Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Green Tea, A Medicinal Food with Promising Neurological Benefits

Author(s): Hossein Akbarialiabad, Mohammad Dahri Dahroud, Mohammad M. Khazaei, Saeed Razmeh and Mohammad M. Zarshenas*

Volume 19, Issue 3, 2021

Published on: 29 May, 2020

Page: [349 - 359] Pages: 11

DOI: 10.2174/1570159X18666200529152625

Price: $65

conference banner
Abstract

Neurological disorders and their sequelae, as of the widespread and critical humans’ complications, affect the body's nervous systems, organ functions, and behaviors. According to WHO, neurological disorders are currently predicted to affect more than one billion people globally. It is well-established that complementary medicine is one of the high accepted interventions that could have been considered for the management of neurological ailments. The current review aimed to compile all the crucial data reporting the investigation on the conspicuous intervention of green tea (made of Camellia sinensis) and related lead compounds (especially l-theanine, epigallocatechin- 3-gallate, epicatechin-3-gallate, epicatechin, and epigallocatechin) for their neurological activities, mechanisms of action, and clinical properties. According to the documents, green tea exhibits antidepressant, anti-neurodegenerative (e.g., anti-Parkinson and anti-Alzheimer), as well as neuroprotective effects.Chief among them, for offering novel work, it is worth focusing on several related assessments with great attention to more extensive standardized clinical trials, and subsequently more in-depth pharmacokinetic studies to safely introduce this beneficial medicinal food as a neuro-effective agent.

Keywords: Camellia sinensis, green tea, complementary medicine, neurological disorders, polyphenol, review.

Graphical Abstract
[1]
Yang, C.S.; Chen, G.; Wu, Q. Recent scientific studies of a traditional chinese medicine, tea, on prevention of chronic diseases. J. Tradit. Complement. Med., 2014, 4(1), 17-23.[http://dx.doi.org/10.4103/2225-4110.124326] [PMID: 24872929]
[2]
Xu, J.; Xu, Z.; Zheng, W. A Review of the antiviral role of green tea catechins. Molecules, 2017, 22(8), E1337.[http://dx.doi.org/10.3390/molecules22081337] [PMID: 28805687]
[3]
Cabrera, C.; Artacho, R.; Giménez, R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr., 2006, 25(2), 79-99.[http://dx.doi.org/10.1080/07315724.2006.10719518] [PMID: 16582024]
[4]
Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J. Agric. Food Chem., 2019, 67(4), 1029-1043.[http://dx.doi.org/10.1021/acs.jafc.8b06146] [PMID: 30653316]
[5]
Shahbazi, Z.; Zarshenas, M.M.; Moein, M.; Khademian, S. Microscopic characterization, TLC fingerprinting and determination of total phenol and flavonoid of different population of Camellia sinensis (L.) Kuntze (green tea) compared to a standard sample. Trends Pharmacol. Sci., 2019, 5(2), 111-118.
[6]
Wierzejska, R. Tea and health-a review of the current state of knowledge. Przegl. Epidemiol., 2014, 68(3), 501-506, 595-599.[PMID: 25391016]
[7]
Senanayake, S.N. Green tea extract: Chemistry, antioxidant properties and food applications–A review. J. Funct. Foods, 2013, 5(4), 1529-1541.[http://dx.doi.org/10.1016/j.jff.2013.08.011]
[8]
Yazdani, E.; Talebi, M.; Zarshenas, M.M.; Moein, M. Evaluation of possible antioxidant activities of barberry solid formulation, a selected formulation from traditional persian medicine (TPM) via various procedures. Biointerface Res. Appl. Chem., 2019, 9(6), 4517-1521.[http://dx.doi.org/10.33263/BRIAC96.517521]
[9]
Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med., 2010, 5(1), 13.[http://dx.doi.org/10.1186/1749-8546-5-13] [PMID: 20370896]
[10]
Ding, R.B.; Tian, K.; Huang, L.L.; He, C.W.; Jiang, Y.; Wang, Y.T.; Wan, J.B. Herbal medicines for the prevention of alcoholic liver disease: A review. J. Ethnopharmacol., 2012, 144(3), 457-465.[http://dx.doi.org/10.1016/j.jep.2012.09.044] [PMID: 23058988]
[11]
Riegsecker, S.; Wiczynski, D.; Kaplan, M.J.; Ahmed, S. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life Sci., 2013, 93(8), 307-312.[http://dx.doi.org/10.1016/j.lfs.2013.07.006] [PMID: 23871988]
[12]
Rahmani, A.H.; Allemailem, K.S.; Aly, S.M.; Khan, M.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway. BioMed Res. Int., 2015, 2015, 925640.[http://dx.doi.org/10.1155/2015/925640]
[13]
Henning, S.M.; Wang, P.; Carpenter, C.L.; Heber, D. Epigenetic effects of green tea polyphenols in cancer. Epigenomics, 2013, 6, 729-741.[http://dx.doi.org/10.2217/epi.13.57]
[14]
Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073.[http://dx.doi.org/10.1111/bph.12009] [PMID: 23072320]
[15]
Delaunay-Moisan, A.; Appenzeller-Herzog, C. The antioxidant machinery of the endoplasmic reticulum: Protection and signaling. Free Radic. Biol. Med., 2015, 83, 341-351.[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.019] [PMID: 25744411]
[16]
Diaz de Barboza, G.; Guizzardi, S.; Moine, L.; Tolosa de Talamoni, N. Oxidative stress, antioxidants and intestinal calcium absorption. World J. Gastroenterol., 2017, 23(16), 2841-2853.[http://dx.doi.org/10.3748/wjg.v23.i16.2841] [PMID: 28522903]
[17]
Evans, M.D.; Cooke, M.S. Factors contributing to the outcome of oxidative damage to nucleic acids. BioEssays, 2004, 26(5), 533-542.[http://dx.doi.org/10.1002/bies.20027] [PMID: 15112233]
[18]
Somogyi, A.; Rosta, K.; Pusztai, P.; Tulassay, Z.; Nagy, G. Antioxidant measurements. Physiol. Meas., 2007, 28(4), R41-R55.[http://dx.doi.org/10.1088/0967-3334/28/4/R01] [PMID: 17395989]
[19]
Gülçin, İ. Antioxidant activity of food constituents: An overview. Arch. Toxicol., 2012, 86(3), 345-391.[http://dx.doi.org/10.1007/s00204-011-0774-2] [PMID: 22102161]
[20]
Gülçin, I.; Bursal, E.; Sehitoğlu, M.H.; Bilsel, M.; Gören, A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol., 2010, 48(8-9), 2227-2238.[http://dx.doi.org/10.1016/j.fct.2010.05.053] [PMID: 20685228]
[21]
Ding, L.; Gao, X.; Hu, J.; Yu, S. (-)Epigallocatechin-3-gallate attenuates anesthesia-induced memory deficit in young mice via modulation of nitric oxide expression. Mol. Med. Rep., 2018, 18(6), 4813-4820.[http://dx.doi.org/10.3892/mmr.2018.9548] [PMID: 30320383]
[22]
Shahidi, F.; Wanasundara, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 1992, 32(1), 67-103.[http://dx.doi.org/10.1080/10408399209527581] [PMID: 1290586]
[23]
Lotito, S.B.; Frei, B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic. Biol. Med., 2006, 41(12), 1727-1746.[http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.033] [PMID: 17157175]
[24]
Filipe, P.; Haigle, J.; Silva, J.N.; Freitas, J.; Fernandes, A.; Mazière, J.C.; Mazière, C.; Santus, R.; Morlière, P. Anti- and pro-oxidant effects of quercetin in copper-induced low density lipoprotein oxidation. Quercetin as an effective antioxidant against pro-oxidant effects of urate. Eur. J. Biochem., 2004, 271(10), 1991-1999.[http://dx.doi.org/10.1111/j.1432-1033.2004.04111.x] [PMID: 15128308]
[25]
Carvalho, A.N.; Firuzi, O.; Gama, M.J.; Horssen, J.V.; Saso, L. Oxidative stress and antioxidants in neurological diseases: Is there still hope? Curr. Drug Targets, 2017, 18(6), 705-718.[http://dx.doi.org/10.2174/1389450117666160401120514] [PMID: 27033198]
[26]
Prasanth, M.I.; Sivamaruthi, B.S.; Chaiyasut, C.; Tencomnao, T. A review of the role of green tea (camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 2019, 11(2), E474.[http://dx.doi.org/10.3390/nu11020474] [PMID: 30813433]
[27]
Haghighatdoost, F.; Hariri, M. The effect of green tea on inflammatory mediators: A systematic review and meta-analysis of randomized clinical trials. Phytother. Res., 2019, 33(9), 2274-2287.[http://dx.doi.org/10.1002/ptr.6432] [PMID: 31309655]
[28]
Zhao, J.; Fang, S.; Yuan, Y.; Guo, Z.; Zeng, J.; Guo, Y.; Tang, P.; Mei, X. Green tea polyphenols protect spinal cord neurons against hydrogen peroxide-induced oxidative stress. Neural Regen. Res., 2014, 9(14), 1379-1385.[http://dx.doi.org/10.4103/1673-5374.137591] [PMID: 25221595]
[29]
Renno, W.M.; Benov, L.; Khan, K.M. Possible role of antioxidative capacity of (-)-epigallocatechin-3-gallate treatment in morphological and neurobehavioral recovery after sciatic nerve crush injury. J. Neurosurg. Spine, 2017, 27(5), 593-613.[http://dx.doi.org/10.3171/2016.10.SPINE16218] [PMID: 28777065]
[30]
Liu, M-L.; Yu, L-C. Potential protection of green tea polyphenols against ultraviolet irradiation-induced injury on rat cortical neurons. Neurosci. Lett., 2008, 444(3), 236-239.[http://dx.doi.org/10.1016/j.neulet.2008.08.029] [PMID: 18722507]
[31]
Yu, D.S.; Liu, L.B.; Cao, Y.; Wang, Y.S.; Bi, Y.L.; Wei, Z.J.; Tong, S.M.; Lv, G.; Mei, X.F. Combining bone marrow stromal cells with green tea polyphenols attenuates the blood-spinal cord barrier permeability in rats with compression spinal cord injury. J. Mol. Neurosci., 2015, 56(2), 388-396.[http://dx.doi.org/10.1007/s12031-015-0564-z] [PMID: 26007330]
[32]
Abd El-Aziz, T.A.; Mohamed, R.H.; Pasha, H.F.; Abdel-Aziz, H.R. Catechin protects against oxidative stress and inflammatory- mediated cardiotoxicity in adriamycin-treated rats. Clin. Exp. Med., 2012, 12(4), 233-240.[http://dx.doi.org/10.1007/s10238-011-0165-2] [PMID: 22080234]
[33]
Fan, F-Y.; Sang, L-X.; Jiang, M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules, 2017, 22(3), 484.[http://dx.doi.org/10.3390/molecules22030484] [PMID: 28335502]
[34]
Baars, J.E.; Nuij, V.J.; Oldenburg, B.; Kuipers, E.J.; van der Woude, C.J. Majority of patients with inflammatory bowel disease in clinical remission have mucosal inflammation. Inflamm. Bowel Dis., 2012, 18(9), 1634-1640.[http://dx.doi.org/10.1002/ibd.21925] [PMID: 22069022]
[35]
Melgarejo, E.; Medina, M.Á.; Sánchez-Jiménez, F.; Urdiales, J.L. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J. Physiol. Biochem., 2010, 66(3), 265-270.[http://dx.doi.org/10.1007/s13105-010-0033-7] [PMID: 20652470]
[36]
Mochizuki, M.; Hasegawa, N. (-)-Epigallocatechin-3-gallate reduces experimental colon injury in rats by regulating macrophage and mast cell. Phytother. Res., 2010, 24(S1)(Suppl. 1), S120-S122.[http://dx.doi.org/10.1002/ptr.2862] [PMID: 19548282]
[37]
Vasconcelos, P.C.P.; Seito, L.N.; Di Stasi, L.C.; Akiko Hiruma-Lima, C.; Pellizzon, C.H. Epicatechin used in the treatment of intestinal inflammatory disease: An analysis by experimental models. Evid. Based Complement. Alternat. Med., 2012.[http://dx.doi.org/10.1155/2012/508902]
[38]
Tipoe, G.L.; Leung, T.M.; Liong, E.C.; Lau, T.Y.H.; Fung, M.L.; Nanji, A.A. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology, 2010, 273(1-3), 45-52.[http://dx.doi.org/10.1016/j.tox.2010.04.014] [PMID: 20438794]
[39]
Soung, H-S.; Wang, M-H.; Chang, K-C.; Chen, C-N.; Chang, Y.; Yang, C-C.; Tseng, H-C. L-Theanine decreases orofacial dyskinesia induced by reserpine in rats. Neurotox. Res., 2018, 34(3), 375-387.[http://dx.doi.org/10.1007/s12640-018-9897-z] [PMID: 29629512]
[40]
Jamwal, S.; Kumar, P. L-theanine, a component of green tea prevents 3-nitropropionic acid (3-NP)-induced striatal toxicity by modulating nitric oxide pathway. Mol. Neurobiol., 2017, 54(3), 2327-2337.[http://dx.doi.org/10.1007/s12035-016-9822-5] [PMID: 26957301]
[41]
Ikeguchi, R.; Kakinoki, R.; Okamoto, T.; Matsumoto, T.; Hyon, S-H.; Nakamura, T. Successful storage of peripheral nerve before transplantation using green tea polyphenol: An experimental study in rats. Exp. Neurol., 2003, 184(2), 688-696.[http://dx.doi.org/10.1016/S0014-4886(03)00344-3] [PMID: 14769360]
[42]
Zhou, S.H.; Zhen, P.; Li, S.S.; Liang, X.Y.; Gao, M.X.; Tian, Q.; Li, X.S. Allograft pretreatment for the repair of sciatic nerve defects: Green tea polyphenols versus radiation. Neural Regen. Res., 2015, 10(1), 136-140.[http://dx.doi.org/10.4103/1673-5374.150722] [PMID: 25788934]
[43]
Dmitrieva, E.S.; Gel’man, V.Ia.; Zaĭtseva, K.A.; Lan’ko, S.V. Age-related changes in the relationship between learning progress and auditory working memory characteristics. Zh. Vyssh. Nerv. Deiat. Im. I P Pavlova, 2007, 57(3), 268-275.[PMID: 17642368]
[44]
Dröge, W.; Schipper, H.M. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell, 2007, 6(3), 361-370.[http://dx.doi.org/10.1111/j.1474-9726.2007.00294.x] [PMID: 17517043]
[45]
Bengesser, S.A.; Lackner, N.; Birner, A; Platzer, M.; Fellendorf, F.T; Queissner, R; Filic, K.; Reininghaus, B.; Wallner-Liebmann, S.J.; Mangge, H. Mood stabilizers, oxidative stress and antioxidative defense in euthymia of bipolar disorder. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2016, 15(4), 381-389.
[46]
Pallàs, M.; Camins, A. Molecular and biochemical features in Alzheimer’s disease. Curr. Pharm. Des., 2006, 12(33), 4389-4408.[http://dx.doi.org/10.2174/138161206778792967] [PMID: 17105434]
[47]
Almeida, I.M.; Barreira, J.C.; Oliveira, M.B.P.; Ferreira, I.C. Dietary antioxidant supplements: Benefits of their combined use. Food Chem. Toxicol., 2011, 49(12), 3232-3237.[http://dx.doi.org/10.1016/j.fct.2011.09.012] [PMID: 21959527]
[48]
Li, Q.; Zhao, H.F.; Zhang, Z.F.; Liu, Z.G.; Pei, X.R.; Wang, J.B.; Li, Y. Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing Abeta1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus. Neuroscience, 2009, 163(3), 741-749.[http://dx.doi.org/10.1016/j.neuroscience.2009.07.014] [PMID: 19596052]
[49]
Chen, W.Q.; Zhao, X.L.; Hou, Y.; Li, S.T.; Hong, Y.; Wang, D.L.; Cheng, Y.Y. Protective effects of green tea polyphenols on cognitive impairments induced by psychological stress in rats. Behav. Brain Res., 2009, 202(1), 71-76.[http://dx.doi.org/10.1016/j.bbr.2009.03.017] [PMID: 19447283]
[50]
Okello, E.J.; Abadi, A.M.; Abadi, S.A. Effects of green and black tea consumption on brain wave activities in healthy volunteers as measured by a simplified Electroencephalogram (EEG): A feasibility study. Nutr. Neurosci., 2016, 19(5), 196-205.[http://dx.doi.org/10.1179/1476830515Y.0000000008] [PMID: 25714035]
[51]
Renno, W.M.; Al-Khaledi, G.; Mousa, A.; Karam, S.M.; Abul, H.; Asfar, S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology, 2014, 77, 100-119.[http://dx.doi.org/10.1016/j.neuropharm.2013.09.013] [PMID: 24071567]
[52]
Reitz, C.; Brayne, C.; Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol., 2011, 7(3), 137-152.[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[53]
Besser, L.M.; Mock, C.; Teylan, M.A.; Hassenstab, J.; Kukull, W.A.; Crary, J.F. Differences in cognitive impairment in primary age-related Tauopathy versus Alzheimer disease. J. Neuropathol. Exp. Neurol., 2019, 78(3), 219-228.[http://dx.doi.org/10.1093/jnen/nly132] [PMID: 30715383]
[54]
Hosseinkhani, A.; Sahragard, A.; Namdari, A.; Zarshenas, M.M. Botanical sources for Alzheimer’s: A review on reports from traditional Persian medicine. Am. J. Alzheimers Dis. Other Demen., 2017, 32(7), 429-437.[http://dx.doi.org/10.1177/1533317517717013] [PMID: 28683559]
[55]
Cheng, K.; Chi, N.N.; Liu, J.D. Green tea extract for treatment of cancers: A systematic review protocol. Medicine (Baltimore), 2019, 98(15), e15117.[http://dx.doi.org/10.1097/MD.0000000000015117] [PMID: 30985669]
[56]
Najaf, N.M.; Salehi, M.; Ghazanfarpour, M.; Hoseini, Z.S.; Khadem-Rezaiyan, M. The association between green tea consumption and breast cancer risk: A systematic review and meta-analysis. Phytother. Res., 2018, 32(10), 1855-1864.[http://dx.doi.org/10.1002/ptr.6124] [PMID: 29876987]
[57]
Mansour-Ghanaei, F.; Hadi, A.; Pourmasoumi, M.; Joukar, F.; Golpour, S.; Najafgholizadeh, A. Green tea as a safe alternative approach for nonalcoholic fatty liver treatment: A systematic review and meta-analysis of clinical trials. Phytother. Res., 2018, 32(10), 1876-1884.[http://dx.doi.org/10.1002/ptr.6130] [PMID: 29947156]
[58]
Cascella, M.; Bimonte, S.; Muzio, M.R.; Schiavone, V.; Cuomo, A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: An overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agent. Cancer, 2017, 12(1), 36.[http://dx.doi.org/10.1186/s13027-017-0145-6] [PMID: 28642806]
[59]
Zhu, G.; Yang, S.; Xie, Z.; Wan, X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology, 2018, 138, 331-340.[http://dx.doi.org/10.1016/j.neuropharm.2018.06.030] [PMID: 29944861]
[60]
Zhang, H.; Wang, J.R.; Yau, L.F.; Ho, H.M.; Chan, C.L.; Hu, P.; Liu, L.; Jiang, Z.H. A cellular lipidomic study on the Aβ-induced neurotoxicity and neuroprotective effects of EGCG by using UPLC/MS-based glycerolipids profiling and multivariate analysis. Mol. Biosyst., 2012, 8(12), 3208-3215.[http://dx.doi.org/10.1039/c2mb25126d] [PMID: 23032920]
[61]
Wang, L.; Tian, X. Epigallocatechin-3-gallate protects against homocysteine-induced brain damage in rats. Planta Med., 2018, 84(1), 34-41.[http://dx.doi.org/10.1055/s-0043-114865] [PMID: 28666294]
[62]
Aarsland, D.; Kurz, M.W. The epidemiology of dementia associated with Parkinson disease. J. Neurol. Sci., 2010, 289(1-2), 18-22.[http://dx.doi.org/10.1016/j.jns.2009.08.034] [PMID: 19733364]
[63]
Biasibetti, R.; Tramontina, A.C.; Costa, A.P.; Dutra, M.F.; Quincozes-Santos, A.; Nardin, P.; Bernardi, C.L.; Wartchow, K.M.; Lunardi, P.S.; Gonçalves, C-A. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behav. Brain Res., 2013, 236(1), 186-193.[http://dx.doi.org/10.1016/j.bbr.2012.08.039] [PMID: 22964138]
[64]
Gundimeda, U.; McNeill, T.H.; Schiffman, J.E.; Hinton, D.R.; Gopalakrishna, R. Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis: Possible role of reactive oxygen species. J. Neurosci. Res., 2010, 88(16), 3644-3655.[http://dx.doi.org/10.1002/jnr.22519] [PMID: 20936703]
[65]
Martinez-Perez, D.A.; Jimenez-Del-Rio, M.; Velez-Pardo, C. Epigallocatechin-3-gallate protects and prevents paraquat-induced oxidative stress and neurodegeneration in knockdown dj-1-β Drosophila melanogaster. Neurotox. Res., 2018, 34(3), 401-416.[http://dx.doi.org/10.1007/s12640-018-9899-x] [PMID: 29667128]
[66]
Guo, S.; Yan, J.; Yang, T.; Yang, X.; Bezard, E.; Zhao, B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol. Psychiatry, 2007, 62(12), 1353-1362.[http://dx.doi.org/10.1016/j.biopsych.2007.04.020] [PMID: 17624318]
[67]
Tai, K-K.; Truong, D.D. (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells. Neurosci. Lett., 2010, 482(3), 183-187.[http://dx.doi.org/10.1016/j.neulet.2010.06.018] [PMID: 20542083]
[68]
Strong, K.; Mathers, C.; Bonita, R. Preventing stroke: Saving lives around the world. Lancet Neurol., 2007, 6(2), 182-187.[http://dx.doi.org/10.1016/S1474-4422(07)70031-5] [PMID: 17239805]
[69]
Organization, W.H. The global burden of disease: 2004 update., World Health Organization, 2008.
[70]
Hong, J.T.; Ryu, S.R.; Kim, H.J.; Lee, J.K.; Lee, S.H.; Yun, Y.P.; Lee, B.M.; Kim, P.Y. Protective effect of green tea extract on ischemia/reperfusion-induced brain injury in Mongolian gerbils. Brain Res., 2001, 888(1), 11-18.[http://dx.doi.org/10.1016/S0006-8993(00)02935-8] [PMID: 11146047]
[71]
Bai, Q.; Lyu, Z.; Yang, X.; Pan, Z.; Lou, J.; Dong, T. Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke. Behav. Brain Res., 2017, 321, 79-86.[http://dx.doi.org/10.1016/j.bbr.2016.12.037] [PMID: 28042007]
[72]
Choi, Y.B.; Kim, Y.I.; Lee, K.S.; Kim, B.S.; Kim, D.J. Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res., 2004, 1019(1-2), 47-54.[http://dx.doi.org/10.1016/j.brainres.2004.05.079] [PMID: 15306237]
[73]
Zhang, J-C.; Xu, H.; Yuan, Y.; Chen, J-Y.; Zhang, Y-J.; Lin, Y.; Yuan, S-Y. Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol. Neurobiol., 2017, 54(5), 3652-3664.[http://dx.doi.org/10.1007/s12035-016-9924-0] [PMID: 27206430]
[74]
Lee, S.; Suh, S.; Kim, S. Protective effects of the green tea polyphenol (-)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci. Lett., 2000, 287(3), 191-194.[http://dx.doi.org/10.1016/S0304-3940(00)01159-9] [PMID: 10863027]
[75]
Yao, C.; Zhang, J.; Liu, G.; Chen, F.; Lin, Y. Neuroprotection by (-)-epigallocatechin-3-gallate in a rat model of stroke is mediated through inhibition of endoplasmic reticulum stress. Mol. Med. Rep., 2014, 9(1), 69-76.[http://dx.doi.org/10.3892/mmr.2013.1778] [PMID: 24193141]
[76]
Martins, A.; Schimidt, H.L.; Garcia, A.; Colletta Altermann, C.D.; Santos, F.W.; Carpes, F.P.; da Silva, W.C.; Mello-Carpes, P.B. Supplementation with different teas from Camellia sinensis prevents memory deficits and hippocampus oxidative stress in ischemia-reperfusion. Neurochem. Int., 2017, 108, 287-295.[http://dx.doi.org/10.1016/j.neuint.2017.04.019] [PMID: 28465087]
[77]
Fu, B.; Zeng, Q.; Zhang, Z.; Qian, M.; Chen, J.; Dong, W.; Li, M. Epicatechin gallate protects HBMVECs from ischemia/reperfusion injury through ameliorating apoptosis and autophagy and promoting neovascularization. Oxid. Med. Cell. Longev., 2019, 2019, 7824684.
[78]
Hong, J.T.; Ryu, S.R.; Kim, H.J.; Lee, J.K.; Lee, S.H.; Kim, D.B.; Yun, Y.P.; Ryu, J.H.; Lee, B.M.; Kim, P.Y. Neuroprotective effect of green tea extract in experimental ischemia-reperfusion brain injury. Brain Res. Bull., 2000, 53(6), 743-749.[http://dx.doi.org/10.1016/S0361-9230(00)00348-8] [PMID: 11179838]
[79]
Zhuo, X.; Xie, L.; Shi, F.R.; Li, N.; Chen, X.; Chen, M. The benefits of respective and combined use of green tea polyphenols and ERK inhibitor on the survival and neurologic outcomes in cardiac arrest rats induced by ventricular fibrillation. Am. J. Emerg. Med., 2016, 34(3), 570-575.[http://dx.doi.org/10.1016/j.ajem.2015.12.011] [PMID: 26783148]
[80]
Chen, C-M.; Wu, C-T.; Yang, T-H.; Chang, Y-A.; Sheu, M-L.; Liu, S.H. Green tea catechin prevents hypoxia/reperfusion-evoked oxidative stress-regulated autophagy-activated apoptosis and cell death in microglial cells. J. Agric. Food Chem., 2016, 64(20), 4078-4085.[http://dx.doi.org/10.1021/acs.jafc.6b01513] [PMID: 27144449]
[81]
Lépine, J-P.; Briley, M. The increasing burden of depression. Neuropsychiatr. Dis. Treat., 2011, 7(Suppl. 1), 3-7.[PMID: 21750622]
[82]
Hidese, S.; Ota, M.; Wakabayashi, C.; Noda, T.; Ozawa, H.; Okubo, T.; Kunugi, H. Effects of chronic l-theanine administration in patients with major depressive disorder: An open-label study. Acta Neuropsychiatr., 2017, 29(2), 72-79.[http://dx.doi.org/10.1017/neu.2016.33] [PMID: 27396868]
[83]
Rai, A.; Gill, M.; Kinra, M.; Shetty, R.; Krishnadas, N.; Rao, C.M.; Sumalatha, S.; Kumar, N. Catechin ameliorates depressive symptoms in Sprague Dawley rats subjected to chronic unpredictable mild stress by decreasing oxidative stress. Biomed. Rep., 2019, 11(2), 79-84.[http://dx.doi.org/10.3892/br.2019.1226] [PMID: 31338194]
[84]
Lee, B.; Sur, B.; Kwon, S.; Yeom, M.; Shim, I.; Lee, H.; Hahm, D-H. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol. Ther. (Seoul), 2013, 21(4), 313-322.[http://dx.doi.org/10.4062/biomolther.2013.004] [PMID: 24244817]
[85]
Sárközi, K.; Papp, A.; Horváth, E.; Máté, Z.; Hermesz, E.; Kozma, G.; Zomborszki, Z.P.; Kálomista, I.; Galbács, G.; Szabó, A. Protective effect of green tea against neuro-functional alterations in rats treated with MnO2 nanoparticles. J. Sci. Food Agric., 2017, 97(6), 1717-1724.[http://dx.doi.org/10.1002/jsfa.7919] [PMID: 27435261]
[86]
Hegazy, R.; Mostafa, R.; El-Meligy, R. The therapeutic and neuroprotective effects of green tea in a rat model of terlipressin-induced chronic hyponatremia. Int. J. Pharm. Pharm. Sci., 2016, 8, 253-259.
[87]
Xie, W.; Ramakrishna, N.; Wieraszko, A.; Hwang, Y-W. Promotion of neuronal plasticity by (-)-epigallocatechin-3-gallate. Neurochem. Res., 2008, 33(5), 776-783.[http://dx.doi.org/10.1007/s11064-007-9494-7] [PMID: 17943438]
[88]
Etus, V.; Altug, T.; Belce, A.; Ceylan, S. Green tea polyphenol (-)-epigallocatechin gallate prevents oxidative damage on periventricular white matter of infantile rats with hydrocephalus. Tohoku J. Exp. Med., 2003, 200(4), 203-209.[http://dx.doi.org/10.1620/tjem.200.203] [PMID: 14580151]
[89]
Lee, S-H.; Kim, N.; Kim, S-J.; Song, J.; Gong, Y-D.; Kim, S-Y. Anti-cancer effect of a quinoxaline derivative GK13 as a transglutaminase 2 inhibitor. J. Cancer Res. Clin. Oncol., 2013, 139(8), 1279-1294.[http://dx.doi.org/10.1007/s00432-013-1433-1] [PMID: 23604466]
[90]
Ben, P.; Zhang, Z.; Zhu, Y.; Xiong, A.; Gao, Y.; Mu, J.; Yin, Z.; Luo, L. l-Theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Neurotoxicology, 2016, 57, 95-103.[http://dx.doi.org/10.1016/j.neuro.2016.09.010] [PMID: 27649883]
[91]
Sárközi, K.; Papp, A.; Horváth, E.; Máté, Z.; Ferencz, Á.; Hermesz, E.; Krisch, J.; Paulik, E.; Szabó, A. Green tea and vitamin C ameliorate some neuro-functional and biochemical signs of arsenic toxicity in rats. Nutr. Neurosci., 2016, 19(3), 102-109.[http://dx.doi.org/10.1179/1476830514Y.0000000151] [PMID: 25211010]
[92]
Ogaly, H.A.; Khalaf, A.A.; Ibrahim, M.A.; Galal, M.K.; Abd-Elsalam, R.M. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain. Neurotoxicol. Teratol., 2015, 50, 23-31.[http://dx.doi.org/10.1016/j.ntt.2015.05.005] [PMID: 26013673]
[93]
Lee, S-Y.; Kim, C-Y.; Lee, J-J.; Jung, J-G.; Lee, S-R. Effects of delayed administration of (-)-epigallocatechin gallate, a green tea polyphenol on the changes in polyamine levels and neuronal damage after transient forebrain ischemia in gerbils. Brain Res. Bull., 2003, 61(4), 399-406.[http://dx.doi.org/10.1016/S0361-9230(03)00139-4] [PMID: 12909283]
[94]
Ortiz-López, L.; Márquez-Valadez, B.; Gómez-Sánchez, A.; Silva-Lucero, M.D.; Torres-Pérez, M.; Téllez-Ballesteros, R.I.; Ichwan, M.; Meraz-Ríos, M.A.; Kempermann, G.; Ramírez-Rodríguez, G.B. Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience, 2016, 322, 208-220.[http://dx.doi.org/10.1016/j.neuroscience.2016.02.040] [PMID: 26917271]
[95]
Giunta, B.; Hou, H.; Zhu, Y.; Salemi, J.; Ruscin, A.; Shytle, R.D.; Tan, J. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci. Lett., 2010, 471(3), 134-138.[http://dx.doi.org/10.1016/j.neulet.2010.01.026] [PMID: 20096749]
[96]
Arab, H.; Mahjoub, S.; Hajian-Tilaki, K.; Moghadasi, M. The effect of green tea consumption on oxidative stress markers and cognitive function in patients with Alzheimer’s disease: A prospective intervention study. Caspian J. Intern. Med., 2016, 7(3), 188-194.[PMID: 27757204]
[97]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[98]
Qin, X-Y.; Cheng, Y.; Yu, L-C. Potential protection of green tea polyphenols against intracellular amyloid beta-induced toxicity on primary cultured prefrontal cortical neurons of rats. Neurosci. Lett., 2012, 513(2), 170-173.[http://dx.doi.org/10.1016/j.neulet.2012.02.029] [PMID: 22381400]
[99]
Bastianetto, S.; Yao, Z.X.; Papadopoulos, V.; Quirion, R. Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur. J. Neurosci., 2006, 23(1), 55-64.[http://dx.doi.org/10.1111/j.1460-9568.2005.04532.x] [PMID: 16420415]
[100]
Kalfon, L.; Youdim, M.B.; Mandel, S.A. Green tea polyphenol (-) -epigallocatechin-3-gallate promotes the rapid protein kinase C- and proteasome-mediated degradation of Bad: Implications for neuroprotection. J. Neurochem., 2007, 100(4), 992-1002.[http://dx.doi.org/10.1111/j.1471-4159.2006.04265.x] [PMID: 17156130]
[101]
Di Lorenzo, A.; Nabavi, S.F.; Sureda, A.; Moghaddam, A.H.; Khanjani, S.; Arcidiaco, P.; Nabavi, S.M.; Daglia, M. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression. Mol. Nutr. Food Res., 2016, 60(3), 566-579.[http://dx.doi.org/10.1002/mnfr.201500567] [PMID: 26626862]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy