J.; Tarnawski, A.S. Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J. Physiol. Pharmacol., 2002, 53(2), 147-157.
[PMID: 12120892]
[22]
Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; McKenna, A.; Carter, S.L.; Cibulskis, K.; Sivachenko, A.; Saksena, G.; Voet, D.; Ramos, A.H.; Auclair, D.; Thompson, K.; Sougnez, C.; Onofrio, R.C.; Guiducci, C.; Beroukhim, R.; Zhou, Z.; Lin, L.; Lin, J.; Reddy, R.; Chang, A.; Landrenau, R.; Pennathur, A.; Ogino, S.; Luketich, J.D.; Golub, T.R.; Gabriel, S.B.; Lander, E.S.; Beer, D.G.; Godfrey, T.E.; Getz, G.; Bass, A.J. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet., 2013, 45(5), 478-486.
[http://dx.doi.org/10.1038/ng.2591] [PMID: 23525077]
[23]
Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature, 2017, 541(7636), 169-175.
[http://dx.doi.org/10.1038/nature20805] [PMID: 28052061]
[24]
Smeenk, L.; van Heeringen, S.J.; Koeppel, M.; Gilbert, B.; Janssen-Megens, E.; Stunnenberg, H.G.; Lohrum, M. Role of p53 serine 46 in p53 target gene regulation. PLoS One, 2011, 6(3), e17574.
[http://dx.doi.org/10.1371/journal.pone.0017574] [PMID: 21394211]
[25]
Menendez, D.; Nguyen, T.A.; Freudenberg, J.M.; Mathew, V.J.; Anderson, C.W.; Jothi, R.; Resnick, M.A. Diverse stresses dramatically alter genome-wide p53 binding and transactivation landscape in human cancer cells. Nucleic Acids Res., 2013, 41(15), 7286-7301.
[http://dx.doi.org/10.1093/nar/gkt504] [PMID: 23775793]
[26]
McDade, S.S.; Patel, D.; Moran, M.; Campbell, J.; Fenwick, K.; Kozarewa, I.; Orr, N.J.; Lord, C.J.; Ashworth, A.A.; McCance, D.J. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress. Nucleic Acids Res., 2014, 42(10), 6270-6285.
[http://dx.doi.org/10.1093/nar/gku299] [PMID: 24823795]
[27]
Baugh, E.H.; Ke, H.; Levine, A.J.; Bonneau, R.A.; Chan, C.S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ., 2017, 2017, 1-7.
[PMID: 29099487]
[28]
Reid, B.J. p53 and neoplastic progression in Barrett’s esophagus. Am. J. Gastroenterol., 2001, 96(5), 1321-1323.
[http://dx.doi.org/10.1111/j.1572-0241.2001.03844.x] [PMID: 11374661]
[29]
Fischer, M. Census and evaluation of p53 target genes. Oncogene, 2017, 36(28), 3943-3956.
[http://dx.doi.org/10.1038/onc.2016.502] [PMID: 28288132]
[30]
Hainaut, P.; Pfeifer, G.P. Somatic TP53 Mutations in the era of genome sequencing. Cold Spring Harb. Perspect. Med., 2016, 6(11), 1-22.
[http://dx.doi.org/10.1101/cshperspect.a026179] [PMID: 27503997]
[31]
Ben-Neriah, Y.; Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol., 2011, 12(8), 715-723.
[http://dx.doi.org/10.1038/ni.2060] [PMID: 21772280]
[32]
Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol., 2014, 26(3), 253-266.
[http://dx.doi.org/10.1016/j.smim.2014.05.004] [PMID: 24958609]
[33]
Devin, A.; Cook, A.; Lin, Y.; Rodriguez, Y.; Kelliher, M.; Liu, Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity, 2000, 12(4), 419-429.
[http://dx.doi.org/10.1016/S1074-7613(00)80194-6] [PMID: 10795740]
[34]
Sun, S.C. The noncanonical NF-κB pathway. Immunol. Rev., 2012, 246(1), 125-140.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01088.x] [PMID: 22435551]
[35]
Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol., 2011, 12(8), 695-708.
[http://dx.doi.org/10.1038/ni.2065] [PMID: 21772278]
[36]
Ruland, J. Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol., 2011, 12(8), 709-714.
[http://dx.doi.org/10.1038/ni.2055] [PMID: 21772279]
[37]
Zetoune, F.S.; Murthy, A.R.; Shao, Z.; Hlaing, T.; Zeidler, M.G.; Li, Y.; Vincenz, C. A20 inhibits NF-kappa B activation downstream of multiple Map3 kinases and interacts with the I kappa B signalosome. Cytokine, 2001, 15(6), 282-298.
[http://dx.doi.org/10.1006/cyto.2001.0921] [PMID: 11594795]
[38]
Webster, G.A.; Perkins, N.D. Transcriptional cross talk between NF-kappaB and p53. Mol. Cell. Biol., 1999, 19(5), 3485-3495.
[http://dx.doi.org/10.1128/MCB.19.5.3485] [PMID: 10207072]
[39]
Schneider, G.; Henrich, A.; Greiner, G.; Wolf, V.; Lovas, A.; Wieczorek, M.; Wagner, T.; Reichardt, S.; von Werder, A.; Schmid, R.M.; Weih, F.; Heinzel, T.; Saur, D.; Krämer, O.H. Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene, 2010, 29(19), 2795-2806.
[http://dx.doi.org/10.1038/onc.2010.46] [PMID: 20190799]
[40]
Vaughan, C.A.; Singh, S.; Windle, B.; Sankala, H.M.; Graves, P.R.; Andrew Yeudall, W.; Deb, S.P.; Deb, S. p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch. Biochem. Biophys., 2012, 518(1), 79-88.
[http://dx.doi.org/10.1016/j.abb.2011.12.006] [PMID: 22198284]
[41]
Wajant, H. Death receptors. Essays Biochem., 2003, 39, 53-71.
[http://dx.doi.org/10.1042/bse0390053] [PMID: 14585074]
[42]
Micheau, O.; Shirley, S.; Dufour, F. Death receptors as targets in cancer. Br. J. Pharmacol., 2013, 169(8), 1723-1744.
[http://dx.doi.org/10.1111/bph.12238] [PMID: 23638798]
[43]
Lavrik, I.N. Systems biology of death receptor networks: live and let die. 2014.
[44]
Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF family of ligands and receptors: Communication modules in the immune system and beyond. Physiol. Rev., 2019, 99(1), 115-160.
[http://dx.doi.org/10.1152/physrev.00045.2017] [PMID: 30354964]
[45]
Hehlgans, T.; Pfeffer, K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology, 2005, 115(1), 1-20.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02143.x] [PMID: 15819693]
[46]
Kimberley, F.C.; Screaton, G.R. Following a TRAIL: update on a ligand and its five receptors. Cell Res., 2004, 14(5), 359-372.
[http://dx.doi.org/10.1038/sj.cr.7290236] [PMID: 15538968]
[47]
Dang, T.; Modak, C.; Meng, X.; Wu, J.; Narvaez, R.; Chai, J. CCN1 sensitizes esophageal cancer cells to TRAIL-mediated apoptosis. Exp. Cell Res., 2017, 361(1), 163-169.
[http://dx.doi.org/10.1016/j.yexcr.2017.10.015] [PMID: 29055676]
[48]
Meng, X.; Chang, Z.; Che, N.; Wu, J.; Dang, T.; Chai, J. Acid/bile exposure triggers TRAIL-mediated apoptosis in esophageal cancer cells by suppressing the decoy receptors and c-FLIPR. Int. J. Biochem. Cell Biol., 2020, 122105736.
[49]
Neumann, S.; Hasenauer, J.; Pollak, N.; Scheurich, P. Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes. J. Biol. Chem., 2014, 289(23), 16576-16587.
[http://dx.doi.org/10.1074/jbc.M114.559468] [PMID: 24764293]
[50]
Sanlioglu, A.D.; Dirice, E.; Aydin, C.; Erin, N.; Koksoy, S.; Sanlioglu, S. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC Cancer, 2005, 5, 54.
[http://dx.doi.org/10.1186/1471-2407-5-54] [PMID: 15916713]
[51]
Aydin, C.; Sanlioglu, A.D.; Karacay, B.; Ozbilim, G.; Dertsiz, L.; Ozbudak, O.; Akdis, C.A.; Sanlioglu, S. Decoy receptor-2 small interfering RNA (siRNA) strategy employing three different siRNA constructs in combination defeats adenovirus-transferred tumor necrosis factor-related apoptosis-inducing ligand resistance in lung cancer cells. Hum. Gene Ther., 2007, 18(1), 39-50.
[http://dx.doi.org/10.1089/hum.2006.111] [PMID: 17187448]
[52]
Riccioni, R.; Pasquini, L.; Mariani, G.; Saulle, E.; Rossini, A.; Diverio, D.; Pelosi, E.; Vitale, A.; Chierichini, A.; Cedrone, M.; Foà, R.; Lo Coco, F.; Peschle, C.; Testa, U. TRAIL decoy receptors mediate resistance of acute myeloid leukemia cells to TRAIL. Haematologica, 2005, 90(5), 612-624.
[PMID: 15921376]
[53]
Lane, D.; Matte, I.; Laplante, C.; Garde-Granger, P.; Rancourt, C.; Piché, A. Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J. Ovarian Res., 2013, 6(1), 82.
[http://dx.doi.org/10.1186/1757-2215-6-82] [PMID: 24267510]
[54]
Cao, X.; Pobezinskaya, Y.L.; Morgan, M.J.; Liu, Z. The role of TRADD in TRAIL-induced apoptosis and signaling. FASEB J. 2011; 25: 1353-1358Kantari C, Walczak H. Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813, 558-563.
[55]
Falschlehner, C.; Emmerich, C.H.; Gerlach, B.; Walczak, H. TRAIL signalling: decisions between life and death. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1462-1475.
[http://dx.doi.org/10.1016/j.biocel.2007.02.007] [PMID: 17403612]
[56]
Siegmund, D.; Lang, I.; Wajant, H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J., 2017, 284(8), 1131-1159.
[http://dx.doi.org/10.1111/febs.13968] [PMID: 27865080]
[57]
Chang, Z.; Dang, T.; Che, N.; Yu, H.; Chai, J.; Chen, W. Esophageal cancer cells convert the death signal from TRAIL into a stimulus for survival during acid/bile exposure. Dig. Liver Dis., 2020.
[58]
Oberst, A.; Pop, C.; Tremblay, A.G.; Blais, V.; Denault, J.B.; Salvesen, G.S.; Green, D.R. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J. Biol. Chem., 2010, 285(22), 16632-16642.
[http://dx.doi.org/10.1074/jbc.M109.095083] [PMID: 20308068]
[59]
Krueger, A.; Baumann, S.; Krammer, P.H.; Kirchhoff, S. FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Mol. Cell. Biol., 2001, 21(24), 8247-8254.
[http://dx.doi.org/10.1128/MCB.21.24.8247-8254.2001] [PMID: 11713262]
[60]
Oztürk, S.; Schleich, K.; Lavrik, I.N. Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp. Cell Res., 2012, 318(11), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2012.01.019] [PMID: 22309778]
[61]
Safa, A.R. c-FLIP, a master anti-apoptotic regulator. Exp. Oncol., 2012, 34(3), 176-184.
[PMID: 23070002]
[62]
Kaunisto, A.; Kochin, V.; Asaoka, T.; Mikhailov, A.; Poukkula, M.; Meinander, A.; Eriksson, J.E. PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ., 2009, 16(9), 1215-1226.
[http://dx.doi.org/10.1038/cdd.2009.35] [PMID: 19343040]
[63]
Hsu, T.S.; Mo, S.T.; Hsu, P.N.; Lai, M.Z. c-FLIP is a target of the E3 ligase deltex1 in gastric cancer. Cell Death Dis., 2018, 9(2), 135.
[http://dx.doi.org/10.1038/s41419-017-0165-6] [PMID: 29374180]
[64]
Van Geelen, C.M.; de Vries, E.G.; de Jong, S. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist. Updat., 2004, 7(6), 345-358.
[http://dx.doi.org/10.1016/j.drup.2004.11.002] [PMID: 15790545]
[65]
Haag, C.; Stadel, D.; Zhou, S.; Bachem, M.G.; Möller, P.; Debatin, K.M.; Fulda, S. Identification of c-FLIP(L) and c-FLIP(S) as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut, 2011, 60(2), 225-237.
[http://dx.doi.org/10.1136/gut.2009.202325] [PMID: 20876774]
[66]
Zhang, L.; Dittmer, M.R.; Blackwell, K.; Workman, L.M.; Hostager, B.; Habelhah, H. TRAIL activates JNK and NF-κB through RIP1-dependent and -independent pathways. Cell. Signal., 2015, 27(2), 306-314.
[http://dx.doi.org/10.1016/j.cellsig.2014.11.014] [PMID: 25446254]
[67]
Oberst, A. Death in the fast lane: what’s next for necroptosis? FEBS J., 2016, 283(14), 2616-2625.
[http://dx.doi.org/10.1111/febs.13520] [PMID: 26395133]
[68]
Schimmer, A.D.; Welsh, K.; Pinilla, C.; Wang, Z.; Krajewska, M.; Bonneau, M.J.; Pedersen, I.M.; Kitada, S.; Scott, F.L.; Bailly-Maitre, B.; Glinsky, G.; Scudiero, D.; Sausville, E.; Salvesen, G.; Nefzi, A.; Ostresh, J.M.; Houghten, R.A.; Reed, J.C. Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell, 2004, 5(1), 25-35.
[http://dx.doi.org/10.1016/S1535-6108(03)00332-5] [PMID: 14749124]
[69]
Dang, T.; Modak, C.; Meng, X.; Wu, J.; Narvaez, R.; Chai, J. CCN1 induces apoptosis in esophageal adenocarcinoma through p53-dependent downregulation of survivin. J. Cell. Biochem., 2018, 120, 2070-2077.
[http://dx.doi.org/10.1002/jcb.27515] [PMID: 30318638]
[70]
Pobezinskaya, Y.L.; Liu, Z. The role of TRADD in death receptor signaling. Cell Cycle, 2012, 11(5), 871-876.
[http://dx.doi.org/10.4161/cc.11.5.19300] [PMID: 22333735]
[71]
Hall, M.A.; Cleveland, J.L. Clearing the TRAIL for cancer therapy. Cancer Cell, 2007, 12(1), 4-6.
[http://dx.doi.org/10.1016/j.ccr.2007.06.011] [PMID: 17613431]
[72]
Kruyt, F.A. TRAIL and cancer therapy. Cancer Lett., 2008, 263(1), 14-25.
[http://dx.doi.org/10.1016/j.canlet.2008.02.003] [PMID: 18329793]
[73]
Grzeszkiewicz, T.M.; Kirschling, D.J.; Chen, N.; Lau, L.F. CYR61 stimulates human skin fibroblast migration through Integrin α vbeta 5 and enhances mitogenesis through integrin α vbeta 3, independent of its carboxyl-terminal domain. J. Biol. Chem., 2001, 276(24), 21943-21950.
[http://dx.doi.org/10.1074/jbc.M100978200] [PMID: 11287419]
[74]
Chen, C.C.; Lau, L.F. Deadly liaisons: fatal attraction between CCN matricellular proteins and the tumor necrosis factor family of cytokines. J. Cell Commun. Signal., 2010, 4(1), 63-69.
[http://dx.doi.org/10.1007/s12079-009-0080-4] [PMID: 19898959]
[75]
Chen, C.C.; Young, J.L.; Monzon, R.I.; Chen, N.; Todorović, V.; Lau, L.F. Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J., 2007, 26(5), 1257-1267.
[http://dx.doi.org/10.1038/sj.emboj.7601596] [PMID: 17318182]
[76]
Juric, V.; Chen, C.C.; Lau, L.F. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol. Cell. Biol., 2009, 29(12), 3266-3279.
[http://dx.doi.org/10.1128/MCB.00064-09] [PMID: 19364818]
[77]
Franzen, C.A.; Chen, C.C.; Todorović, V.; Juric, V.; Monzon, R.I.; Lau, L.F. Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol. Cancer Res., 2009, 7(7), 1045-1055.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0017] [PMID: 19584265]
[78]
Chen, C.C.; Kim, K.H.; Lau, L.F. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene, 2016, 35(10), 1314-1323.
[http://dx.doi.org/10.1038/onc.2015.190] [PMID: 26028023]
[79]
Chien, W.; Kumagai, T.; Miller, C.W.; Desmond, J.C.; Frank, J.M.; Said, J.W.; Koeffler, H.P. Cyr61 suppresses growth of human endometrial cancer cells. J. Biol. Chem., 2004, 279(51), 53087-53096.
[http://dx.doi.org/10.1074/jbc.M410254200] [PMID: 15471875]
[80]
Gery, S.; Xie, D.; Yin, D.; Gabra, H.; Miller, C.; Wang, H.; Scott, D.; Yi, W.S.; Popoviciu, M.L.; Said, J.W.; Koeffler, H.P. Ovarian carcinomas: CCN genes are aberrantly expressed and CCN1 promotes proliferation of these cells. Clin. Cancer Res., 2005, 11(20), 7243-7254.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0231] [PMID: 16243794]
[81]
Chai, J.; Norng, M.; Modak, C.; Reavis, K.M.; Mouazzen, W.; Pham, J. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells. Lab. Invest., 2010, 90(8), 1140-1151.
[http://dx.doi.org/10.1038/labinvest.2010.101] [PMID: 20458273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy