Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Adsorption onto MWCNTs Coupled with Cloud Point Extraction for Dye Removal from Aqueous Solutions: Optimization by Experimental Design

Author(s): Fariba Safa* and Bahare Osaghi

Volume 24, Issue 2, 2021

Published on: 18 June, 2020

Page: [246 - 258] Pages: 13

DOI: 10.2174/1386207323666200618153940

Price: $65

Open Access Journals Promotions 2
conference banner
Abstract

Aims: The main aim of the study was to examine the feasibility and benefits of adsorption onto multi-walled carbon nanotubes (MWCNTs) coupled with cloud point extraction (CPE) for the removal of Rhodamine B (RB) from aqueous solutions.

Background: MWCNTs offer the particular features of the ideal adsorbents for the organic dyes such as hollow tubular structure and specific surface area. Nevertheless, they suffer from the drawbacks of low dispersion in the aqueous solutions and separation inconvenience from the media. Cloud point extraction, combined with the adsorption onto MWCNTs can be a promising method to overcome the problems.

Objective: In the study, adsorption onto MWCNTs coupled with CPE was applied for RB removal from aqueous solutions. The process was optimized by the response surface modeling method. Moreover, the applicability of the proposed method in the real sample analyses was investigated.

Methods: MWCNTs were used as adsorbent and Triton X-100 (TX-100) as the nonionic surfactant for CPE process. The experiments were carried out based on a Box-Behnken design (BBD) with the input variables of MWCNTs dosage (0.6-1.2 mg), solution pH (3–9), clouding time (20-40 min) and TX-100 concentration (10-20 v/v%) using 5 mg L-1 RB solutions.

Result: Regression analyses resulted in a statistically significant quadratic model (R2=0.9718, F=24.96, p<0.0001) by which the optimum levels of the variables were predicted as: MWCNTs dosage of 0.7 mg, pH=3, clouding time of 39.9 minutes and TX-100 concentration of 19.91% (v/v). The predicted conditions were experimentally validated by achieving an RB removal of 94.24%.

Conclusion: Based on the results, the combination of the environmentally friendly technique of CPE with adsorption onto MWCNTs allows the efficient removal of RB from water samples and the method can be effectively optimized by the response surface modeling.

Keywords: Adsorption, multi-walled carbon nanotubes, cloud point extraction, rhodamine B, triton X-100, box-behnken design.

[1]
Mohan, N.; Balasubramanian, N.; Basha, C.A. Electrochemical oxidation of textile wastewater and its reuse. J. Hazard. Mater., 2007, 147(1-2), 644-651.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.063] [PMID: 17336454]
[2]
Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol., 2003, 87(1), 129-132.
[http://dx.doi.org/10.1016/S0960-8524(02)00201-8 PMID: 12733586]
[3]
Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y.; Li, C. Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination, 2010, 252(1-3), 149-156.
[http://dx.doi.org/10.1016/j.desal.2009.10.010]
[4]
Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater., 2010, 177(1-3), 70-80.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.047] [PMID: 20044207]
[5]
Zain, N.N.M.; Abu Bakar, N.K.; Mohamad, S. Study of removal of phenol species by adsorption on non-ionic silicon surfactant after cloud point extraction methodology. Desalin. Water Treat., 2014, 57(8), 3532-3543.
[http://dx.doi.org/10.1080/19443994.2014.987176]
[6]
Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem., 2017, 7, 1-14.
[http://dx.doi.org/10.1007/s40097-017-0219-4]
[7]
Alimohammadi, V.; Sedighi, M.; Jabbari, E. Experimental study on efficient removal of total iron from wastewater using magnetic modified multi-walled carbon nanotubes. Ecol. Eng., 2017, 102, 90-97.
[http://dx.doi.org/10.1016/j.ecoleng.2017.01.044]
[8]
Dil, E.A.; Ghaedi, M.; Asfaram, A. The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling. Ultrason. Sonochem., 2017, 34, 792-802.
[http://dx.doi.org/10.1016/j.ultsonch.2016.07.015] [PMID: 27773307]
[9]
Sadegh, H.; Zare, K.; Maazinejad, B.; Shahryari-Ghoshekandi, R.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Synthesis of MWCNTCOOH-Cysteamine composite and its application for dye removal. J. Mol. Liq., 2016, 215, 221-228.
[http://dx.doi.org/10.1016/j.molliq.2015.12.042]
[10]
Yu, J-G.; Yu, L-Y.; Yang, H.; Liu, Q.; Chen, X-H.; Jiang, X-Y.; Chen, X-Q.; Jiao, F-P. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Sci. Total Environ., 2015, 502, 70-79.
[http://dx.doi.org/10.1016/j.scitotenv.2014.08.077] [PMID: 25244035]
[11]
Liu, X.; Lu, X.; Huang, Y.; Liu, C.; Zhao, S. Fe3O4@ionic liquid@methyl orange nanoparticles as a novel nano-adsorbent for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Talanta, 2014, 119, 341-347.
[http://dx.doi.org/10.1016/j.talanta.2013.11.039] [PMID: 24401423]
[12]
Watanabe, H.; Tanaka, H. A non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc(II) with 1-(2-pyridylazo)-2-naphthol. Talanta, 1978, 25(10), 585-589.
[http://dx.doi.org/10.1016/0039-9140(78)80151-9] [PMID: 18962328]
[13]
Hinze, W.L.; Pramauro, E. A critical review of surfactant mediated phase separations (cloud-point axtractions): Theory and Applications. Crit. Rev. Anal. Chem., 1993, 24(2), 133-177.
[http://dx.doi.org/10.1080/10408349308048821]
[14]
Quina, F.H.; Hinze, W.L. Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind. Eng. Chem. Res., 1999, 38(11), 4150-4168.
[http://dx.doi.org/10.1021/ie980389n]
[15]
Liu, J.F.; Liu, R.; Yin, Y.G.; Jiang, G.B. Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. Chem. Commun. (Camb.), 2009, 12(12), 1514-1516.
[http://dx.doi.org/10.1039/b821124h] [PMID: 19277374]
[16]
Liu, J-F.; Chao, J-B.; Liu, R.; Tan, Z-Q.; Yin, Y-G.; Wu, Y.; Jiang, G-B. Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal. Chem., 2009, 81(15), 6496-6502.
[http://dx.doi.org/10.1021/ac900918e]
[17]
Hartmann, G.; Hutterer, C.; Schuster, M. Ultra-trace determination of silver nanoparticles in water samples using cloud point extraction and ETAAS. J. Anal. At. Spectrom., 2013, 28(4), 567-572.
[http://dx.doi.org/10.1039/c3ja30365a]
[18]
Chao, J-B.; Liu, J-F.; Yu, S-J.; Feng, Y-D.; Tan, Z-Q.; Liu, R.; Yin, Y-G. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation. Anal. Chem., 2011, 83(17), 6875-6882.
[http://dx.doi.org/10.1021/ac201086a] [PMID: 21797201]
[19]
Hartmann, G.; Schuster, M. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal. Chim. Acta, 2013, 761, 27-33.
[http://dx.doi.org/10.1016/j.aca.2012.11.050] [PMID: 23312311]
[20]
Liu, J-F.; Sun, J.; Jiang, G-B. Use of cloud point extraction for removal of nanosized copper oxide from wastewater. Chin. Sci. Bull., 2010, 55, 346-349.
[http://dx.doi.org/10.1007/s11434-009-0695-0]
[21]
Majedi, S.M.; Kelly, B.C.; Lee, H.K. Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters. Anal. Chim. Acta, 2014, 814, 39-48.
[http://dx.doi.org/10.1016/j.aca.2014.01.022] [PMID: 24528842]
[22]
Majedi, S.M.; Lee, H.K.; Kelly, B.C. Chemometric analytical approach for the cloud point extraction and inductively coupled plasma mass spectrometric determination of zinc oxide nanoparticles in water samples. Anal. Chem., 2012, 84(15), 6546-6552.
[http://dx.doi.org/10.1021/ac300833t] [PMID: 22746396]
[23]
Pourreza, N.; Naghdi, T. Combined cloud point-solid phase extraction by dispersion of TiO2 nanoparticles in micellar media followed by semi-microvolume UV-vis spectrophotometric detection of zinc. Talanta, 2014, 128, 164-169.
[http://dx.doi.org/10.1016/j.talanta.2014.04.073] [PMID: 25059144]
[24]
Maleki, S.; Falaki, F.; Karimi, M. Synthesis of SDS micelles coated Fe3O4/SiO2 magnetic nanoparticles as an excellent adsorbent for facile removal and concentration of crystal violet from natural water samples. J. Nanostruct. Chem., 2019, 9, 129-139.
[http://dx.doi.org/10.1007/s40097-019-0303-z]
[25]
Campos, A.F.C.; Michels-Brito, P.H.; da Silva, F.G.; Gomes, R.C.; Gomide, G.; Depeyrot, J. Removal of direct yellow 12 from water using CTAB-coated core-shell bimagnetic nanoadsorbents. J. Environ. Chem. Eng., 2019, 7(2)103031
[http://dx.doi.org/10.1016/j.jece.2019.103031]
[26]
Yurekli, K.; Mitchell, C.A.; Krishnamoorti, R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc., 2004, 126(32), 9902-9903.
[http://dx.doi.org/10.1021/ja047451u] [PMID: 15303847]
[27]
Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci., 2006, 128-130, 37-46.
[http://dx.doi.org/10.1016/j.cis.2006.11.007] [PMID: 17222381]
[28]
Javadian, S.; Motaee, A.; Sharifi, M.; Aghdastinat, H.; Taghavi, F. Dispersion stability of multi-walled carbon nanotubes in catanionic surfactant mixtures. Colloids Surf., 2017, 531, 141-149.
[http://dx.doi.org/10.1016/j.colsurfa.2017.07.081]
[29]
Rausch, J.; Zhuang, R-C.; Mäder, E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Compos., Part A Appl. Sci. Manuf., 2010, 41(9), 1038-1046.
[http://dx.doi.org/10.1016/j.compositesa.2010.03.007]
[30]
Clark, M.D.; Subramanian, S.; Krishnamoorti, R. Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J. Colloid Interface Sci., 2011, 354(1), 144-151.
[http://dx.doi.org/10.1016/j.jcis.2010.10.027] [PMID: 21084094]
[31]
Bai, Y.; Park, S.; Lee, S.J.; Bae, T.S.; Watari, F.; Uo, M.; Lee, M.H. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon, 2011, 49(11), 3663-3671.
[http://dx.doi.org/10.1016/j.carbon.2011.05.002]
[32]
Yeh, C. Characterization of nanotube buckypaper manufacturing process.Master Thesis, Tallahassee, Florida, USA, 2004.
[33]
Rastogi, R.; Kaushal, R.; Tripathi, S.K.; Sharma, A.L.; Kaur, I.; Bharadwaj, L.M. Comparative study of carbon nanotube dispersion using surfactants. J. Colloid Interface Sci., 2008, 328(2), 421-428.
[http://dx.doi.org/10.1016/j.jcis.2008.09.015] [PMID: 18848704]
[34]
Montgomery, D.C. Design and Analysis of Experiments, 7th ed; John Wiley & Sons, 2009.
[35]
Bruns, R.E.; Scarminio, I.S.; de Barros Neto, B. Statistical Design-Chemometrics. Data Handling in Science and Technology; Elsevier: Amsterdam, 2006, Vol. 25, .
[36]
Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta, 2009, 652(1-2), 161-172.
[http://dx.doi.org/10.1016/j.aca.2009.06.015] [PMID: 19786177]
[37]
Candioti, L.V.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 2014, 124, 123-138.
[http://dx.doi.org/10.1016/j.talanta.2014.01.034] [PMID: 24767454]
[38]
Safa, F.; Alinezhad, Y. Ternary nanocomposite of SiO2/Fe3O4/multi-walled carbon nanotubes for efficient adsorption of malachite green: response surface modeling, equilibrium isotherms and kinetics. Silicon, 2020, 12(7), 1619-1637.
[http://dx.doi.org/10.1007/s12633-019-00348-6.]]
[39]
Akbarnezhad, A.A.; Safa, F. Biochar-based magnetic nanocomposite for dye removal from aqueous solutions: Response surface modeling and kinetic study. Russ. J. Appl. Chem., 2018, 91(11), 1856-1866.
[http://dx.doi.org/10.1134/S1070427218110174]
[40]
Tavakoli, M.; Safa, F.; Abedinzadeh, N. Binary nanocomposite of Fe3O4/MWCNTs for adsorption of Reactive Violet 2: Taguchi design, kinetics and equilibrium isotherms. Fuller. Nanotub. Car. N., 2019, 27(4), 305-316.
[http://dx.doi.org/10.1080/1536383X.2018.1563543]
[41]
Haddou, B.; Guitri, N.; Debbab, A.; Gourdon, C.; Derriche, Z. Cloud point extraction of orange II and orange G using neutral and mixed micelles: Comparative approach using experimental design. Sep. Sci. Technol., 2011, 46(5), 734-743.
[http://dx.doi.org/10.1080/01496395.2010.535804]
[42]
Silva, W.P.N.; de Nascimento, A.E.G.; de Alencar Moura, M.C.P.; de Oliveira, H.N.M.; de Barros Neto, E.L. Study of phenol removal by cloud point extraction: A process optimization using experimental design. Separ. Purif. Tech., 2015, 152, 133-139.
[http://dx.doi.org/10.1016/j.seppur.2015.08.007]
[43]
Gong, J-L.; Wang, B.; Zeng, G-M.; Yang, C.P.; Niu, C.G.; Niu, Q-Y.; Zhou, W-J.; Liang, Y. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater., 2009, 164(2-3), 1517-1522.
[http://dx.doi.org/10.1016/j.jhazmat.2008.09.072] [PMID: 18977077]
[44]
Ai, L.; Huang, H.; Chen, Z.; Wei, X.; Jiang, J. Activated carbon/CoFe2O4 composites: Facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem. Eng. J., 2010, 156, 243-249.
[http://dx.doi.org/10.1016/j.cej.2009.08.028]
[45]
Inbaraj, B.S.; Sulochana, N. Use of jackfruit peel carbon (JPC) for adsorption of rhodamine-B, a basic dye from aqueous solution. Indian J. Chem. Technol., 2006, 13, 17-23.http://nopr.niscair.res.in/handle/123456789/6990
[46]
Dire, D.J.; Wilkinson, J.A. Acute exposure to rhodamine B. J. Toxicol. Clin. Toxicol., 1987, 25(7), 603-607.
[http://dx.doi.org/10.3109/15563658708992660] [PMID: 3446824]
[47]
Kaji, T.; Kawashima, T.; Yamamoto, C.; Sakamoto, M. Rhodamine B inhibits collagen synthesis by human lip fibroblasts in culture. Toxicol. Lett., 1992, 61(1), 81-87.
[http://dx.doi.org/10.1016/0378-4274(92)90066-S] [PMID: 1609442]
[48]
Zare, K.; Sadegh, H.R.; Shahryari-ghoshekandi, R.; Maazinejad, B.; Ali, V.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. J. Mol. Liq., 2015, 212, 266-271.
[http://dx.doi.org/10.1016/j.molliq.2015.09.027]
[49]
Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J. Hazard. Mater., 2009, 171(1-3), 551-562.
[http://dx.doi.org/10.1016/j.jhazmat.2009.06.035] [PMID: 19577844]
[50]
Kalariya, P.D.; Namdev, D.; Srinivas, R.; Gananadhamu, S. Application of experimental design and response surface technique for selecting the optimum RP-HPLC conditions for the determination of moxifloxacin HCl and ketorolac tromethamine in eye drops. J. Saudi Chem. Soc., 2017, 21(1), s373-s382.
[http://dx.doi.org/10.1016/j.jscs.2014.04.004]
[51]
Abdel-Ghani, N.T.; El-Chaghaby, G.A.; Helal, F.S. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res., 2015, 6(3), 405-415.
[http://dx.doi.org/10.1016/j.jare.2014.06.001] [PMID: 26257938]
[52]
Liu, C.H.; Li, J.J.; Zhang, H.L.; Li, B.R.; Guo, Y. Structure dependent interaction between organic dyes and carbon nanotubes. Colloids Surf. A Physicochem. Eng. Asp., 2008, 313-314, 9-12.
[http://dx.doi.org/10.1016/j.colsurfa.2007.04.062]
[53]
Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed; John Wiley & Sons: Chichester, 2001.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy