Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Effects of a Low Carb Diet and Whey Proteins on Anthropometric, Hematochemical, and Cardiovascular Parameters in Subjects with Obesity

Author(s): Giovanni De Pergola*, Roberta Zupo, Luisa Lampignano, Silvia Paradiso, Isanna Murro, Annagrazia Cecere, Nicola Bartolomeo, Marco M. Ciccone, ">Gianluigi Giannelli and Vincenzo Triggiani

Volume 20, Issue 10, 2020

Page: [1719 - 1725] Pages: 7

DOI: 10.2174/1871530320666200610143724

open access plus

conference banner
Abstract

Background: The best way to lose body weight, without using drugs and/or suffering hunger and stress, has not yet been defined. The present study tested a low carbohydrate diet, enriched with proteins, in subjects with overweight and obesity.

Methods: The study enrolled 22 uncomplicated overweight and obese subjects. Several parameters were examined before and after 6 weeks of a low-carbohydrate diet, enriched with 18 g of whey proteins. Anthropometric (body mass index, waist circumference) variables, fasting hormones (insulin, TSH, FT3, FT4), and metabolic (glucose, prealbumin, and lipid levels) parameters were measured. 25- OH-vitamin D (25 (OH) D), parathyroid hormone (PTH) and osteocalcin, were also quantified. Body composition parameters (fat mass, fat-free mass, body cell mass, total body water) were measured by electrical bioimpedance analysis. As cardiovascular parameters, blood pressure, endothelium flowmediated dilation (FMD), and common carotid artery intima-media thickness were also measured.

Results: The low-carbohydrate diet integrated with proteins induced a significant decrease in body weight (P < 0.001), waist circumference (P < 0.001), fat mass (P < 0.001), diastolic blood pressure (P < 0.01), triglycerides (P < 0.001), total cholesterol (P < 0.001), pre-albumin (P < 0.001), insulin (P < 0.001), HOMAIR (P < 0.001), FT3 (P < 0.05), and c-IMT (P < 0.001), and a significant increase in FMD (P < 0.001) and 25 (OH) D (P < 0.001) was also observed.

Conclusion: All these results suggest that a short-term non-prescriptive low carbohydrate diet, enriched with whey proteins, may be a good way to start losing fat mass and increase health.

Keywords: Low carbohydrate diet, whey proteins, endothelium, intima-media thickness, obesity, overweight.

Graphical Abstract
[1]
Cornier, M.A.; Marshall, J.A.; Hill, J.O.; Maahs, D.M.; Eckel, R.H. Prevention of overweight/obesity as a strategy to optimize cardiovascular health. Circulation, 2011, 124(7), 840-850.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.968461] [PMID: 21844090]
[2]
Balagopal, P.B.; de Ferranti, S.D.; Cook, S.; Daniels, S.R.; Gidding, S.S.; Hayman, L.L.; McCrindle, B.W.; Mietus-Snyder, M.L.; Steinberger, J. American Heart Association Committee on Atherosclerosis Hypertension and Obesity in Youth of the Council on Cardiovascular Disease in the Young; Council on Nutrition, Physical Activity and Metabolism; Council on Epidemiology and Prevention. Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: A scientific statement from the American Heart Association. Circulation, 2011, 123(23), 2749-2769.
[http://dx.doi.org/10.1161/CIR.0b013e31821c7c64] [PMID: 21555711]
[3]
Després, J.P. Body fat distribution and risk of cardiovascular disease: an update. Circulation, 2012, 126(10), 1301-1313.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.067264] [PMID: 22949540]
[4]
De Pergola, G.; De Mitrio, V.; Giorgino, F.; Sciaraffia, M.; Minenna, A.; Di Bari, L.; Pannacciulli, N.; Giorgino, R. Increase in both pro-thrombotic and anti-thrombotic factors in obese premenopausal women: relationship with body fat distribution. Int. J. Obes. Relat. Metab. Disord., 1997, 21(7), 527-535.
[http://dx.doi.org/10.1038/sj.ijo.0800435] [PMID: 9226481]
[5]
De Pergola, G.; Giagulli, V.A.; Guastamacchia, E. Platelet number is positively and independently associated with glycated hemoglobin in non-diabetic overweight and obese subjects. Nutr. Metab. Cardiovasc. Dis., 2019, 29(3), P254-259.
[6]
Ciccone, M.M.; Cortese, F.; Gesualdo, M.; Donvito, I.; Carbonara, S.; De Pergola, G. A glycemic threshold of 90 mg/dl promotes early signs of atherosclerosis in apparently healthy overweight/obese subjects. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(4), 288-295.
[http://dx.doi.org/10.2174/1871530317666161205124955] [PMID: 27919218]
[7]
De Pergola, G.; Cortese, F.; Termine, G.; Meliota, G.; Carbonara, R.; Masiello, M.; Cortese, A.M.; Silvestris, F.; Caccavo, D.; Ciccone, M.M. Uric acid, metabolic syndrome and atherosclerosis: The chicken or The egg,Which comes first? Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(3), 251-259.
[http://dx.doi.org/10.2174/1871530318666180212101548] [PMID: 29437024]
[8]
De Pergola, G.; Giagulli, V.A.; Bartolomeo, N.; Gaeta, F.; Petruzzella, A.; Guastamacchia, E.; Triggiani, V.; Silvestris, F. Independent relationship between serum osteocalcin and uric acid in a cohort of apparently healthy obese subjects. Endocr. Metab. Immune Disord. Drug Targets, 2017, 17(3), 207-212.
[http://dx.doi.org/10.2174/1871530317666170825164415] [PMID: 28847266]
[9]
Manno, C.; Campobasso, N.; Nardecchia, A.; Triggiani, V.; Zupo, R.; Gesualdo, L.; Silvestris, F.; De Pergola, G. Relationship of para- and perirenal fat and epicardial fat with metabolic parameters in overweight and obese subjects. Eat. Weight Disord., 2019, 24(1), 67-72.
[http://dx.doi.org/10.1007/s40519-018-0532-z] [PMID: 29956099]
[10]
De Pergola, G.; Nardecchia, A.; Guida, P.; Silvestris, F. Arterial hypertension in obesity: relationships with hormone and anthropometric parameters. Eur. J. Cardiovasc. Prev. Rehabil., 2011, 18(2), 240-247.
[http://dx.doi.org/10.1177/1741826710389367] [PMID: 21450671]
[11]
Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Hopper, K.; Lotsikas, A.; Lin, H.M.; Kales, A.; Chrousos, G.P. Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J. Clin. Endocrinol. Metab., 2000, 85(3), 1151-1158.
[http://dx.doi.org/10.1210/jcem.85.3.6484] [PMID: 10720054]
[12]
Tremblay, A. Obesity management: What should we do if fat gain is necessary to maintain body homeostasis in a modern world? Front. Endocrinol., 2018, 9, 285.
[http://dx.doi.org/10.3389/fendo.2018.00285]
[13]
Patterson, R.E.; Sears, D.D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr., 2017, 37, 371-393.
[http://dx.doi.org/10.1146/annurev-nutr-071816-064634] [PMID: 28715993]
[14]
Ebbeling, C.B.; Feldman, H.A.; Klein, G.L.; Wong, J.M.W.; Bielak, L.; Steltz, S.K.; Luoto, P.K.; Wolfe, R.R.; Wong, W.W.; Ludwig, D.S. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: randomized trial. BMJ, 2018, 363, k4583.
[http://dx.doi.org/10.1136/bmj.k4583 ]
[15]
Santos, F.L.; Esteves, S.S.; da Costa Pereira, A.; Yancy, W.S., Jr; Nunes, J.P.L. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes. Rev., 2012, 13(11), 1048-1066.
[http://dx.doi.org/10.1111/j.1467-789X.2012.01021.x] [PMID: 22905670]
[16]
Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; Amma, L.I.; Avezum, A.; Chifamba, J.; Diaz, R.; Khatib, R.; Lear, S.; Lopez-Jaramillo, P.; Liu, X.; Gupta, R.; Mohammadifard, N.; Gao, N.; Oguz, A.; Ramli, A.S.; Seron, P.; Sun, Y.; Szuba, A.; Tsolekile, L.; Wielgosz, A.; Yusuf, R.; Hussein Yusufali, A.; Teo, K.K.; Rangarajan, S.; Dagenais, G.; Bangdiwala, S.I.; Islam, S.; Anand, S.S.; Yusuf, S. Prospective Urban Rural Epidemiology (PURE) study investigators. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet, 2017, 390(10107), 2050-2062.
[http://dx.doi.org/10.1016/S0140-6736(17)32252-3] [PMID: 28864332]
[17]
Krieger, J.W.; Sitren, H.S.; Daniels, M.J.; Langkamp-Henken, B. Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: A meta-regression 1. Am. J. Clin. Nutr., 2006, 83(2), 260-274.
[http://dx.doi.org/10.1093/ajcn/83.2.260] [PMID: 16469983]
[18]
Noakes, M.; Keogh, J.B.; Foster, P.R.; Clifton, P.M. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am. J. Clin. Nutr., 2005, 81(6), 1298-1306.
[http://dx.doi.org/10.1093/ajcn/81.6.1298] [PMID: 15941879]
[19]
Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tomé, D.; Soenen, S.; Westerterp, K.R. Dietary protein, weight loss, and weight maintenance. Annu. Rev. Nutr., 2009, 29, 21-41.
[http://dx.doi.org/10.1146/annurev-nutr-080508-141056] [PMID: 19400750]
[20]
Paddon-Jones, D.; Westman, E.; Mattes, R.D.; Wolfe, R.R.; Astrup, A.; Westerterp-Plantenga, M. Protein, weight management, and satiety. Am. J. Clin. Nutr., 2008, 87(5), 1558S-1561S.
[http://dx.doi.org/10.1093/ajcn/87.5.1558S] [PMID: 18469287]
[21]
Bendtsen, L.Q.; Lorenzen, J.K.; Gomes, S.; Liaset, B.; Holst, J.J.; Ritz, C.; Reitelseder, S.; Sjödin, A.; Astrup, A. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation: A randomised, controlled, cross-over study. Br. J. Nutr., 2014, 112(8), 1412-1422.
[http://dx.doi.org/10.1017/S000711451400213X] [PMID: 25191896]
[22]
Pal, S.; Radavelli-Bagatini, S.; Hagger, M.; Ellis, V. Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: a randomized controlled trial. Eur. J. Clin. Nutr., 2014, 68(9), 980-986.
[http://dx.doi.org/10.1038/ejcn.2014.84] [PMID: 24801369]
[23]
Johnston, C.S.; Day, C.S.; Swan, P.D. Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women. J. Am. Coll. Nutr., 2002, 21(1), 55-61.
[http://dx.doi.org/10.1080/07315724.2002.10719194] [PMID: 11838888]
[24]
Veldhorst, M.A.; Westerterp-Plantenga, M.S.; Westerterp, K.R. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am. J. Clin. Nutr., 2009, 90(3), 519-526.
[http://dx.doi.org/10.3945/ajcn.2009.27834] [PMID: 19640952]
[25]
Frestedt, J.L.; Zenk, J.L.; Kuskowski, M.A.; Ward, L.S.; Bastian, E.D. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study. Nutr. Metab., 2008, 27, 5-8.
[http://dx.doi.org/10.1186/1743-7075-5-8]
[26]
Baer, D.J.; Stote, K.S.; Paul, D.R.; Harris, G.K.; Rumpler, W.V.; Clevidence, B.A. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J. Nutr., 2011, 141(8), 1489-1494.
[27]
Kimball, S.R.; Jefferson, L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr., 2006, 136(Suppl. 1), 227S-231S.
[http://dx.doi.org/10.1093/jn/136.1.227S] [PMID: 16365087]
[28]
FitzGerald, R.J.; Meisel, H. Lactokinins: whey protein-derived ACE inhibitory peptides. Nahrung, 1999, 43(3), 165-167.
[http://dx.doi.org/10.1002/(SICI)1521-3803(19990601)43:3<165:AID-FOOD165>3.0.CO;2-2] [PMID: 10399349]
[29]
Pal, S.; Ellis, V. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring), 2010, 18(7), 1354-1359.
[http://dx.doi.org/10.1038/oby.2009.397] [PMID: 19893505]
[30]
Zhou, L.M.; Xu, J.Y.; Rao, C.P.; Han, S.; Wan, Z.; Qin, L.Q. Effect of whey supplementation on circulating C-reactive protein: A meta-analysis of randomized controlled trials. Nutrients, 2015, 7(2), 1131-1143.
[http://dx.doi.org/10.3390/nu7021131] [PMID: 25671415]
[31]
Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 2000, 23(1), 57-63.
[http://dx.doi.org/10.2337/diacare.23.1.57] [PMID: 10857969]
[32]
De Pergola, G.; Martino, T.; Zupo, R.; Caccavo, D.; Pecorella, C.; Paradiso, S.; Silvestris, F.; Triggiani, V. 25-Hydroxyvitamin D levels are negatively and independently associated with fat mass in a cohort of healthy overweight and obese subjects. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(6), 838-844.
[http://dx.doi.org/10.2174/1871530319666190122094039] [PMID: 30666920]
[33]
De Pergola, G.; Zupo, R.; Cecere, A.; Bartolomeo, N.; Triggiani, V.; Paradiso, S.; Lampignano, L.; Silvestris, F.; Ciccone, M.M. Platelet number is negatively and independently associated with carotid intima-media thickness in apparently healthy overweight/obese subjects. Nutr. Metab. Cardiovasc. Dis., 2018, 28(12), 1217-1221.
[http://dx.doi.org/10.1016/j.numecd.2018.08.001] [PMID: 30355470]
[34]
Ciccone, M.M.; Favale, S.; Scicchitano, P.; Mangini, F.; Mitacchione, G.; Gadaleta, F.; Longo, D.; Iacoviello, M.; Forleo, C.; Quistelli, G.; Taddei, S.; Resta, O.; Carratù, P. Reversibility of the endothelial dysfunction after CPAP therapy in OSAS patients. Int. J. Cardiol., 2012, 158(3), 383-386.
[http://dx.doi.org/10.1016/j.ijcard.2011.01.065] [PMID: 21353713]
[35]
Drummen, M.; Tischmann, L.; Gatta-Cherifi, B.; Adam, T.; Westerterp-Plantenga, M. Dietary protein and energy balance in relation to obesity and co-morbidities. Front. Endocrinol. (Lausanne), 2018, 9, 443.
[http://dx.doi.org/10.3389/fendo.2018.00443] [PMID: 30127768]
[36]
Karl, J.P.; Meydani, M.; Barnett, J.B.; Vanegas, S.M.; Goldin, B.; Kane, A.; Rasmussen, H.; Saltzman, E.; Vangay, P.; Knights, D.; Chen, C.O.; Das, S.K.; Jonnalagadda, S.S.; Meydani, S.N.; Roberts, S.B. Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am. J. Clin. Nutr., 2017, 105(3), 589-599.
[http://dx.doi.org/10.3945/ajcn.116.139683] [PMID: 28179223]
[37]
Al-Mana, N.M.; Robertson, M.D. Acute effect of resistant starch on food intake, appetite and satiety in overweight/obese males. Nutrients, 2018, 10(12), 1993.
[http://dx.doi.org/10.3390/nu10121993] [PMID: 30558330]
[38]
Johannsen, D.L.; Knuth, N.D.; Huizenga, R.; Rood, J.C.; Ravussin, E.; Hall, K.D. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J. Clin. Endocrinol. Metab., 2012, 97(7), 2489-2496.
[http://dx.doi.org/10.1210/jc.2012-1444] [PMID: 22535969]
[39]
Müller, M.J.; Bosy-Westphal, A. Adaptive thermogenesis with weight loss in humans. Obesity (Silver Spring), 2013, 21(2), 218-228.
[http://dx.doi.org/10.1002/oby.20027] [PMID: 23404923]
[40]
De Pergola, G.; Ciampolillo, A.; Paolotti, S. Free triodothyronine and thyroid stimulating hormone serum levels are directly associated with waist circumference, independently of insulin resistance, metabolic parameters and blood pressure levels in overweight and obese women. Clin. Endocrinol. (Oxf.), 2007, 67, 265-269.
[http://dx.doi.org/10.1111/j.1365-2265.2007.02874.x] [PMID: 17547687]
[41]
Mallard, S.R.; Howe, A.S.; Houghton, L.A. Vitamin D status and weight loss: a systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am. J. Clin. Nutr., 2016, 104(4), 1151-1159.
[http://dx.doi.org/10.3945/ajcn.116.136879] [PMID: 27604772]

© 2024 Bentham Science Publishers | Privacy Policy