Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Medicinally Privileged Sultams: Synthesis and Mechanism of Action

Author(s): Precious M. Okwuchukwu and Debasish Bandyopadhyay*

Volume 20, Issue 20, 2020

Page: [2193 - 2206] Pages: 14

DOI: 10.2174/1389557520666200719015234

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

To date, more than a thousand research articles have been published detailing various regio-, stereo-, chemo-, and enantioselective specific synthesis of the cyclic sulfonamides (sultams). Although enormous synthetic efforts were made, but bioactivities of sultams have not been widely investigated. Sultams are the sulfur analogs of lactams (cyclic amides) which demonstrate a broad range of medicinal activities and several lactam drugs are commercially available. In contrast, only a few sultam drugs are commercially available, while the presence of two oxygens on sulfur in sultam motifs can serve as a better H-bond acceptor than lactam scaffolds. One of the major objectives of this minireview is to draw appropriate attention from the medicinal/pharmaceutical chemists to conduct indepth research on sultam derivatives targeted to the development of new drugs. This article gives a brief account of the synthesis, potential bioactivity, and mechanisms of therapeutic action of four to seven-membered sultam derivatives. Based on the available literature, this is the first effort to consolidate only the medicinally privileged sultam molecules and drugs under the same umbrella. While every effort was taken to comprise all the relevant reports related to bioactive sultams, any oversight is truly unintentional.

Keywords: Sultam, bioactivity, mechanism of action, synthesis, medicinal, sulfonamide.

Graphical Abstract
[1]
Ward, R.J.; Lallemand, F.; de Witte, P.; Crichton, R.R.; Piette, J.; Tipton, K.; Hemmings, K.; Pitard, A.; Page, M.; Della Corte, L.; Taylor, D.; Dexter, D. Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro. Biochem. Pharmacol., 2011, 81(6), 743-751.
[http://dx.doi.org/10.1016/j.bcp.2010.12.030] [PMID: 21232527]
[2]
Page, M.I. Beta-sultams-mechanism of reactions and use as inhibitors of serine proteases. Acc. Chem. Res., 2004, 37(5), 297-303.
[http://dx.doi.org/10.1021/ar0200899] [PMID: 15147170]
[3]
Dahchour, A.; Lallemand, F.; Ward, R.J.; De Witte, P. Production of reactive oxygen species following acute ethanol or acetaldehyde and its reduction by acamprosate in chronically alcoholized rats. Eur. J. Pharmacol., 2005, 520(1-3), 51-58.
[http://dx.doi.org/10.1016/j.ejphar.2005.07.012] [PMID: 16135364]
[4]
Gupta, R.C.; Win, T.; Bittner, S. Taurine analogues; a new class of therapeutics: Retrospect and prospects. Curr. Med. Chem., 2005, 12(17), 2021-2039.
[http://dx.doi.org/10.2174/0929867054546582] [PMID: 16101502]
[5]
Li, Q.; Verma, I.M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734.
[http://dx.doi.org/10.1038/nri910] [PMID: 12360211]
[6]
Schuller-Levis, G.B.; Park, E. Taurine and its chloramine: Modulators of immunity. Neurochem. Res., 2004, 29(1), 117-126.
[http://dx.doi.org/10.1023/B:NERE.0000010440.37629.17 ] [PMID: 14992270]
[7]
Barua, M.; Liu, Y.; Quinn, M.R. Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: Decreased NF-kappaB activation and IkappaB kinase activity. J. Immunol., 2001, 167(4), 2275-2281.
[http://dx.doi.org/10.4049/jimmunol.167.4.2275] [PMID: 11490015]
[8]
Zhong, D.; Wu, D.; Zhang, Y.; Lu, Z.; Usman, M.; Liu, W.; Lu, X.; Liu, W.B. Synthesis of sultams and Cyclic N-Sulfonyl ketimines via iron-catalyzed intramolecular aliphatic C-H Amidation. Org. Lett., 2019, 21(15), 5808-5812.
[http://dx.doi.org/10.1021/acs.orglett.9b01732] [PMID: 31298868]
[9]
Ramesh, B.P.; Saritha, B.; Rajesh, D.; Ravindranath, L.K. Synthesis of novel sultams containing Thiazolidin- 4-one Heterocycles. J. Chem. Pharm. Res., 2016, 8, 1401-1407.
[10]
Hassan, H.M.; Farrag, A.A. Synthesis, and Phytopathological Application of some novel amino acid, dipeptide and diphenylphosphonic acid derivatives of 2-Aminopyrimidine. J. Chem. Pharm. Res., 2011, 3, 776-785.
[11]
Banjara, R.A.; Jadhav, S.K.; Bhoite, S.A. MIC for Determination of antibacterial activity of Di-2- ethylaniline phosphate. J. Chem. Pharm. Res., 2012, 4, 648-652.
[12]
Singh, R.P.; Singh, D.V.; Singh, C.R.; Tripathi, S.P.; Singh, S. Synthesis and Antifungal Activity of 2- azetidinones, 4-thiazolidinones and 5-imidazolidinones incorporating benzthiazole Moiety. J. Chem. Pharm. Res., 2012, 4, 2055-2060.
[13]
Feeny, R.M.; Le, D.N.; Parks, J.W.; Epstein, M.G.; Pagano, J.V.; Abbene, A.C.; Graham, E.B.; Farrel, J.R.; McGuire, J.R.; Zoellner, E.J.; Valente, E.J. Barklis. E.; Wood, J.L.W. Sultam Thioureas: Synthesis and antiviral activity against west nile virus. Synlett, 2012, 23, 301-305.
[14]
Csakai, A.; Smith, C.; Davis, E.; Martinko, A.; Coulup, S.; Yin, H. Saccharin derivatives as inhibitors of interferon-mediated inflammation. J. Med. Chem., 2014, 57(12), 5348-5355.
[http://dx.doi.org/10.1021/jm500409k] [PMID: 24897296]
[15]
Lewis, S.; Miller, G.; Hausman, M.; Szamborski, E. Isothioazoles I: 4-Isothiazolin-3-Ones. A General Synthesis from 3,3′-Dithiodipropionamides. J. Heterocycl. Chem., 1971, 8, 571-580.
[http://dx.doi.org/10.1002/jhet.5570080408]
[16]
Combs, A.P.; Yue, E.W.; Bower, M.; Ala, P.J.; Wayland, B.; Douty, B.; Takvorian, A.; Polam, P.; Wasserman, Z.; Zhu, W.; Crawley, M.L.; Pruitt, J.; Sparks, R.; Glass, B.; Modi, D.; McLaughlin, E.; Bostrom, L.; Li, M.; Galya, L.; Blom, K.; Hillman, M.; Gonneville, L.; Reid, B.G.; Wei, M.; Becker-Pasha, M.; Klabe, R.; Huber, R.; Li, Y.; Hollis, G.; Burn, T.C.; Wynn, R.; Liu, P.; Metcalf, B. Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J. Med. Chem., 2005, 48(21), 6544-6548.
[http://dx.doi.org/10.1021/jm0504555] [PMID: 16220970]
[17]
Porter, N.A.; Carter, R.L.; Mero, C.L.; Roepel, M.G.; Curran, D.P. Penultimate group effects in free radical telomerizations of acrylamides. Tetrahedron, 1996, 52, 4181-4198.
[http://dx.doi.org/10.1016/0040-4020(96)00077-4]
[18]
Vidal, J.A.G.; Seglar, J.F.D.; Chavez, M.T. Derivatives of Benzo[d]isothiazoles as histones deacetylase inhibitors. US20090312377 2009.
[19]
Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-gamma: An overview of signals, mechanisms and functions. J. Leukoc. Biol., 2004, 75(2), 163-189.
[http://dx.doi.org/10.1189/jlb.0603252] [PMID: 14525967]
[20]
Schindler, C.; Levy, D.E.; Decker, T. JAK-STAT signaling: From interferons to cytokines. J. Biol. Chem., 2007, 282(28), 20059-20063.
[http://dx.doi.org/10.1074/jbc.R700016200] [PMID: 17502367]
[21]
Kota, R.S.; Rutledge, J.C.; Gohil, K.; Kumar, A.; Enelow, R.I.; Ramana, C.V. Regulation of gene expression in RAW 264.7 macrophage cell line by interferon-gamma. Biochem. Biophys. Res. Commun., 2006, 342(4), 1137-1146.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.087] [PMID: 16516165]
[22]
Azevedo, C.M.; Watterson, K.R.; Wargent, E.T.; Hansen, S.V.; Hudson, B.D.; Kępczyńska, M.A.; Dunlop, J.; Shimpukade, B.; Christiansen, E.; Milligan, G.; Stocker, C.J.; Ulven, T. Non-Acidic free fatty acid receptor 4 agonists with antidiabetic activity. J. Med. Chem., 2016, 59(19), 8868-8878.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00685] [PMID: 27570890]
[23]
Arakawa, K.; Nishimura, T.; Sugimoto, Y.; Takahashi, H.; Shimamura, T. Preparation of Heteroaryloxyphenyldihydrobenzisothiazoledioxide derivatives and analogs for use as GPR120 receptor modulators Banyu Pharmaceutical, Tokyo. WO2010104195A1 2010.
[24]
Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell, 2010, 142(5), 687-698.
[http://dx.doi.org/10.1016/j.cell.2010.07.041] [PMID: 20813258]
[25]
Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Yengo, L.; Kimura, I.; Leloire, A.; Liu, N.; Iida, K.; Choquet, H.; Besnard, P.; Lecoeur, C.; Vivequin, S.; Ayukawa, K.; Takeuchi, M.; Ozawa, K.; Tauber, M.; Maffeis, C.; Morandi, A.; Buzzetti, R.; Elliott, P.; Pouta, A.; Jarvelin, M.R.; Körner, A.; Kiess, W.; Pigeyre, M.; Caiazzo, R.; Van Hul, W.; Van Gaal, L.; Horber, F.; Balkau, B.; Lévy-Marchal, C.; Rouskas, K.; Kouvatsi, A.; Hebebrand, J.; Hinney, A.; Scherag, A.; Pattou, F.; Meyre, D.; Koshimizu, T.A.; Wolowczuk, I.; Tsujimoto, G.; Froguel, P. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature, 2012, 483(7389), 350-354.
[http://dx.doi.org/10.1038/nature10798] [PMID: 22343897]
[26]
Oh, D.Y.; Walenta, E.; Akiyama, T.E.; Lagakos, W.S.; Lackey, D.; Pessentheiner, A.R.; Sasik, R.; Hah, N.; Chi, T.J.; Cox, J.M.; Powels, M.A.; Di Salvo, J.; Sinz, C.; Watkins, S.M.; Armando, A.M.; Chung, H.; Evans, R.M.; Quehenberger, O.; McNelis, J.; Bogner-Strauss, J.G.; Olefsky, J.M.A.A. Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med., 2014, 20(8), 942-947.
[http://dx.doi.org/10.1038/nm.3614] [PMID: 24997608]
[27]
Elghamry, I.; Youssef, M.M.; Al-Omair, M.A.; Elsawy, H. Synthesis, antimicrobial, DNA cleavage and antioxidant activities of tricyclic sultams derived from saccharin. Eur. J. Med. Chem., 2017, 139, 107-113.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.079] [PMID: 28800451]
[28]
Elghamry, I.; Doepp, D.; Henkel, G. Photoisomerization of Sultams Derived from Saccharin; Part 3: [1] [2] dihydro[1]benzothieno[3,2-b]pyrrole 4,4-dioxides from dihydropyrrolo[1,2-b][1,2]benzi-sothiazole 5,5-dioxides. Synthesis, 2001, 8, 1223-1227.
[29]
Blanco, M.; Perillo, I.A. Schapira, C.B. Alkoxide-induced Reactions of N-substituted Saccharins. Synthesis of 1,2-benzothiazocine 1,1-dioxide and 2,3-dihydropyrrolo[1,2-b]-[1,2]benzisothiazole 5,5-dioxide Derivatives. J. Heterocycl. Chem., 1995, 32, 145.
[http://dx.doi.org/10.1002/jhet.5570320124]
[30]
Atobe, M.; Maekawara, N.; Kawanishi, M.; Suzuki, H.; Tanaka, E.; Miyoshi, S. Design, synthesis and SAR investigation of thienosultam derivatives as ADAMTS-5 (aggrecanase-2) inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(7), 2111-2116.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.120] [PMID: 23453072]
[31]
(a)Mankin, H.J.; Lippiello, L. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J. Bone Joint Surg. Am., 1970, 52(3), 424-434.
[http://dx.doi.org/10.2106/00004623-197052030-00002] [PMID: 4246573]
(b)Buckwalter, J.A.; Martin, J.A. Osteoarthritis. Adv. Drug Deliv. Rev., 2006, 58(2), 150-167.
[http://dx.doi.org/10.1016/j.addr.2006.01.006] [PMID: 16530881]
[32]
Wieland, H.A.; Michaelis, M.; Kirschbaum, B.J.; Rudolphi, K.A. Osteoarthritis - an untreatable disease? Nat. Rev. Drug Discov., 2005, 4(4), 331-344.
[http://dx.doi.org/10.1038/nrd1693] [PMID: 15803196]
[33]
Nagase, H.; Kashiwagi, M. Aggrecanases and cartilage matrix degradation. Arthritis Res. Ther., 2003, 5(2), 94-103.
[http://dx.doi.org/10.1186/ar630] [PMID: 12718749]
[34]
Little, C.B.; Flannery, C.R.; Hughes, C.E.; Mort, J.S.; Roughley, P.J.; Dent, C.; Caterson, B. Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro. Biochem. J., 1999, 344(Pt 1), 61-68.
[http://dx.doi.org/10.1042/bj3440061] [PMID: 10548534]
[35]
Lark, M.W.; Gordy, J.T.; Weidner, J.R.; Ayala, J.; Kimura, J.H.; Williams, H.R.; Mumford, R.A.; Flannery, C.R.; Carlson, S.S.; Iwata, M.; Sandy, J.D. Cell-mediated catabolism of aggrecan. Evidence that cleavage at the “aggrecanase” site (Glu373-Ala374) is a primary event in proteolysis of the interglobular domain. J. Biol. Chem., 1995, 270(6), 2550-2556.
[http://dx.doi.org/10.1074/jbc.270.6.2550] [PMID: 7852317]
[36]
Abbaszade, I.; Liu, R.Q.; Yang, F.; Rosenfeld, S.A.; Ross, O.H.; Link, J.R.; Ellis, D.M.; Tortorella, M.D.; Pratta, M.A.; Hollis, J.M.; Wynn, R.; Duke, J.L.; George, H.J.; Hillman, M.C., Jr; Murphy, K.; Wiswall, B.H.; Copeland, R.A.; Decicco, C.P.; Bruckner, R.; Nagase, H.; Itoh, Y.; Newton, R.C.; Magolda, R.L.; Trzaskos, J.M.; Burn, T.C.J. Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem., 1999, 274(33), 23443-23450.
[http://dx.doi.org/10.1074/jbc.274.33.23443] [PMID: 10438522]
[37]
Tumey, L.N.; Robarge, M.J.; Gleason, E.; Song, J.; Murphy, S.M.; Ekema, G.; Doucette, C.; Hanniford, D.; Palmer, M.; Pawlowski, G.; Danzig, J.; Loftus, M.; Hunady, K.; Sherf, B.; Mays, R.W.; Stricker-Krongrad, A.; Brunden, K.R.; Bennani, Y.L.; Harrington, J.J. 3-Indolyl sultams as selective CRTh2 antagonists. Bioorg. Med. Chem. Lett., 2010, 20(11), 3287-3290.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.046] [PMID: 20457519]
[38]
Liu, M.C.; Bleecker, E.R.; Lichtenstein, L.M.; Kagey-Sobotka, A.; Niv, Y.; McLemore, T.L.; Permutt, S.; Proud, D.; Hubbard, W.C. Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am. Rev. Respir. Dis., 1990, 142(1), 126-132.
[http://dx.doi.org/10.1164/ajrccm/142.1.126] [PMID: 2368958]
[39]
Cosmi, L.; Annunziato, F.; Maggi, E.; Romagnani, S.; Manetti, R. Chemoattractant receptors expressed on type 2 T cells and their role in disease. Int. Arch. Allergy Immunol., 2001, 125(4), 273-279.
[http://dx.doi.org/10.1159/000053827] [PMID: 11574748]
[40]
Nagata, K.; Hirai, H.; Tanaka, K.; Ogawa, K.; Aso, T.; Sugamura, K.; Nakamura, M.; Takano, S. CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett., 1999, 459(2), 195-199.
[http://dx.doi.org/10.1016/S0014-5793(99)01251-X ] [PMID: 10518017]
[41]
Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.; Takamori, Y.; Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.; Nagata, K. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J. Exp. Med., 2001, 193(2), 255-261.
[http://dx.doi.org/10.1084/jem.193.2.255] [PMID: 11208866]
[42]
Shan, W.; Balog, A.; Nation, A.; Zhu, X.; Chen, J.; Cvijic, M.E.; Geng, J.; Rizzo, C.A.; Spires, T., Jr; Attar, R.M.; Obermeier, M.; Traeger, S.; Dai, J.; Zhang, Y.; Galella, M.; Trainor, G.; Vite, G.D.; Gavai, A.V. [2,2,1]-Bicyclic sultams as potent androgen receptor antagonists. Bioorg. Med. Chem. Lett., 2016, 26, 5707-5711.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.059] [PMID: 27836399]
[43]
Ghafoor, A.; Jemal, A.; Cokkinides, V.; Cardinez, C.; Murray, T.; Samuels, A.; Thun, M.J. Cancer statistics for african americans. CA Cancer J. Clin., 2002, 52(6), 326-341.
[http://dx.doi.org/10.3322/canjclin.52.6.326] [PMID: 12469762]
[44]
Crawford, E.D.; DeAntoni, E.P. Current status of combined androgen blockade: Optimal therapy for advanced prostate cancer. J. Clin. Endocrinol. Metab., 1995, 80(4), 1062-1066.
[http://dx.doi.org/10.1210/jcem.80.4.7714067] [PMID: 7714067]
[45]
Gouda, M.A.; Hussein, B.H.M. El-said Sheriff, Y.; Synthesis and medicinal importance of oxicams and their analogues. Synth. Commun., 2017, 47, 1709-1736.
[http://dx.doi.org/10.1080/00397911.2017.1350983]
[46]
Fauber, B.P.; René, O.; Deng, Y.; DeVoss, J.; Eidenschenk, C.; Everett, C.; Ganguli, A.; Gobbi, A.; Hawkins, J.; Johnson, A.R.; La, H.; Lesch, J.; Lockey, P.; Norman, M.; Ouyang, W.; Summerhill, S.; Wong, H. Discovery of 1-4-[3-Fluoro-4-((3S, 6R)-3-Methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl-ethanone (GNE-3500): A potent, selective, and orally bioavailable Retinoic Acid Receptor-Related Orphan Receptor C (RORc or RORγ). Inverse Agonist. J. Med. Chem., 2015, 58, 5308-5322.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00597] [PMID: 26061388]
[47]
Hirose, T.; Smith, R.J.; Jetten, A.M. The third member of ROR/RZR Orphan Receptor subfamily that is highly expressed in skeletal muscle. Biochem. Biophys. Res. Commun., 1994, 205, 1976-1983.
[48]
Ivanov, I.I.; McKenzie, B.S.; Zhou, L.; Tadokoro, C.E.; Lepelley, A.; Lafaille, J.J.; Cua, D.J.; Littman, D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126(6), 1121-1133.
[http://dx.doi.org/10.1016/j.cell.2006.07.035] [PMID: 16990136]
[49]
Rich, P.; Sigurgeirsson, B.; Thaci, D.; Ortonne, J-P.; Paul, C.; Schopf, R.E.; Morita, A.; Roseau, K.; Harfst, E.; Guettner, A.; Machacek, M.; Papavassilis, C. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br. J. Dermatol., 2013, 168(2), 402-411.
[http://dx.doi.org/10.1111/bjd.12070] [PMID: 23362969]
[50]
Chabaud, M.; Durand, J.M.; Buchs, N.; Fossiez, F.; Page, G.; Frappart, L.; Miossec, P. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum., 1999, 42(5), 963-970.
[http://dx.doi.org/10.1002/1529-0131(199905)42:5<963:AID-ANR15>3.0.CO;2-E] [PMID: 10323452]
[51]
Lock, C.; Hermans, G.; Pedotti, R.; Brendolan, A.; Schadt, E.; Garren, H.; Langer-Gould, A.; Strober, S.; Cannella, B.; Allard, J.; Klonowski, P.; Austin, A.; Lad, N.; Kaminski, N.; Galli, S.J.; Oksenberg, J.R.; Raine, C.S.; Heller, R.; Steinman, L. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med., 2002, 8(5), 500-508.
[http://dx.doi.org/10.1038/nm0502-500] [PMID: 11984595]
[52]
Fujino, S.; Andoh, A.; Bamba, S.; Ogawa, A.; Hata, K.; Araki, Y.; Bamba, T.; Fujiyama, Y. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003, 52(1), 65-70.
[http://dx.doi.org/10.1136/gut.52.1.65] [PMID: 12477762]
[53]
Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.; Baumgartner, S. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med., 2012, 366(13), 1181-1189.
[http://dx.doi.org/10.1056/NEJMoa1109017] [PMID: 22455412]
[54]
Leonardi, C.; Matheson, R.; Zachariae, C.; Cameron, G.; Li, L.; Edson-Heredia, E.; Braun, D.; Banerjee, S. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med., 2012, 366(13), 1190-1199.
[http://dx.doi.org/10.1056/NEJMoa1109997] [PMID: 22455413]
[55]
Kellner, H. Targeting interleukin-17 in patients with active rheumatoid arthritis: Rationale and clinical potential. Ther. Adv. Musculoskelet. Dis., 2013, 5(3), 141-152.
[http://dx.doi.org/10.1177/1759720X13485328] [PMID: 23858337]
[56]
Baeten, D.; Baraliakos, X.; Braun, J.; Sieper, J.; Emery, P.; van der Heijde, D.; McInnes, I.; van Laar, J.M.; Landewé, R.; Wordsworth, P.; Wollenhaupt, J.; Kellner, H.; Paramarta, J.; Wei, J.; Brachat, A.; Bek, S.; Laurent, D.; Li, Y.; Wang, Y.A.; Bertolino, A.P.; Gsteiger, S.; Wright, A.M.; Hueber, W. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: A randomised, double-blind, placebo-controlled trial. Lancet, 2013, 382(9906), 1705-1713.
[http://dx.doi.org/10.1016/S0140-6736(13)61134-4] [PMID: 24035250]
[57]
Hueber, W.; Patel, D.D.; Dryja, T.; Wright, A.M.; Koroleva, I.; Bruin, G.; Antoni, C.; Draelos, Z.; Gold, M.H.; Durez, P.; Tak, P.P.; Gomez-Reino, J.J.; Foster, C.S.; Kim, R.Y.; Samson, C.M.; Falk, N.S.; Chu, D.S.; Callanan, D.; Nguyen, Q.D.; Rose, K.; Haider, A.; Di Padova, F. Psoriasis Study Group. Rheumatoid Arthritis Study Group; Uveitis Study Group. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med., 2010, 2(52)52ra72
[http://dx.doi.org/10.1126/scitranslmed.3001107] [PMID: 20926833]
[58]
Patel, C.; Bassin, J.P.; Scott, M.; Flye, J.; Hunter, A.P.; Martin, L.; Goyal, M. Synthesis and antimicrobial activity of 1,2-benzothiazine derivatives. Molecules, 2016, 21(7), 1-16.
[http://dx.doi.org/10.3390/molecules21070861] [PMID: 27376253]
[59]
Bassin, J.P.; Frearson, M.J.; Al-Nawwar, K. Novel synthesis of a 2H-1,2-benzothiazine-1,1-dioxide derivative. Synth. Commun., 2000, 30, 3693-3701.
[http://dx.doi.org/10.1080/00397910008086996]
[60]
Tomar, V.; Bhattacharjee, G. Kamaluddin; Rajakumar, S.; Srivastava, K.; Puri, S.K. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur. J. Med. Chem., 2010, 45(2), 745-751.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.022] [PMID: 20022412]
[61]
Chikhalia, K.H.; Patel, M.J.; Vashi, D.B. Design, synthesis and evaluation of novel quinolyl chalcones as antibacterial agents. ARKIVOC, 2008, 13, 189-197.
[62]
Ahmad, N.; Zia-ur-Rehman, M.; Siddiqui, H.L.; Ullah, M.F.; Parvez, M. Microwave assisted synthesis and structure-activity relationship of 4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides as anti-microbial agents. Eur. J. Med. Chem., 2011, 46(6), 2368-2377.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.020 ] [PMID: 21470723]
[63]
Espinel-Ingroff, A. Comparison of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi. J. Clin. Microbiol., 2001, 39(4), 1360-1367.
[http://dx.doi.org/10.1128/JCM.39.4.1360-1367.2001 ] [PMID: 11283057]
[64]
Ahmad, M.; Aslam, S.; Bukhari, M.H.; Montero, C.; Detorio, M.; Parvez, M.; Schinazi, R.F. Synthesis of Novel Pyrazolobenzothiazine 5,5-dioxide Derivatives as Potent Anti-HIV-1 agents. Med. Chem. Res., 2014, 23, 1309-1319.
[http://dx.doi.org/10.1007/s00044-013-0718-x]
[65]
Lad, N.P.; Kulkarni, S.; Sharma, R.; Mascarenhas, M.; Kulkarni, M.R.; Pandit, S.S. Piperlongumine derived cyclic sulfonamides (sultams): Synthesis and in vitro exploration for therapeutic potential against HeLa cancer cell lines. Eur. J. Med. Chem., 2017, 126, 870-878.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.022 ] [PMID: 27987486]
[66]
Kumar, S.; Sharma, R.; Mahajan, V.S.; Sawargave, P. Phenyl alkanoic acid derivatives as GPR Agonists WO2013128378A1, 2013.
[67]
Rogachev, V.O.; Metz, P. Thermal and high pressure intramolecular Diels-Alder reaction of vinylsulfonamides. Nat. Protoc., 2006, 1(6), 3076-3087.
[http://dx.doi.org/10.1038/nprot.2006.463] [PMID: 17406571]
[68]
Rho, H.S.; Baek, D.H.; Kim, I.; Chang, S. A Convenient method for the Preparation of Alkanolamides. Bull. Korean Chem. Soc., 2006, 27, 584-586.
[http://dx.doi.org/10.5012/bkcs.2006.27.4.584]
[69]
Shan, Y.Y.; Zhang, C.M.; Tang, L.Q.; Liu, Z.P.; Bearss, N.R.; Sarver, J.G.; Luniwal, A.; Erhardt, P.W. Syntheses of 2,3-diarylated 2H-benzo[e][1,2]thiazine 1,1-dioxides and their 3,4-dihydro derivatives, and assessment of their inhibitory activity against MCF-7 breast cancer cells. Med. Chem., 2011, 7(6), 561-571.
[http://dx.doi.org/10.2174/157340611797928307] [PMID: 22313296]
[70]
Bhatti, H.A.; Khatoon, M.; Al-Rashida, M.; Bano, H.; Iqbal, N. Zaib-Un-Nisa, Yousuf, S.; Khan, K.M.; Hameed, A.; Iqbal, J. Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors. Bioorg. Chem., 2017, 71, 10-18.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.008] [PMID: 28139246]
[71]
Coleman, J.E. Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct., 1992, 21, 441-483.
[http://dx.doi.org/10.1146/annurev.bb.21.060192.002301] [PMID: 1525473]
[72]
al-Rashida, M.; Iqbal, J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med. Res. Rev., 2014, 34(4), 703-743.
[http://dx.doi.org/10.1002/med.21302] [PMID: 24115166]
[73]
Stec, B.; Holtz, K.M.; Kantrowitz, E.R. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J. Mol. Biol., 2000, 299(5), 1303-1311.
[http://dx.doi.org/10.1006/jmbi.2000.3799] [PMID: 10873454]
[74]
Millán, J.L. Alkaline Phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal., 2006, 2(2), 335-341.
[http://dx.doi.org/10.1007/s11302-005-5435-6] [PMID: 18404473]
[75]
al-Rashida, M.; Iqbal, J. Inhibition of alkaline phosphatase: An emerging new drug target. Mini Rev. Med. Chem., 2015, 15(1), 41-51.
[http://dx.doi.org/10.2174/1389557515666150219113205] [PMID: 25694083]
[76]
Hayes, C.W.; Conway, W.F. Calcium hydroxyapatite deposition disease. Radiographics, 1990, 10(6), 1031-1048.
[http://dx.doi.org/10.1148/radiographics.10.6.2175444] [PMID: 2175444]
[77]
Lei, K.; Hua, X.W.; Tao, Y.Y.; Liu, Y.; Liu, N.; Ma, Y.; Li, Y.H.; Xu, X.H.; Kong, C.H. Discovery of (2-benzoylethen-1-ol)-containing 1,2-benzothiazine derivatives as novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibiting-based herbicide lead compounds. Bioorg. Med. Chem., 2016, 24(2), 92-103.
[http://dx.doi.org/10.1016/j.bmc.2015.11.032] [PMID: 26682702]
[78]
Ryle, M.J.; Hausinger, R.P. Non-heme iron oxygenases. Curr. Opin. Chem. Biol., 2002, 6(2), 193-201.
[http://dx.doi.org/10.1016/S1367-5931(02)00302-2 ] [PMID: 12039004]
[79]
Kovaleva, E.G.; Lipscomb, J.D. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat. Chem. Biol., 2008, 4(3), 186-193.
[http://dx.doi.org/10.1038/nchembio.71] [PMID: 18277980]
[80]
Wu, C.S.; Huang, J.L.; Sun, Y.S.; Yang, D.Y. Mode of action of 4-hydroxyphenylpyruvate dioxygenase inhibition by triketone-type inhibitors. J. Med. Chem., 2002, 45(11), 2222-2228.
[http://dx.doi.org/10.1021/jm010568y] [PMID: 12014960]
[81]
Norris, S.R.; Barrette, T.R.; DellaPenna, D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell, 1995, 7(12), 2139-2149.
[PMID: 8718624]
[82]
Kiefer, L.; Gorojankina, T.; Dauban, P.; Faure, H.; Ruat, M.; Dodd, R.H. Design and synthesis of cyclic sulfonamides as new calcium sensing receptor agonists. Bioorg. Med. Chem. Lett., 2010, 20, 7483-7487.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.006] [PMID: 21041081]
[83]
Brown, E.M.; Gamba, G.; Riccardi, D.; Lombardi, M.; Butters, R.; Kifor, O.; Sun, A.; Hediger, M.A.; Lytton, J.; Hebert, S.C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature, 1993, 366(6455), 575-580.
[http://dx.doi.org/10.1038/366575a0] [PMID: 8255296]
[84]
Brown, E.M. The calcium-sensing receptor: Physiology, pathophysiology and CaR-based therapeutics. Subcell. Biochem., 2007, 45, 139-167.
[http://dx.doi.org/10.1007/978-1-4020-6191-2_6] [PMID: 18193637]
[85]
Ruat, M.; Molliver, M.E.; Snowman, A.M.; Snyder, S.H. Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc. Natl. Acad. Sci. USA, 1995, 92(8), 3161-3165.
[http://dx.doi.org/10.1073/pnas.92.8.3161] [PMID: 7724534]
[86]
Ferry, S.; Traiffort, E.; Stinnakre, J.; Ruat, M. Developmental and adult expression of rat calcium-sensing receptor transcripts in neurons and oligodendrocytes. Eur. J. Neurosci., 2000, 12(3), 872-884.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00980.x ] [PMID: 10762317]
[87]
Wüthrich, R.P.; Martin, D.; Bilezikian, J.P. The role of calcimimetics in the treatment of hyperparathyroidism. Eur. J. Clin. Invest., 2007, 37(12), 915-922.
[http://dx.doi.org/10.1111/j.1365-2362.2007.01874.x ] [PMID: 18036025]
[88]
Harikrishna, S.; Ravindranath, L.K. Synthesis, characterization and antimicrobial activities of N-substituted indoline derivatives of sultams. Pharma Chem., 2015, 7, 62-67.
[89]
Harikrishna, S.; Ravindranath, L.K. Synthesis, characterization and biological studies of 1,3, 4-Oxadiazole derivatives of sultams. World J. Pharm. Sci., 2014, 4, 1284-1293.
[90]
Harikrishna, S.; Ravindranath, L.K. Synthesis, characterization and biological studies of thiadiazepine derivatives of sultams. J. Applicable. Chem., 2015, 4, 99-109.
[91]
René, O.; Fauber, B.P.; Barnard, A.; Chapman, K.; Deng, Y.; Eidenschenk, C.; Everett, C.; Gobbi, A.; Johnson, A.R.; La, H.; Norman, M.; Salmon, G.; Summerhill, S.; Wong, H. Discovery of oxa-sultams as RORc inverse agonists showing reduced lipophilicity, improved selectivity and favorable ADME properties. Bioorg. Med. Chem. Lett., 2016, 26(18), 4455-4461.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.081] [PMID: 27524313]
[92]
Majumdar, K.C.; Mondal, S. Recent developments in the synthesis of fused sultams. Chem. Rev., 2011, 111(12), 7749-7773.
[http://dx.doi.org/10.1021/cr1003776] [PMID: 21894896]
[93]
Debnath, S.; Mondal, S. Sultams: Recent syntheses and application. Eur. J. Org. Chem., 2018, 933-956.
[http://dx.doi.org/10.1002/ejoc.201701491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy