Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Application of a Novel Metallomics Tool to Probe the Fate of Metal-Based Anticancer Drugs in Blood Plasma: Potential, Challenges and Prospects

Author(s): Sophia Sarpong-Kumankomah and Jürgen Gailer*

Volume 21, Issue 1, 2021

Published on: 27 June, 2020

Page: [48 - 58] Pages: 11

DOI: 10.2174/1568026620666200628023540

Price: $65

conference banner
Abstract

Although metallodrugs are used to treat a variety of human disorders and exhibit a remarkable diversity of therapeutic properties, they constitute only a tiny minority of all medicinal drugs that are currently on the market. This undesirable situation must be partially attributed to our general lack of understanding the fate of metallodrugs in the extremely ligand-rich environment of the bloodstream. The challenge of gaining insight into these bioinorganic processes can be overcome by the application of ‘metallomics tools’, which involve the analysis of biological fluids (e.g., blood plasma) with a separation method in conjunction with multi-element specific detectors. To this end, we have developed a metallomics tool that is based on size-exclusion chromatography (SEC) hyphenated to an inductively coupled plasma atomic emission spectrometer (ICP-AES). After the successful application of SEC-ICPAES to analyze plasma for endogenous copper, iron and zinc-metalloproteins, it was subsequently applied to probe the metabolism of a variety of metal-based anticancer drugs in plasma. The versatility of this metallomics tool is exemplified by the fact that it has provided insight into the metabolism of individual Pt-based drugs, the modulation of the metabolism of cisplatin by sulfur-containing compounds, the metabolism of two metal-based drugs that contain different metals as well as a bimetallic anticancer drug, which contained two different metals. After adding pharmacologically relevant doses of metallodrugs to plasma, the temporal analysis of aliquots by SEC-ICP-AES allows to observe metal-protein adducts, metallodrug-derived degradation products and the parent metallodrug(s). This unique capability allows to obtain comprehensive insight into the fate of metal-based drugs in plasma and can be extended to in vivo studies. Thus, the application of this metallomics tool to probe the fate of novel metalcomplexes that exert the desired biological activity in plasma has the potential to advance more of these to animal/preclinical studies to fully explore the potential that metallodrugs inherently offer.

Keywords: Metal-based drugs, Combination therapy, Bimetallic complexes, Biotransformation, Safety, Side-effects, Metallomics, Drug development.

Graphical Abstract
[1]
Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; Hruban, R.H.; Wolfgang, C.L.; Goggins, M.G.; Dal Molin, M.; Wang, T-L.; Roden, R.; Klein, A.P.; Ptak, J.; Dobbyn, L.; Schaefer, J.; Silliman, N.; Popoli, M.; Vogelstein, J.T.; Browne, J.D.; Schoen, R.E.; Brand, R.E.; Tie, J.; Gibbs, P.; Wong, H-L.; Mansfield, A.S.; Jen, J.; Hanash, S.M.; Falconi, M.; Allen, P.J.; Zhou, S.; Bettegowda, C.; Diaz, L.A.J., Jr; Tomasetti, C.; Kinzler, K.W.; Vogelstein, B.; Lennon, A.M.; Papadopoulos, N. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359(6378), 926-930.
[http://dx.doi.org/10.1126/science.aar3247] [PMID: 29348365]
[2]
Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem. Soc. Rev., 2009, 38(2), 391-401.
[http://dx.doi.org/10.1039/B707077M] [PMID: 19169456]
[3]
Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol., 2006, 24(14), 2137-2150.
[http://dx.doi.org/10.1200/JCO.2005.05.2308] [PMID: 16682732]
[4]
Poirier, A.E.; Ruan, Y.; Walter, S.D.; Franco, E.L.; Villeneuve, P.J.; King, W.D.; Volesky, K.D.; O’Sullivan, D.E.; Friedenreich, C.M.; Brenner, D.R. ComPARe Study Team. The future burden of cancer in Canada: Long-term cancer incidence projections 2013-2042. Cancer Epidemiol., 2019, 59, 199-207.
[http://dx.doi.org/10.1016/j.canep.2019.02.011] [PMID: 30831552]
[5]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[6]
Scott, A.M.; Wolchok, J.D.; Old, L.J. Antibody therapy of cancer. Nat. Rev. Cancer, 2012, 12(4), 278-287.
[http://dx.doi.org/10.1038/nrc3236] [PMID: 22437872]
[7]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[8]
Wang, X.; Guo, Z. Targeting and delivery of platinum-based anticancer drugs. Chem. Soc. Rev., 2013, 42(1), 202-224.
[http://dx.doi.org/10.1039/C2CS35259A] [PMID: 23042411]
[9]
Barry, N.P.E.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun. (Camb.), 2013, 49(45), 5106-5131.
[http://dx.doi.org/10.1039/c3cc41143e] [PMID: 23636600]
[10]
Plumb, J.A.; Venugopal, B.; Oun, R.; Gomez-Roman, N.; Kawazoe, Y.; Venkataramanan, N.S.; Wheate, N.J. Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics, 2012, 4(6), 561-567.
[http://dx.doi.org/10.1039/c2mt20054f] [PMID: 22610518]
[11]
Pang, C.T.; Ammit, A.J.; Ong, Y.Q.E.; Wheate, N.J. para-Sulfonatocalix[4]arene and polyamidoamine dendrimer nanocomplexes as delivery vehicles for a novel platinum anticancer agent. J. Inorg. Biochem., 2017, 176, 1-7.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.002] [PMID: 28810174]
[12]
Kratz, F.; Müller, I.A.; Ryppa, C.; Warnecke, A. Prodrug strategies in anticancer chemotherapy. ChemMedChem, 2008, 3(1), 20-53.
[http://dx.doi.org/10.1002/cmdc.200700159] [PMID: 17963208]
[13]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[14]
Gailer, J. Improving the safety of metal-based drugs by tuning their metabolism with chemoprotective agents. J. Inorg. Biochem., 2018, 179, 154-157.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.008] [PMID: 29137811]
[15]
Morris, T.T.; Ruan, Y.; Lewis, V.A.; Narendran, A.; Gailer, J. Fortification of blood plasma from cancer patients with human serum albumin decreases the concentration of cisplatin-derived toxic hydrolysis products in vitro. Metallomics, 2014, 6(11), 2034-2041.
[http://dx.doi.org/10.1039/C4MT00220B] [PMID: 25255207]
[16]
Hambley, T.W. Chemistry. Metal-based therapeutics. Science, 2007, 318(5855), 1392-1393.
[http://dx.doi.org/10.1126/science.1150504] [PMID: 18048674]
[17]
Lovejoy, K.S.; Lippard, S.J. Non-traditional platinum compounds for improved accumulation, oral bioavailability, and tumor targeting. Dalton Trans., 2009, (48), 10651-10659.
[http://dx.doi.org/10.1039/b913896j] [PMID: 20023892]
[18]
Hambley, T.W. Transporter and protease mediated delivery of platinum complexes for precision oncology. J. Biol. Inorg. Chem., 2019, 24(4), 457-466.
[http://dx.doi.org/10.1007/s00775-019-01660-7] [PMID: 31093745]
[19]
Hambley, T.W. Developing new metal-based therapeutics: challenges and opportunities. Dalton Trans., 2007, (43), 4929-4937.
[http://dx.doi.org/10.1039/b706075k] [PMID: 17992277]
[20]
Moretto, J.; Chauffert, B.; Ghiringhelli, F.; Aldrich-Wright, J.R.; Bouyer, F. Discrepancy between in vitro and in vivo antitumor effect of a new platinum(II) metallointercalator. Invest. New Drugs, 2011, 29(6), 1164-1176.
[http://dx.doi.org/10.1007/s10637-010-9461-z] [PMID: 20535526]
[21]
Wang, Y.; Li, H.; Sun, H. Metalloproteomics for unveiling the mechanism of action of metallodrugs. Inorg. Chem., 2019, 58(20), 13673-13685.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01199] [PMID: 31298530]
[22]
Casini, A.; Reedijk, J. Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry? Chem. Sci. (Camb.), 2012, 3, 3135-3144.
[http://dx.doi.org/10.1039/c2sc20627g]
[23]
Groessl, M.; Dyson, P.J. Bioanalytical and biophysical techniques for the elucidation of the mode of action of metal-based drugs. Curr. Top. Med. Chem., 2011, 11(21), 2632-2646.
[http://dx.doi.org/10.2174/156802611798040705] [PMID: 22039868]
[24]
Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des. Devel. Ther., 2017, 11, 599-616.
[http://dx.doi.org/10.2147/DDDT.S119488] [PMID: 28424538]
[25]
Mandal, R.; Kalke, R.; Li, X-F. Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group. Chem. Res. Toxicol., 2004, 17(10), 1391-1397.
[http://dx.doi.org/10.1021/tx049868j] [PMID: 15487901]
[26]
Ivanov, A.I.; Christodoulou, J.; Parkinson, J.A.; Barnham, K.J.; Tucker, A.; Woodrow, J.; Sadler, P.J. Cisplatin binding sites on human albumin. J. Biol. Chem., 1998, 273(24), 14721-14730.
[http://dx.doi.org/10.1074/jbc.273.24.14721] [PMID: 9614070]
[27]
Mayr, J.; Heffeter, P.; Groza, D.; Galvez, L.; Koellensperger, G.; Roller, A.; Alte, B.; Haider, M.; Berger, W. kowol, C. R.; Keppler, B. K., An albumin-based tumor targeted oxaliplatin prodrug with distinctlyimproved anticancer activity in vivo. Chem. Sci. (Camb.), 2017, 8, 2241-2250.
[http://dx.doi.org/10.1039/C6SC03862J] [PMID: 28507680]
[28]
Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem., 2009, 78, 857-902.
[http://dx.doi.org/10.1146/annurev.biochem.78.081307.110540] [PMID: 19317650]
[29]
Sooriyaarachchi, M. Ameliorating the toxic side-effects of cisplatin by systematically modulating its metabolism in human plasma with chemoprotective agents. PhD Thesis, University of Calgary: Calgary,, 2015.
[30]
Sooriyaarachchi, M.; Narendran, A.; Gailer, J. Comparative hydrolysis and plasma protein binding of cis-platin and carboplatin in human plasma in vitro. Metallomics, 2011, 3(1), 49-55.
[http://dx.doi.org/10.1039/C0MT00058B] [PMID: 21135941]
[31]
Hinderling, P.H. Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol. Rev., 1997, 49(3), 279-295.
[PMID: 9311024]
[32]
Videhult, P.; Laurell, G.; Wallin, I.; Ehrsson, H. Kinetics of Cisplatin and its monohydrated complex with sulfur-containing compounds designed for local otoprotective administration. Exp. Biol. Med. (Maywood), 2006, 231(10), 1638-1645.
[http://dx.doi.org/10.1177/153537020623101009] [PMID: 17060685]
[33]
van den Berg, J.H.; Beijnen, J.H.; Balm, A.J.M.; Schellens, J.H.M. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev., 2006, 32(5), 390-397.
[http://dx.doi.org/10.1016/j.ctrv.2006.04.011] [PMID: 16781082]
[34]
Timerbaev, A.R.; Hartinger, C.G.; Aleksenko, S.S.; Keppler, B.K. Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem. Rev., 2006, 106(6), 2224-2248.
[http://dx.doi.org/10.1021/cr040704h] [PMID: 16771448]
[35]
Sun, X.; Tsang, C-N.; Sun, H. Identification and characteristics of metallodrug binding proteins by (metallo)proteomics. Metallomics, 2009, 1, 25-31.
[http://dx.doi.org/10.1039/B813121J]
[36]
Groessl, M.; Hartinger, C.G. Anticancer metallodrug research analytically painting the “omics” picture-current developments and future trends. Anal. Bioanal. Chem., 2013, 405(6), 1791-1808.
[http://dx.doi.org/10.1007/s00216-012-6450-4] [PMID: 23070042]
[37]
Sussulini, A.; Becker, J.S.; Becker, J.S. Laser ablation ICP-MS: Application in biomedical research. Mass Spectrom. Rev., 2017, 36(1), 47-57.
[http://dx.doi.org/10.1002/mas.21481] [PMID: 26398248]
[38]
Barnett, J.P.; Scanlan, D.J.; Blindauer, C.A. Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal. Bioanal. Chem., 2012, 402(10), 3311-3322.
[http://dx.doi.org/10.1007/s00216-012-5743-y] [PMID: 22302168]
[39]
Casini, A.; Gabbiani, C.; Michelucci, E.; Pieraccini, G.; Moneti, G.; Dyson, P.J.; Messori, L. Exploring metallodrug-protein interactions by mass spectrometry: comparisons between platinum coordination complexes and an organometallic ruthenium compound. J. Biol. Inorg. Chem., 2009, 14(5), 761-770.
[http://dx.doi.org/10.1007/s00775-009-0489-5] [PMID: 19288144]
[40]
Gibson, D. The mechanism of action of platinum anticancer agents--what do we really know about it? Dalton Trans., 2009, (48), 10681-10689.
[http://dx.doi.org/10.1039/b918871c] [PMID: 20023895]
[41]
Groessl, M.; Hartinger, C.G.; Polec-Pawlak, K.; Jarosz, M.; Keppler, B.K. Capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry: a novel approach for the analysis of anticancer metallodrugs in human serum and plasma. Electrophoresis, 2008, 29(10), 2224-2232.
[http://dx.doi.org/10.1002/elps.200780790] [PMID: 18512673]
[42]
Groessl, M.; Terenghi, M.; Casini, A.; Elviri, L.; Lobinski, R.; Dyson, P.J. Reactivity of anticancer metallodrugs with serum proteins: new insights from size exclusion chromatography-ICP-MS and ESI-MS. J. Anal. At. Spectrom., 2010, 25(3), 305-313.
[http://dx.doi.org/10.1039/b922701f] [PMID: 21151827]
[43]
Manley, S.A.; Byrns, S.; Lyon, A.W.; Brown, P.; Gailer, J. Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography-inductively coupled plasma atomic emission spectroscopy. J. Biol. Inorg. Chem., 2009, 14(1), 61-74.
[http://dx.doi.org/10.1007/s00775-008-0424-1] [PMID: 18781345]
[44]
Sooriyaarachchi, M.; Morris, T.T.; Gailer, J. Advanced LC-analysis of human plasma for metallodrug metabolites. Drug Discov. Today. Technol., 2015, 16, 24-30.
[http://dx.doi.org/10.1016/j.ddtec.2015.08.001] [PMID: 26547418]
[45]
Slejkovec, Z.; Byrne, A.R.; Dermelj, M. Determination of organoarsenic compounds in urine and blood after seafood consumption and exposure to inorganic arsenic. Acta Chim. Slov., 1994, 41, 83-85.
[46]
Francesconi, K.A.; Edmonds, J.S. Arsenic and marine organisms. Adv. Inorg. Chem., 1997, 44, 147-189.
[47]
Pei, K.L.; Gailer, J. Probing the interaction of arsenobetaine with blood plasma constituents in vitro: an SEC-ICP-AES study. Metallomics, 2009, 1(5), 403-408.
[http://dx.doi.org/10.1039/b903681d] [PMID: 21305144]
[48]
Jahromi, E.Z.; White, W.; Wu, Q.; Yamdagni, R.; Gailer, J. Remarkable effect of mobile phase buffer on the SEC-ICP-AES derived Cu, Fe and Zn-metalloproteome pattern of rabbit blood plasma. Metallomics, 2010, 2(7), 460-468.
[http://dx.doi.org/10.1039/c003321a] [PMID: 21072345]
[49]
Manley, S.A.; Gailer, J. Analysis of the plasma metalloproteome by SEC-ICP-AES: bridging proteomics and metabolomics. Expert Rev. Proteomics, 2009, 6(3), 251-265.
[http://dx.doi.org/10.1586/epr.09.44] [PMID: 19489698]
[50]
Sarpong-Kumankomah, S.; Gailer, J. Identification of a haptoglobin-hemoglobin complex in human blood plasma. J. Inorg. Biochem., 2019, 201110802
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110802] [PMID: 31514091]
[51]
Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA, 2005, 293(13), 1653-1662.
[http://dx.doi.org/10.1001/jama.293.13.1653] [PMID: 15811985]
[52]
Sooriyaarachchi, M.; Gailer, J. Removal of Fe3+ and Zn2+ from plasma metalloproteins by iron chelating therapeutics depicted with SEC-ICP-AES. Dalton Trans., 2010, 39(32), 7466-7473.
[http://dx.doi.org/10.1039/c0dt00229a] [PMID: 20623073]
[53]
Brook, C.E.; Harris, W.R.; Spilling, C.D.; Peng, W.; Harburn, J.J.; Srisung, S. Effect of ligand structure on the pathways for iron release from human serum transferrin. Inorg. Chem., 2005, 44(14), 5183-5191.
[http://dx.doi.org/10.1021/ic050411m] [PMID: 15998048]
[54]
Kontoghiorghes, G.J.; Aldouri, M.A.; Sheppard, L.; Hoffbrand, A.V. 1,2-Dimethyl-3-hydroxypyrid-4-one, an orally active chelator for treatment of iron overload. Lancet, 1987, 1(8545), 1294-1295.
[http://dx.doi.org/10.1016/S0140-6736(87)90545-9] [PMID: 2884415]
[55]
Kontoghiorghes, G.J.; Agarwal, M.B.; Grady, R.W.; Kolnagou, A.; Marx, J.J. Deferiprone for thalassaemia. Lancet, 2000, 356(9227), 428-429.
[http://dx.doi.org/10.1016/S0140-6736(05)73574-1] [PMID: 10972396]
[56]
Tuncel, S.; Dumoulin, F.; Gailer, J.; Sooriyaarachchi, M.; Atilla, D.; Durmuş, M.; Bouchu, D.; Savoie, H.; Boyle, R.W.; Ahsen, V. A set of highly water-soluble tetraethyleneglycol-substituted Zn(II) phthalocyanines: synthesis, photochemical and photophysical properties, interaction with plasma proteins and in vitro phototoxicity. Dalton Trans., 2011, 40(16), 4067-4079.
[http://dx.doi.org/10.1039/C0DT01260B] [PMID: 21152655]
[57]
Ferraro, G.; Massai, L.; Messori, L.; Merlino, A. Cisplatin binding to human serum albumin: a structural study. Chem. Commun. (Camb.), 2015, 51(46), 9436-9439.
[http://dx.doi.org/10.1039/C5CC01751C] [PMID: 25873085]
[58]
Massai, L.; Pratesi, A.; Gailer, J.; Marzo, T.; Messori, L. The cisplatin/serum albumin systen: a reappraisal. Inorg. Chim. Acta, 2019, 495118983
[http://dx.doi.org/10.1016/j.ica.2019.118983]
[59]
Sherman, S.E.; Lippard, S.J. Structural aspects of platinum anticancer drug interactions with DNA. Chem. Rev., 1987, 87, 1153-1181.
[http://dx.doi.org/10.1021/cr00081a013]
[60]
Harper, B.W.J.; Morris, T.T.; Gailer, J.; Aldrich-Wright, J.R. Probing the interaction of bisintercalating (2,2′:6′,2″-terpyridine)platinum(II) complexes with glutathione and rabbit plasma. J. Inorg. Biochem., 2016, 163, 95-102.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.06.004] [PMID: 27453535]
[61]
Eljack, N.D.; Ma, H-Y.M.; Drucker, J.; Shen, C.; Hambley, T.W.; New, E.J.; Friedrich, T.; Clarke, R.J. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics, 2014, 6(11), 2126-2133.
[http://dx.doi.org/10.1039/C4MT00238E] [PMID: 25306996]
[62]
Guo, W.; Zheng, W.; Luo, Q.; Li, X.; Zhao, Y.; Xiong, S.; Wang, F. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells. Inorg. Chem., 2013, 52(9), 5328-5338.
[http://dx.doi.org/10.1021/ic4002626] [PMID: 23586415]
[63]
Wang And, X.; Guo, Z. The role of sulfur in platinum anticancer chemotherapy. Anticancer. Agents Med. Chem., 2007, 7(1), 19-34.
[http://dx.doi.org/10.2174/187152007779314062] [PMID: 17266503]
[64]
Sooriyaarachchi, M.; Narendran, A.; Gailer, J. The effect of sodium thiosulfate on the metabolism of cis-platin in human plasma in vitro. Metallomics, 2012, 4(9), 960-967.
[http://dx.doi.org/10.1039/c2mt20076g] [PMID: 22842879]
[65]
Sooriyaarachchi, M.; White, W.M.; Narendran, A.; Gailer, J. Chemoprotection by D-methionine against cisplatin-induced side-effects: insight from in vitro studies using human plasma. Metallomics, 2014, 6(3), 532-541.
[http://dx.doi.org/10.1039/C3MT00238A] [PMID: 24337005]
[66]
Sooriyaarachchi, M.; Narendran, A.; Gailer, J. N-acetyl-L-cysteine modulates the metabolism of cis-platin in human plasma in vitro. Metallomics, 2013, 5(3), 197-207.
[http://dx.doi.org/10.1039/c3mt00012e] [PMID: 23443244]
[67]
Sooriyaarachchi, M.; Gibson, M.A.; Lima, B.S.; Gailer, J. Modulation of the metabolism of cis-platin in blood plasma by glutathione. Can. J. Chem., 2016, 94, 360-366.
[http://dx.doi.org/10.1139/cjc-2015-0395]
[68]
Sooriyaarachchi, M.; Gailer, J.; Dolgova, N.V.; Pickering, I.J.; George, G.N. Chemical basis for the detoxification of cisplatin-derived hydrolysis products by sodium thiosulfate. J. Inorg. Biochem., 2016, 162, 96-101.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.06.012] [PMID: 27324827]
[69]
Sooriyaarachchi, M.; George, G.N.; Pickering, I.J.; Narendran, A.; Gailer, J. Tuning the metabolism of the anticancer drug cisplatin with chemoprotective agents to improve its safety and efficacy. Metallomics, 2016, 8(11), 1170-1176.
[http://dx.doi.org/10.1039/C6MT00183A] [PMID: 27722429]
[70]
Jedlitschky, G.; Leier, I.; Buchholz, U.; Barnouin, K.; Kurz, G.; Keppler, D. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res., 1996, 56(5), 988-994.
[PMID: 8640791]
[71]
Kondagunta, G.V.; Bacik, J.; Donadio, A.; Bajorin, D.; Marion, S.; Sheinfeld, J.; Bosl, G.J.; Motzer, R.J. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J. Clin. Oncol., 2005, 23(27), 6549-6555.
[http://dx.doi.org/10.1200/JCO.2005.19.638] [PMID: 16170162]
[72]
Khalaila, I.; Bergamo, A.; Bussy, F.; Sava, G.; Dyson, P.J. The role of cisplatin and NAMI-A plasma-protein interactions in relation to combination therapy. Int. J. Oncol., 2006, 29(1), 261-268.
[http://dx.doi.org/10.3892/ijo.29.1.261] [PMID: 16773208]
[73]
Kaiser, J. Combining targeted drugs to stop resistant tumors. Science, 2011, 331(6024), 1542-1545.
[http://dx.doi.org/10.1126/science.331.6024.1542] [PMID: 21436437]
[74]
Sooriyaarachchi, M.; Wedding, J.L.; Harris, H.H.; Gailer, J. Simultaneous observation of the metabolism of cisplatin and NAMI-A in human plasma in vitro by SEC-ICP-AES. J. Biol. Inorg. Chem., 2014, 19(6), 1049-1053.
[http://dx.doi.org/10.1007/s00775-014-1102-0] [PMID: 24458238]
[75]
Sarpong-Kumankomah, S.; Contel, M.; Gailer, J. SEC hyphenated to a multielement-specific detector unravels the degradation pathway of a bimetallic anticancer complex in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1145122093
[http://dx.doi.org/10.1016/j.jchromb.2020.122093] [PMID: 32305711]
[76]
Gibson, M.A.; Sarpong-Kumankomah, S.; Nehzati, S. George; G.N.; Gailer, J. REmarkable differences in the biochemical fate of Cd2+, Hg2+, CH3Hg+ and thimerosal in red blood cell lystae. Metallomics, 2017, 9, 1060-1072.
[http://dx.doi.org/10.1039/C7MT00069C] [PMID: 28702563]
[77]
Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C.R.; Keppler, B.K.; Berger, W. Metal drugs and the anticancer immune response. Chem. Rev., 2019, 119(2), 1519-1624.
[http://dx.doi.org/10.1021/acs.chemrev.8b00396] [PMID: 30489072]
[78]
Miodragović, Đ.; Merlino, A.; Swindell, E.P.; Bogachkov, A.; Ahn, R.W.; Abuhadba, S.; Ferraro, G.; Marzo, T.; Mazar, A.P.; Messori, L.; O’Halloran, T.V. Arsenoplation-1 is a dual pharmacophore anticancer agent. J. Am. Chem. Soc., 2019, 141(16), 6453-6457.
[http://dx.doi.org/10.1021/jacs.8b13681] [PMID: 30943017]
[79]
Massai, L.; Cirri, D.; Michelucci, E.; Bartoli, G.; Guerri, A.; Cinellu, M.A.; Cocco, F.; Gabbiani, C.; Messori, L. Organogold(III) compounds as experimental anticancer agents: chemical and biological profiles. Biometals, 2016, 29(5), 863-872.
[http://dx.doi.org/10.1007/s10534-016-9957-x] [PMID: 27476157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy