Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Tumor-Induced Metabolism and T Cells Located in Tumor Environment

Author(s): Sara Iranparast, Sanaz Tayebi, Fatemeh Ahmadpour and Bahman Yousefi*

Volume 20, Issue 10, 2020

Page: [741 - 756] Pages: 16

DOI: 10.2174/1568009620666200720010647

Price: $65

conference banner
Abstract

Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.

Keywords: Cancer, t lymphocytes, metabolism, immunotherapy, immune evasion, cytokines.

Graphical Abstract
[1]
Molon, B.; Calì, B.; Viola, A. T Cells and cancer: How metabolism shapes immunity. Front. Immunol., 2016, 7, 20.
[http://dx.doi.org/10.3389/fimmu.2016.00020] [PMID: 26870036]
[2]
Jung, J.; Zeng, H.; Horng, T. Metabolism as a guiding force for immunity. Nat. Cell Biol., 2019, 21(1), 85-93.
[http://dx.doi.org/10.1038/s41556-018-0217-x] [PMID: 30602764]
[3]
Bantug, G.R.; Galluzzi, L.; Kroemer, G.; Hess, C.J.N.R.I. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol., 2018, 18(1), 19.
[http://dx.doi.org/10.1038/nri.2017.99]
[4]
Marelli-Berg, F.M.; Fu, H.; Mauro, C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology, 2012, 136(4), 363-369.
[http://dx.doi.org/10.1111/j.1365-2567.2012.03583.x] [PMID: 22384794]
[5]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[6]
Byrne, K.T.; Vonderheide, R.H.; Jaffee, E.M.; Armstrong, T.D. Special conference on tumor immunology and immunotherapy: A new chapter. Cancer Immunol. Res., 2015, 3(6), 590-597.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0106] [PMID: 25968457]
[7]
Sautès-Fridman, C. Tumor immunology, toward a success story? Front. Immunol., 2015, 6, 65.
[PMID: 25741340]
[8]
Nandi, D.; Pathak, S.; Verma, T.; Singh, M.; Chattopadhyay, A.; Thakur, S.; Raghavan, A.; Gokhroo, A. Vijayamahantesh, T cell costimu-lation, checkpoint inhibitors and anti-tumor therapy. J. Biosci., 2020, 45(1), 1-36.
[http://dx.doi.org/10.1007/s12038-020-0020-2] [PMID: 32345776]
[9]
Klein Geltink, R.I.; Kyle, R.L.; Pearce, E.L.J.A.i. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol., 2018, 36, 461-488.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053019]
[10]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[11]
Phan, L.M.; Yeung, S.C.; Lee, M.H. Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med., 2014, 11(1), 1-19.
[PMID: 24738035]
[12]
Mellor, A.L.; Munn, D.H. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol., 2008, 8(1), 74-80.
[http://dx.doi.org/10.1038/nri2233] [PMID: 18064049]
[13]
Icard, P.; Shulman, S.; Farhat, D.; Steyaert, J.-M.; Alifano, M.; Lincet, H. J. D. R. U. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? 2018, 38, 1-11.
[14]
Hall, A.; Meyle, K.D.; Lange, M.K.; Klima, M.; Sanderhoff, M.; Dahl, C.; Abildgaard, C.; Thorup, K.; Moghimi, S.M.; Jensen, P.B.; Bartek, J.; Guldberg, P.; Christensen, C. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E) BRAF oncogene. Oncotarget, 2013, 4(4), 584-599.
[http://dx.doi.org/10.18632/oncotarget.965] [PMID: 23603840]
[15]
Haq, R.; Shoag, J.; Andreu-Perez, P.; Yokoyama, S.; Edelman, H.; Rowe, G.C.; Frederick, D.T.; Hurley, A.D.; Nellore, A.; Kung, A.L.; Wargo, J.A.; Song, J.S.; Fisher, D.E.; Arany, Z.; Widlund, H.R. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell, 2013, 23(3), 302-315.
[http://dx.doi.org/10.1016/j.ccr.2013.02.003] [PMID: 23477830]
[16]
Trucco, L.D.; Mundra, P.A.; Garcia-Martinez, P.; Hogan, K.; Dhomen, N.; Pavet, V.; Marais, R. Melanocyte specific deletion of Map3k1 reveals its role in BRAFV600E-driven melanoma ; AACR; , 2019.
[17]
Cham, C.M.; Driessens, G.; O’Keefe, J.P.; Gajewski, T.F. Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol., 2008, 38(9), 2438-2450.
[http://dx.doi.org/10.1002/eji.200838289] [PMID: 18792400]
[18]
Danhier, P.; Bański, P.; Payen, V.L.; Grasso, D.; Ippolito, L.; Sonveaux, P.; Porporato, P.E. Cancer metabolism in space and time: be-yond the Warburg effect. Biochim. Biophys. Acta, 2017, 1858(8), 556-572.
[http://dx.doi.org/10.1016/j.bbabio.2017.02.001]
[19]
Gerriets, V.A.; Kishton, R.J.; Nichols, A.G.; Macintyre, A.N.; Inoue, M.; Ilkayeva, O.; Winter, P.S.; Liu, X.; Priyadharshini, B.; Slawinska, M.E.; Haeberli, L. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest., 2015, 125(1), 194-207.
[20]
Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.J.B. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 2007, 109(9), 3812-3819.
[http://dx.doi.org/10.1182/blood-2006-07-035972]
[21]
Fukumura, D.; Xu, L.; Chen, Y.; Gohongi, T.; Seed, B.; Jain, R.K. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res., 2001, 61(16), 6020-6024.
[22]
Michalek, R.D.; Gerriets, V.A.; Jacobs, S.R.; Macintyre, A.N.; MacIver, N.J.; Mason, E.F.; Sullivan, S.A.; Nichols, A.G.; Rathmell, J.C. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol., 2011, 1003613.
[23]
Kim, C.H. Regulatory T-Cells and Th17 cells in tumor microenvironment. cancer immunology ; Springer; , 2020, pp. pp. 91-106.
[24]
Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; Van Der Windt, G.J.; Tonc, E. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241.
[http://dx.doi.org/10.1016/j.cell.2015.08.016]
[25]
Cham, C.M.; Gajewski, T.F. Glucose availability regulates IFN-γ production and p70S6 kinase activation in CD8+ effector T cells. J. Immunol., 2005, 174(8), 4670-4677.
[26]
Cham, C.M.; Driessens, G.; O’Keefe, J.P.; Gajewski, T.F. Glucose deprivation inhibits multiple key gene expression events and effector functions In CD8+ T cells. Eur. J. Immunol., 2008, 38(9), 2438-2450.
[27]
Jacobs, S.R.; Herman, C.E.; MacIver, N.J.; Wofford, J.A.; Wieman, H.L.; Hammen, J.J.; Rathmell, J.C. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol., 2008, 180(7), 4476-4486.
[http://dx.doi.org/10.4049/jimmunol.180.7.4476]
[28]
Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; Rathmell, J.C. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Cell Metabol., 2014, 1(11), 61-72.
[29]
Frauwirth, K.A.; Thompson, C.B. Regulation of T lymphocyte metabolism. J. Immunol., 2004, 172(8), 4661-4665.
[30]
Chellappa, S.; Kushekhar, K.; Munthe, L. A.; Tjonnfjord, G. E.; Aandahl, E. M.; Okkenhaug, K.; Tasken, K. The PI3K p110delta isoform inhibitor idelalisib preferentially inhibits human regulatory T cell function. J. immunology (Baltimore, Md.: 1950), 2019, 202(5), 1397-1405.
[31]
Qiu, J.; Villa, M.; Sanin, D.E.; Buck, M.D.; O’Sullivan, D.; Ching, R.; Matsushita, M.; Grzes, K.M.; Winkler, F.; Chang, C-H. Acetate promotes T cell effector function during glucose restriction. Cell Rep., 2019, 27(7), 2063-2074.
[http://dx.doi.org/10.1016/j.celrep.2019.04.022]
[32]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr Cellular fatty acid metabolism and cancer. Cell Metabol., 2013, 18(2), 153-161.
[33]
Zhang, F.; Du, G. Dysregulated lipid metabolism in cancer. World J. Biol. Chem., 2012, 3(8), 167.
[http://dx.doi.org/10.4331/wjbc.v3.i8.167]
[34]
Zhang, F.; Du, G. Adipose tissue-derived progenitor cells and cancer. World J. Biol. Chem., 2010, 2(5), 103.
[http://dx.doi.org/10.4252/wjsc.v2.i5.103]
[35]
Byersdorfer, C.A.; Tkachev, V.; Opipari, A.W.; Goodell, S.; Swanson, J.; Sandquist, S.; Glick, G.D.; Ferrara, J.L. Effector T cells require fatty acid metabolism during murine graft-versus-host disease Blood, 2013. 2013-04-495515
[36]
Byersdorfer, C.A. The role of fatty acid oxidation in the metabolic reprograming of activated T-cells. Front. Immunol., 2014, 5, 641.
[37]
Takahashi, S.; Iizumi, T.; Mashima, K.; Abe, T.; Suzuki, N. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia. 2014, 6(5), 175. 9091414550997
[38]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: glutamine metabolism to cancer therapy Nat. Rev. Cancer, 2016, 16(10), 619.
[39]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. 2013, 123(9), 3673-3684.
[40]
Villalba, M.; Rathore, M.G.; Lopez-Royuela, N.; Krzywinska, E.; Garaude, J.; Allende-Vega, N. From tumor cell metabolism to tumor immune escape. Int. J. Biochem. Cell Biol., 2013, 45(1), 106-113.
[41]
Mocellin, S.; Bronte, V.; Nitti, D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med. Res. Rev., 2007, 27(3), 317-352.
[42]
Tham, M.; Tan, K.W.; Keeble, J.; Wang, X.; Hubert, S.; Barron, L.; Tan, N.S.; Kato, M.; Prevost-Blondel, A.; Angeli, V.; Abastado, J.P. Melanoma-initiating cells exploit M2 macrophage TGFβ and arginase pathway for survival and proliferation. Oncotarget, 2014, 5(23), 12027.
[43]
Kasic, T.; Colombo, P.; Soldani, C.; Wang, C.M.; Miranda, E.; Roncalli, M.; Bronte, V.; Viola, A. Modulation of human T-cell functions by reactive nitrogen species. Eur. J. Immunol., 2011, 41(7), 1843-1849.
[44]
Nagaraj, S.; Gupta, K.; Pisarev, V.; Kinarsky, L.; Sherman, S.; Kang, L.; Herber, D.L.; Schneck, J.; Gabrilovich, D.I. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med., 2007, 13(7), 828.
[45]
Jones, R.G.; Plas, D.R.; Kubek, S.; Buzzai, M.; Mu, J.; Xu, Y.; Birnbaum, M.J.; Thompson, C.B. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell, 2005, 18(3), 283-293.
[http://dx.doi.org/10.1016/j.molcel.2005.03.027] [PMID: 15866171]
[46]
Wilke, C.M.; Wu, K.; Zhao, E.; Wang, G.; Zou, W. Prognostic significance of regulatory T cells in tumor. Int. J. Cancer, 2010, 127(4), 748-758.
[http://dx.doi.org/10.1002/ijc.25464] [PMID: 20473951]
[47]
Fuchs, Y.F.; Sharma, V.; Eugster, A.; Kraus, G.; Morgenstern, R.; Dahl, A.; Reinhardt, S.; Petzold, A.; Lindner, A.; Löbel, D.; Bonifacio, E. Gene Expression-Based Identification of Antigen-Responsive CD8(+) T Cells on a Single-Cell Level. Front. Immunol., 2019, 6, 10-2586.
[48]
Shackelford, D.B.; Shaw, R.J. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer, 2009, 9(8), 563-575.
[http://dx.doi.org/10.1038/nrc2676] [PMID: 19629071]
[49]
Michalek, R.D.; Gerriets, V.A.; Jacobs, S.R.; Macintyre, A.N.; MacIver, N.J.; Mason, E.F.; Sullivan, S.A.; Nichols, A.G.; Rathmell, J.C. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol., 2011, 186(6), 3299-3303.
[http://dx.doi.org/10.4049/jimmunol.1003613] [PMID: 21317389]
[50]
Blagih, J.; Coulombe, F.; Vincent, E.E.; Dupuy, F.; Galicia-Vázquez, G.; Yurchenko, E.; Raissi, T.C.; van der Windt, G.J.; Viollet, B.; Pearce, E.L.; Pelletier, J.; Piccirillo, C.A.; Krawczyk, C.M.; Divangahi, M.; Jones, R.G. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity, 2015, 42(1), 41-54.
[http://dx.doi.org/10.1016/j.immuni.2014.12.030] [PMID: 25607458]
[51]
Beier, U.H.; Wang, L.; Bhatti, T.R.; Liu, Y.; Han, R.; Ge, G.; Hancock, W.W. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell func-tion and prolongs allograft survival. Mol. Cell. Biol., 2011, 31(5), 1022-1029.
[http://dx.doi.org/10.1128/MCB.01206-10] [PMID: 21199917]
[52]
Kwon, H-S.; Lim, H.W.; Wu, J.; Schnölzer, M.; Verdin, E.; Ott, M. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J. Immunol., 2012, 188(6), 2712-2721.
[http://dx.doi.org/10.4049/jimmunol.1100903] [PMID: 22312127]
[53]
Bulitta, B.; Zuschratter, W.; Bernal, I.; Bruder, D.; Klawonn, F.; von Bergen, M.; Garritsen, H.S.P.; Jänsch, L. Proteomic definition of hu-man mucosal-associated invariant T cells determines their unique molecular effector phenotype. Eur. J. Immunol., 2018, 48(8), 1336-1349.
[http://dx.doi.org/10.1002/eji.201747398] [PMID: 29749611]
[54]
van Loosdregt, J.; Vercoulen, Y.; Guichelaar, T.; Gent, Y.Y.; Beekman, J.M.; van Beekum, O.; Brenkman, A.B.; Hijnen, D-J.; Mutis, T.; Kalkhoven, E.; Prakken, B.J.; Coffer, P.J. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood, 2010, 115(5), 965-974.
[http://dx.doi.org/10.1182/blood-2009-02-207118] [PMID: 19996091]
[55]
van Loosdregt, J.; Brunen, D.; Fleskens, V.; Pals, C.E.; Lam, E.W.; Coffer, P.J. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One, 2011, 6(4), e19047.
[http://dx.doi.org/10.1371/journal.pone.0019047] [PMID: 21533107]
[56]
Wellen, K.E.; Hatzivassiliou, G.; Sachdeva, U.M.; Bui, T.V.; Cross, J.R.; Thompson, C.B. ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 2009, 324(5930), 1076-1080.
[http://dx.doi.org/10.1126/science.1164097] [PMID: 19461003]
[57]
Gavin, M.A.; Rasmussen, J.P.; Fontenot, J.D.; Vasta, V.; Manganiello, V.C.; Beavo, J.A.; Rudensky, A.Y. Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 2007, 445(7129), 771-775.
[http://dx.doi.org/10.1038/nature05543] [PMID: 17220874]
[58]
Hubert, S.; Rissiek, B.; Klages, K.; Huehn, J.; Sparwasser, T.; Haag, F.; Koch-Nolte, F.; Boyer, O.; Seman, M.; Adriouch, S.; Extracellular, N.A.D. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J. Exp. Med., 2010, 207(12), 2561-2568.
[http://dx.doi.org/10.1084/jem.20091154] [PMID: 20975043]
[59]
Priyadharshini, B.; Turka, L.A. T-cell energy metabolism as a controller of cell fate in transplantation. Curr. Opin. Organ Transplant., 2015, 20(1), 21-28.
[http://dx.doi.org/10.1097/MOT.0000000000000149] [PMID: 25563988]
[60]
Charbonnier, L.M.; Cui, Y.; Stephen-Victor, E.; Harb, H.; Lopez, D.; Bleesing, J.J.; Garcia-Lloret, M.I.; Chen, K.; Ozen, A. Functional reprogramming of regulatory T cells in the absence of Foxp3. Nat. Immunol., 2019, 20(9), 1208-1219.
[http://dx.doi.org/10.1038/s41590-019-0442-]
[61]
Procaccini, C.; Carbone, F.; Di Silvestre, D.; Brambilla, F.; De Rosa, V.; Galgani, M.; Faicchia, D.; Marone, G.; Tramontano, D.; Corona, M.; Alviggi, C.; Porcellini, A.; La Cava, A.; Mauri, P.; Matarese, G. The proteomic landscape of human ex vivo regulatory and convention-al T cells reveals specific metabolic requirements. Immunity, 2016, 44(2), 406-421.
[http://dx.doi.org/10.1016/j.immuni.2016.01.028] [PMID: 26885861]
[62]
Delgoffe, G.M.; Pollizzi, K.N.; Waickman, A.T.; Heikamp, E.; Meyers, D.J.; Horton, M.R.; Xiao, B.; Worley, P.F.; Powell, J.D. The mam-malian target of rapamycin (mTOR) regulates T helper cell differentiation through the selective activation of mTORC1 and mTORC2 sig-naling. Nat. Immunol., 2011, 12(4), 295.
[http://dx.doi.org/10.1038/ni.2005] [PMID: 21358638]
[63]
Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; Rathmell, J.C. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab., 2014, 20(1), 61-72.
[http://dx.doi.org/10.1016/j.cmet.2014.05.004] [PMID: 24930970]
[64]
Cobbold, S.P.; Adams, E.; Farquhar, C.A.; Nolan, K.F.; Howie, D.; Lui, K.O.; Fairchild, P.J.; Mellor, A.L.; Ron, D.; Waldmann, H. Infec-tious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA, 2009, 106(29), 12055-12060.
[http://dx.doi.org/10.1073/pnas.0903919106] [PMID: 19567830]
[65]
Newton, R.H.; Lu, Y.; Papa, A.; Whitcher, G.H.; Kang, Y.J.; Yan, C.; Pandolfi, P.P.; Turka, L.A. Suppression of T-cell lymphomagenesis in mice requires PTEN phosphatase activity. Blood, 2015, 125(5), 852-855.
[http://dx.doi.org/10.1182/blood-2014-04-571372] [PMID: 25477498]
[66]
Finlay, D.K.; Sinclair, L.V.; Feijoo, C.; Waugh, C.M.; Hagenbeek, T.J.; Spits, H.; Cantrell, D.A. Phosphoinositide-dependent kinase 1 con-trols migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J. Exp. Med., 2009, 206(11), 2441-2454.
[http://dx.doi.org/10.1084/jem.20090219] [PMID: 19808258]
[67]
Delgoffe, G.M.; Woo, S.R.; Turnis, M.E.; Gravano, D.M.; Guy, C.; Overacre, A.E.; Bettini, M.L.; Vogel, P.; Finkelstein, D.; Bonnevier, J.; Workman, C.J.; Vignali, D.A. Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature, 2013, 501(7466), 252-256.
[http://dx.doi.org/10.1038/nature12428] [PMID: 23913274]
[68]
Michalek, R.D.; Gerriets, V.A.; Nichols, A.G.; Inoue, M.; Kazmin, D.; Chang, C.Y.; Dwyer, M.A.; Nelson, E.R.; Pollizzi, K.N.; Ilkayeva, O.; Giguere, V.; Zuercher, W.J.; Powell, J.D.; Shinohara, M.L.; McDonnell, D.P.; Rathmell, J.C. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc. Natl. Acad. Sci. USA, 2011, 108(45), 18348-18353.
[http://dx.doi.org/10.1073/pnas.1108856108] [PMID: 22042850]
[69]
Klysz, D.; Tai, X.; Robert, P.A.; Craveiro, M.; Cretenet, G.; Oburoglu, L.; Mongellaz, C.; Floess, S.; Fritz, V.; Matias, M.I.; Yong, C.; Surh, N.; Marie, J.C.; Huehn, J.; Zimmermann, V.; Kinet, S.; Dardalhon, V.; Taylor, N. Glutamine-dependent α-ketoglutarate production regu-lates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal., 2015, 8(396), ra97.
[http://dx.doi.org/10.1126/scisignal.aab2610] [PMID: 26420908]
[70]
Bertout, J.A.; Patel, S.A.; Simon, M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer, 2008, 8(12), 967-975.
[http://dx.doi.org/10.1038/nrc2540] [PMID: 18987634]
[71]
Cheng, S-C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.; Rao, N.A.; Aghajanirefah, A. mTOR-and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684.
[72]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[73]
Imtiyaz, H.Z.; Simon, M.C. Hypoxia-inducible factors as essential regulators of inflammation. Diverse Effects of Hypoxia on Tumor Pro-gression ; Springer; , 2010, pp. pp. 105-120.
[74]
Shi, L.Z.; Wang, R.; Huang, G.; Vogel, P.; Neale, G.; Green, D.R.; Chi, H. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med., 2011, 208(7), 1367-1376.
[http://dx.doi.org/10.1084/jem.20110278] [PMID: 21708926]
[75]
Dang, C.V. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle, 2010, 9(19), 3884-3886.
[http://dx.doi.org/10.4161/cc.9.19.13302] [PMID: 20948290]
[76]
Barsoum, I. B.; Smallwood, C. A.; Siemens, D. R.; Graham, C. H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res., 2013.
[77]
Firth, J.D.; Ebert, B.L.; Pugh, C.W.; Ratcliffe, P.J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A gene: similarities with the erythropoietin 3′ enhancer. Proc. Natl. Acad. Sci. USA, 1994, 91(14), 6496-6500.
[78]
Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab., 2006, 3(3), 177-185.
[http://dx.doi.org/10.1016/j.cmet.2006.02.002] [PMID: 16517405]
[79]
Neumann, A.K.; Yang, J.; Biju, M.P.; Joseph, S.K.; Johnson, R.S.; Haase, V.H.; Freedman, B.D.; Turka, L.A. Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17071-17076.
[http://dx.doi.org/10.1073/pnas.0506070102] [PMID: 16286658]
[80]
Bell, E.L.; Klimova, T.A.; Eisenbart, J.; Moraes, C.T.; Murphy, M.P.; Budinger, G.R.; Chandel, N.S. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol., 2007, 177(6), 1029-1036.
[http://dx.doi.org/10.1083/jcb.200609074] [PMID: 17562787]
[81]
Kesarwani, P.; Murali, A. K.; Al-Khami, A. A.; Mehrotra, S. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid. Redox. Signal., 2013, 18(12), 1497-1534.
[82]
Doedens, A.L.; Phan, A.T.; Stradner, M.H.; Fujimoto, J.K.; Nguyen, J.V.; Yang, E.; Johnson, R.S.; Goldrath, A.W. Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat. Immunol., 2013, 14(11), 1173-1182.
[http://dx.doi.org/10.1038/ni.2714] [PMID: 24076634]
[83]
Finlay, D.K.; Rosenzweig, E.; Sinclair, L.V.; Feijoo-Carnero, C.; Hukelmann, J.L.; Rolf, J.; Panteleyev, A.A.; Okkenhaug, K.; Cantrell, D.A. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med., 2012, 209(13), 2441-2453.
[http://dx.doi.org/10.1084/jem.20112607] [PMID: 23183047]
[84]
Tang, Y.A.; Chen, Y.F.; Bao, Y.; Mahara, S.; Yatim, S.M.J.; Oguz, G.; Lee, P.L.; Feng, M.; Cai, Y.; Tan, E.Y.; Fong, S.S. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc. Natl. Acad. Sci., 2018, 115(26), E5990-E5999.
[85]
Klaus, A.; Fathi, O.; Tatjana, T.-W.; Bruno, N.; Oskar, K. J. P.; Research, O. Expression of hypoxia-associated protein HIF-1α in follicular thyroid cancer is associated with distant metastasis. Pathol. Oncol. Res., 2018, 24(2), 289-296.
[86]
Fang, H.Y.; Hughes, R.; Murdoch, C.; Coffelt, S.B.; Biswas, S.K.; Harris, A.L.; Johnson, R.S.; Imityaz, H.Z.; Simon, M.C.; Fredlund, E.; Greten, F.R.; Rius, J.; Lewis, C.E. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages expe-riencing hypoxia. Blood, 2009, 114(4), 844-859.
[http://dx.doi.org/10.1182/blood-2008-12-195941] [PMID: 19454749]
[87]
Nizet, V.; Johnson, R.S. Interdependence of hypoxic and innate immune responses. Nat. Rev. Immunol., 2009, 9(9), 609-617.
[http://dx.doi.org/10.1038/nri2607] [PMID: 19704417]
[88]
Semenza, G.L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest., 2013, 123(9), 3664-3671.
[http://dx.doi.org/10.1172/JCI67230] [PMID: 23999440]
[89]
Clambey, E.T.; McNamee, E.N.; Westrich, J.A.; Glover, L.E.; Campbell, E.L.; Jedlicka, P.; de Zoeten, E.F.; Cambier, J.C.; Stenmark, K.R.; Colgan, S.P.; Eltzschig, H.K. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. USA, 2012, 109(41), E2784-E2793.
[http://dx.doi.org/10.1073/pnas.1202366109] [PMID: 22988108]
[90]
Facciabene, A.; Motz, G.T.; Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res., 2012, 72(9), 2162-2171.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3687] [PMID: 22549946]
[91]
Roman, J.; Ritzenthaler, J.D.; Roser-Page, S.; Sun, X.; Han, S. alpha5beta1-integrin expression is essential for tumor progression in exper-imental lung cancer. Am. J. Respir. Cell Mol. Biol., 2010, 43(6), 684-691.
[http://dx.doi.org/10.1165/rcmb.2009-0375OC] [PMID: 20081050]
[92]
Makino, Y.; Nakamura, H.; Ikeda, E.; Ohnuma, K.; Yamauchi, K.; Yabe, Y.; Poellinger, L.; Okada, Y.; Morimoto, C.; Tanaka, H. Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J. immunol., 2003, 171(12), 6534-6540.
[93]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-293.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[94]
Siska, P.J.; Rathmell, J.C. T cell metabolic fitness in anti-tumor immunity. Trends Immunol., 2015, 36(4), 257-264.
[http://dx.doi.org/10.1016/j.it.2015.02.007] [PMID: 25773310]
[95]
Rao, R.R.; Li, Q.; Odunsi, K.; Shrikant, P.A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity, 2010, 32(1), 67-78.
[http://dx.doi.org/10.1016/j.immuni.2009.10.010] [PMID: 20060330]
[96]
Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol., 2013, 13(4), 227-242.
[http://dx.doi.org/10.1038/nri3405] [PMID: 23470321]
[97]
Dan, H.C.; Ebbs, A.; Pasparakis, M.; Van Dyke, T.; Basseres, D.S.; Baldwin, A.S. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα). J. Biol. Chem., 2014, 289(36), 25227-25240.
[http://dx.doi.org/10.1074/jbc.M114.554881] [PMID: 24990947]
[98]
Morita, M.; Gravel, S.P.; Hulea, L.; Larsson, O.; Pollak, M.; St-Pierre, J.; Topisirovic, I. mTOR coordinates protein synthesis, mitochon-drial activity and proliferation. Cell Cycle, 2015, 14(4), 473-480.
[http://dx.doi.org/10.4161/15384101.2014.991572] [PMID: 25590164]
[99]
Delgoffe, G.M.; Powell, J.D. mTOR: taking cues from the immune microenvironment. Immunology, 2009, 127(4), 459-465.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03125.x] [PMID: 19604300]
[100]
Zheng, Y.; Collins, S. L.; Lutz, M. A.; Allen, A. N.; Kole, T. P.; Zarek, P. E.; Powell, J. D. A role for mammalian target of rapamycin in regulating T cell activation versus energy. J. Immunol., (Baltimore, Md.: 1950), 2007, 178(4), 2163-2170.
[101]
Delgoffe, G.M.; Kole, T.P.; Zheng, Y.; Zarek, P.E.; Matthews, K.L.; Xiao, B.; Worley, P.F.; Kozma, S.C.; Powell, J.D. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity, 2009, 30(6), 832-844.
[http://dx.doi.org/10.1016/j.immuni.2009.04.014]
[102]
Yang, K.; Shrestha, S.; Zeng, H.; Karmaus, P.W.; Neale, G.; Vogel, P.; Guertin, D.A.; Lamb, R.F.; Chi, H. T cell exit from qui-escence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity, 2013, 39(6), 1043-1056.
[http://dx.doi.org/10.1016/j.immuni.2013.09.015]
[103]
Li, M.O.; Rudensky, A.Y. T cell receptor signalling in the control of regulatory T cell differentiation and function. 2016, 16(4), 220-223.
[104]
Neama, A.F.; Looi, C.Y.; Wong, W.F. Autoimmunity; infection, multiple players in the mechanical control of t cell quiescence, Cancer, Autoimmun. Infection, 2017, 97.
[105]
Zhang, L.; Romero, P. Metabolic control of CD8+ T cell fate decisions and anti-tumor immunity. Trends Mol. Med., 2018, 24(1), 30-48.
[106]
Finlay, D.; Cantrell, D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. 2010, 1183(1), 149-157.
[107]
Liu, Y.; Zhang, D.T.; Liu, X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol., 2015, 34(1), 50-66.
[108]
Powell, J.D.; Pollizzi, K.N.; Heikamp, E.B.; Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol., 2012, 30, 39-68.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075024]
[109]
Colina, R.; Costa-Mattioli, M.; Dowling, R.J.; Jaramillo, M.; Tai, L.H.; Breitbach, C.J.; Martineau, Y.; Larsson, O.; Rong, L.; Svitkin, Y.V.; Makrigiannis, A.P. Translational control of the innate immune response through IRF-7. Nature, 2008, 452(7185), 323.
[http://dx.doi.org/10.1038/nature06730]
[110]
Venturi, V.; Masek, T.; Pospisek, M. A blood pact: the significance and implications of eif4e on lymphocytic leukemia. 2018, 67(3), 363-382.
[111]
Sinclair, L.V.; Rolf, J.; Emslie, E.; Shi, Y.B.; Taylor, P.M.; Cantrell, D.A. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. 2013, 14(5), 500.
[112]
Nakaya, M.; Xiao, Y.; Zhou, X.; Chang, J.H.; Chang, M.; Cheng, X.; Blonska, M.; Lin, X.; Sun, S.C. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. 2014, 40(5), 692-705.
[113]
Rao, R.R.; Li, Q.; Gubbels Bupp, M.R.; Shrikant, P.A. Transcription factor Foxo1 represses T-bet-mediated effector functions and pro-motes memory CD8(+) T cell differentiation. Immunity, 2012, 36(3), 374-387.
[PMID: 22425248] [http://dx.doi.org/10.1016/j.immuni.2012.01.015]
[114]
Ouyang, W.; Beckett, O.; Ma, Q.; Paik, J.H.; DePinho, R.A.; Li, M.O. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat. Immunol., 2010, 11(7), 618-627.
[http://dx.doi.org/10.1038/ni.1884] [PMID: 20467422]
[115]
Ruf, M.; Moch, H.; Schraml, P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int. J. Cancer, 2016, 139(2), 396-403.
[http://dx.doi.org/10.1002/ijc.30077] [PMID: 26945902]
[116]
Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; Li, L.; Boussio-tis, V.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 2015, 6, 6692.
[http://dx.doi.org/10.1038/ncomms7692] [PMID: 25809635]
[117]
O’Sullivan, D.; Pearce, E.L. Targeting T cell metabolism for therapy. Trends Immunol., 2015, 36(2), 71-80.
[http://dx.doi.org/10.1016/j.it.2014.12.004] [PMID: 25601541]
[118]
Villadolid, J.; Amin, A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl. Lung Cancer Res., 2015, 4(5), 560-575.
[PMID: 26629425]
[119]
Zhao, Z.; Zhang, X.; Su, L.; Xu, L.; Zheng, Y.; Sun, J. Fine tuning subsets of CD4+ T cells by low-dosage of IL-2 and a new therapeutic strategy for autoimmune diseases. Int. Immunopharmacol., 2018, 56, 269-276.
[120]
Myers, D.R.; Wheeler, B.; Roose, J.P. mTOR and other effector kinase signals that impact T cell function and activity. 2019, 291(1), 134-153.
[121]
Lee, C-F.; Lo, Y-C.; Cheng, C-H.; Furtmüller, G.J.; Oh, B.; Andrade-Oliveira, V.; Thomas, A.G.; Bowman, C.E.; Slusher, B.S.; Wolf-gang, M.J.J.C.r. Preventing allograft rejection by targeting immune metabolism. Immunol. Rev., 2015, 13(4), 760-770.
[http://dx.doi.org/10.1016/j.celrep.2015.09.036]
[122]
Berod, L.; Friedrich, C.; Nandan, A.; Freitag, J.; Hagemann, S.; Harmrolfs, K.; Sandouk, A.; Hesse, C.; Castro, C.N.; Bähre, H.; Tschirner, S.K. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med., 2014, 20(11), 1327-1333.
[http://dx.doi.org/10.1038/nm.3704]
[123]
Shi, L.Z.; Wang, R.; Huang, G.; Vogel, P.; Neale, G.; Green, D.R.; Chi, H. HIF1α–dependent glycolytic pathway orches-trates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med., 2011, 208(7), 1367-1376.
[124]
Sharma, M.D.; Shinde, R.; McGaha, T.L.; Huang, L.; Holmgaard, R.B.; Wolchok, J.D.; Mautino, M.R.; Celis, E.; Sharpe, A.H.; Francisco, L.M.; Powell, J.D. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci. Adv., 2015, 1(10), e1500845.
[http://dx.doi.org/10.1126/sciadv.1500845]
[125]
Schurich, A.; Magalhaes, I.; Mattsson, J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in sol-id tumors. Immunotherapy, 2019, 11(4), 335-345.
[http://dx.doi.org/10.2217/imt-2018-0141]
[126]
Greiner, E.F.; Guppy, M.; Brand, K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J. Biol. Chem., 1994, 269(50), 31484-31490.
[127]
Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol., 2010, 0903586.
[128]
Wofford, J.A.; Wieman, H.L.; Jacobs, S.R.; Zhao, Y.; Rathmell, J.C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood, 2008, 111(4), 2101-2111.
[129]
Blagih, J.; Coulombe, F.; Vincent, E.E.; Dupuy, F.; Galicia-Vázquez, G.; Yurchenko, E.; Raissi, T.C.; van der Windt, G.J.; Viollet, B.; Pearce, E.L.; Pelletier, J. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity, 2015, 42(1), 41-54.
[http://dx.doi.org/10.1016/j.immuni.2014.12.030]
[130]
Sommershof, A.; Scheuermann, L.; Koerner, J.; Groettrup, M. Behavior, immunity, Chronic stress suppresses anti-tumor TCD8+ responses and tumor regression following cancer immunotherapy in a mouse model of melanoma. Brain Behav. Immun., 2017, 65, 140-149.
[131]
Chang, C-H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241.
[http://dx.doi.org/10.1016/j.cell.2015.08.016] [PMID: 26321679]
[132]
Fischer, K.; Hoffmann, P.; Voelkl, S.; Meidenbauer, N.; Ammer, J.; Edinger, M.; Gottfried, E.; Schwarz, S.; Rothe, G.; Hoves, S.; Renner, K.; Timischl, B.; Mackensen, A.; Kunz-Schughart, L.; Andreesen, R.; Krause, S.W.; Kreutz, M. Inhibitory effect of tumor cell-derived lac-tic acid on human T cells. Blood, 2007, 109(9), 3812-3819.
[http://dx.doi.org/10.1182/blood-2006-07-035972] [PMID: 17255361]
[133]
Ogura, A.; Akiyoshi, T.; Yamamoto, N.; Kawachi, H.; Ishikawa, Y.; Mori, S.; Oba, K.; Nagino, M.; Fukunaga, Y.; Ueno, M. Pattern of programmed cell death-ligand 1 expression and CD8-positive T-cell infiltration before and after chemoradiotherapy in rectal cancer. Eur. J. Cancer, 2018, 91, 11-20.
[http://dx.doi.org/10.1016/j.ejca.2017.12.005]
[134]
Maciver, N.J.; Jacobs, S.R.; Wieman, H.L.; Wofford, J.A.; Coloff, J.L.; Rathmell, J.C. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol., 2008, 84(4), 949-957.
[http://dx.doi.org/10.1189/jlb.0108024] [PMID: 18577716]
[135]
Osborn, J.F.; Hobbs, S.J.; Mooster, J.L.; Khan, T.N.; Kilgore, A.M.; Harbour, J.C.; Nolz, J. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog., 2019, 15(3), e1007633.
[136]
Dang, E.V.; Barbi, J.; Yang, H-Y.; Jinasena, D.; Yu, H.; Zheng, Y.; Bordman, Z.; Fu, J.; Kim, Y.; Yen, H-R.; Luo, W.; Zeller, K.; Shimoda, L.; Topalian, S.L.; Semenza, G.L.; Dang, C.V.; Pardoll, D.M.; Pan, F. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 2011, 146(5), 772-784.
[http://dx.doi.org/10.1016/j.cell.2011.07.033] [PMID: 21871655]
[137]
Magg, T.; Wiebking, V.; Conca, R.; Krebs, S.; Arens, S.; Schmid, I.; Klein, C.; Albert, M.H.; Hauck, F. IPEX due to an ex-on 7 skipping FOXP3 mutation with autoimmune diabetes mellitus cured by selective TReg cell engraftment. Clin. Immunol., 2018, 191, 52-58.
[138]
Gallaher, Z.R.; Steward, O. Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice. Exp. Neurol., 2018, 303, 120-133.
[http://dx.doi.org/10.1016/j.expneurol.2018.02.012]
[139]
Qin, H.; Wang, L.; Feng, T.; Elson, C.O.; Niyongere, S.A.; Lee, S.J.; Reynolds, S.L.; Weaver, C.T.; Roarty, K.; Serra, R. TGF-β pro-motes Th17 cell development through inhibition of SOCS3. J. Immunol., 2009, 0801986.
[140]
Wei, X.; Ai, K.; Li, H.; Zhang, Y.; Li, K.; Yang, J. Ancestral T cells in fish require mTORC1-coupled immune signals and metabolic programming for proper activation and function. J. Immunol., 2019, 203(5), 1172-1188.
[http://dx.doi.org/10.4049/jimmunol.1900008]
[141]
Sugiura, A.; Rathmell, J.C. Metabolic barriers to T cell function in tumors. J. Immunol., 2018, 200(2), 400-407.
[http://dx.doi.org/10.4049/jimmunol.1701041] [PMID: 29311381]
[142]
Andrejeva, G.; Rathmell, J.C. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab., 2017, 26(1), 49-70.
[http://dx.doi.org/10.1016/j.cmet.2017.06.004] [PMID: 28683294]
[143]
Wang, R.; Dillon, C.P.; Shi, L.Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L.L.; Fitzgerald, P.; Chi, H.; Munger, J.; Green, D.R. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 2011, 35(6), 871-882.
[http://dx.doi.org/10.1016/j.immuni.2011.09.021] [PMID: 22195744]
[144]
Riha, P.; Rudd, C.E. CD28 co-signaling in the adaptive immune response. Self Nonself, 2010, 1(3), 231-240.
[http://dx.doi.org/10.4161/self.1.3.12968] [PMID: 21487479]
[145]
Jacobs, S.R.; Herman, C.E.; Maciver, N.J.; Wofford, J.A.; Wieman, H.L.; Hammen, J.J.; Rathmell, J.C. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol., 2008, 180(7), 4476-4486.
[http://dx.doi.org/10.4049/jimmunol.180.7.4476] [PMID: 18354169]
[146]
Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine uptake and me-tabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol., 2010, 185(2), 1037-1044.
[http://dx.doi.org/10.4049/jimmunol.0903586] [PMID: 20554958]
[147]
Palmer, C.S.; Hussain, T.; Duette, G.; Weller, T.J.; Ostrowski, M.; Sada-Ovalle, I.; Crowe, S.M. Regulators of glucose metabolism in CD4+ and CD8+ T Cells. Int. Rev. Immunol., 2016, 35(6), 477-488.
[http://dx.doi.org/10.3109/08830185.2015.1082178] [PMID: 26606199]
[148]
Chou, C.; Pinto, A.K.; Curtis, J.D.; Persaud, S.P.; Cella, M.; Lin, C-C.; Edelson, B.T.; Allen, P.M.; Colonna, M.; Pearce, E.L.; Diamond, M.S.; Egawa, T. c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nat. Immunol., 2014, 15(9), 884-893.
[http://dx.doi.org/10.1038/ni.2943] [PMID: 25029552]
[149]
Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mito-chondrial oxygen consumption. Cell Metab., 2006, 3(3), 187-197.
[http://dx.doi.org/10.1016/j.cmet.2006.01.012] [PMID: 16517406]
[150]
Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the intersections between metabolism and cancer biology. Cell, 2017, 168(4), 657-669.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[151]
Wojdylo, J. Metabolism of CD4+ Th1 and Th2 cells.,
[152]
Zheng, Y.; Delgoffe, G. M.; Meyer, C. F.; Chan, W.; Powell, J. D. Anergic T cells are metabolically anergic. J. Immunol. (Baltimore, Md.:1950), 2009, 183(10), 6095-6101.
[153]
Delgoffe, G.M.; Kole, T.P.; Zheng, Y.; Zarek, P.E.; Matthews, K.L.; Xiao, B.; Worley, P.F.; Kozma, S.C.; Powell, J.D. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity, 2009, 30(6), 832-844.
[http://dx.doi.org/10.1016/j.immuni.2009.04.014] [PMID: 19538929]
[154]
Gerriets, V.A. Glucose Metabolism in CD4+ T cell Subsets Modulates Inflammation and Autoimmunity ; (Doctoral dissertation) Duke University, 2014.
[155]
Waickman, A.T.; Powell, J.D. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev., 2012, 249(1), 43-58.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01152.x] [PMID: 22889214]
[156]
Delgoffe, G.M.; Pollizzi, K.N.; Waickman, A.T.; Heikamp, E.; Meyers, D.J.; Horton, M.R.; Xiao, B.; Worley, P.F.; Powell, J.D. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol., 2011, 12(4), 295-303.
[http://dx.doi.org/10.1038/ni.2005] [PMID: 21358638]
[157]
Cui, G.; Qin, X.; Wu, L.; Zhang, Y.; Sheng, X.; Yu, Q.; Sheng, H.; Xi, B.; Zhang, J.Z.; Zang, Y.Q. Liver X receptor (LXR) mediates nega-tive regulation of mouse and human Th17 differentiation. J. Clin. Invest., 2011, 121(2), 658-670.
[http://dx.doi.org/10.1172/JCI42974] [PMID: 21266776]
[158]
Zeng, H.; Yang, K.; Cloer, C.; Neale, G.; Vogel, P.; Chi, H. mTORC1 couple’s immune signals and metabolic programming to establish T(reg)-cell function. Nature, 2013, 499(7459), 485-490.
[http://dx.doi.org/10.1038/nature12297] [PMID: 23812589]
[159]
Ho, P-C.; Bihuniak, J.D.; Macintyre, A.N.; Staron, M.; Liu, X.; Amezquita, R.; Tsui, Y-C.; Cui, G.; Micevic, G.; Perales, J.C.; Kleinstein, S.H.; Abel, E.D.; Insogna, K.L.; Feske, S.; Locasale, J.W.; Bosenberg, M.W.; Rathmell, J.C.; Kaech, S.M. Phosphoenolpyruvate is a meta-bolic checkpoint of anti-tumor T cell responses. Cell, 2015, 162(6), 1217-1228.
[http://dx.doi.org/10.1016/j.cell.2015.08.012] [PMID: 26321681]
[160]
Lee, C-F.; Lo, Y-C.; Cheng, C-H.; Furtmüller, G.J.; Oh, B.; Andrade-Oliveira, V.; Thomas, A.G.; Bowman, C.E.; Slusher, B.S.; Wolfgang, M.J.; Brandacher, G.; Powell, J.D. Preventing allograft rejection by targeting immune metabolism. Cell Rep., 2015, 13(4), 760-770.
[http://dx.doi.org/10.1016/j.celrep.2015.09.036] [PMID: 26489460]
[161]
Dumitru, C.; Kabat, A.; Maloy, K. Metabolic adaptations of CD4+ T cells in inflammatory disease. Front. Immunol., 2018, 15(9), 540.
[162]
Mezrich, J.D.; Fechner, J.H.; Zhang, X.; Johnson, B.P.; Burlingham, W.J.; Bradfield, C.A. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol., 2010, 185(6), 3190-3198.
[http://dx.doi.org/10.4049/jimmunol.0903670] [PMID: 20720200]
[163]
Opitz, C.A.; Litzenburger, U.M.; Sahm, F.; Ott, M.; Tritschler, I.; Trump, S.; Schumacher, T.; Jestaedt, L.; Schrenk, D.; Weller, M.; Jugold, M.; Guillemin, G.J.; Miller, C.L.; Lutz, C.; Radlwimmer, B.; Lehmann, I.; von Deimling, A.; Wick, W.; Platten, M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011, 478(7368), 197-203.
[http://dx.doi.org/10.1038/nature10491] [PMID: 21976023]
[164]
van der Windt, G.J.; Everts, B.; Chang, C-H.; Curtis, J.D.; Freitas, T.C.; Amiel, E.; Pearce, E.J.; Pearce, E.L. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity, 2012, 36(1), 68-78.
[http://dx.doi.org/10.1016/j.immuni.2011.12.007] [PMID: 22206904]
[165]
Cui, G.; Staron, M.M.; Gray, S.M.; Ho, P-C.; Amezquita, R.A.; Wu, J.; Kaech, S.M. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell, 2015, 161(4), 750-761.
[http://dx.doi.org/10.1016/j.cell.2015.03.021] [PMID: 25957683]
[166]
O’Sullivan, D.; van der Windt, G.J.; Huang, S.C-C.; Curtis, J.D.; Chang, C-H.; Buck, M.D.; Qiu, J.; Smith, A.M.; Lam, W.Y.; DiPlato, L.M.; Hsu, F.F.; Birnbaum, M.J.; Pearce, E.J.; Pearce, E.L. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic pro-gramming necessary for development. Immunity, 2014, 41(1), 75-88.
[http://dx.doi.org/10.1016/j.immuni.2014.06.005] [PMID: 25001241]
[167]
Cipolletta, D.; Feuerer, M.; Li, A.; Kamei, N.; Lee, J.; Shoelson, S.E.; Benoist, C.; Mathis, D. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 2012, 486(7404), 549-553.
[http://dx.doi.org/10.1038/nature11132] [PMID: 22722857]
[168]
Burzyn, D.; Benoist, C.; Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat. Immunol., 2013, 14(10), 1007-1013.
[http://dx.doi.org/10.1038/ni.2683] [PMID: 24048122]
[169]
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[170]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabo-lites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy