Research Article

一种识别线粒体DNA控制区甲基化位点的新方法

卷 21, 期 2, 2021

发表于: 28 May, 2020

页: [151 - 164] 页: 14

弟呕挨: 10.2174/1566524020666200528154005

价格: $65

conference banner
摘要

线粒体DNA(mtDNA)甲基化有潜力用作人类发育或疾病的生物标记。但是,mtDNA甲基化步骤既昂贵又费时。因此,我们开发了一种基于RT-PCR分析的新方法,可通过一种简单,快速,特异且低成本的策略来鉴定mtDNA控制区域中甲基化胞嘧啶的碱基。纯化总DNA,并通过RT-PCR亚硫酸氢盐测序确定甲基化。该程序包括DNA纯化,亚硫酸氢盐处理和对照区域的RT-PCR扩增,该区域分为三个带有特定引物的子区域。比较经亚硫酸氢盐处理和不经亚硫酸氢盐处理获得的序列,以鉴定甲基化的胞嘧啶二核苷酸。此外,通过包括阴性对照来评估胞嘧啶从C到U的转化效率。有趣的是,主要在非C-磷酸盐-G(non-CpG)二核苷酸中以及在大多数含有调节元件的区域(例如OH或CSBI,CSBII和CSBIII)观察到mtDNA甲基化。这种新方法将促进有关来自具有不同病理或暴露于不同人群的毒性环境的患者样品中mtDNA甲基化模式的新信息的产生。

关键词: 线粒体表观遗传学,亚硫酸氢盐测序,甲基化,线粒体DNA,D环,RT-PCR。

[1]
Grivell LA, Mitochondrial DNA. Small, beautiful and essential. Nature 1989; 341(6243): 569-71.
[http://dx.doi.org/10.1038/341569a0] [PMID: 2797187]
[2]
Grzybowska-Szatkowska L, Slaska B. Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland. J Appl Genet 2014; 55(2): 173-81.
[http://dx.doi.org/10.1007/s13353-013-0190-9] [PMID: 24414975]
[3]
Rebelo AP, Dillon LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis 2011; 34(4): 941-51.
[http://dx.doi.org/10.1007/s10545-011-9330-8] [PMID: 21541724]
[4]
Gilkerson R, Bravo L, Garcia I, et al. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 2013; 5(5)a011080
[http://dx.doi.org/10.1101/cshperspect.a011080] [PMID: 23637282]
[5]
Raule N, Sevini F, Li S, et al. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 2014; 13(3): 401-7.
[http://dx.doi.org/10.1111/acel.12186] [PMID: 24341918]
[6]
Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 2012; 13(12): 878-90.
[http://dx.doi.org/10.1038/nrg3275] [PMID: 23154810]
[7]
Hudson G, Gomez-Duran A, Wilson IJ, Chinnery PF. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. PLoS Genet 2014; 10(5)e1004369
[http://dx.doi.org/10.1371/journal.pgen.1004369] [PMID: 24852434]
[8]
Dowling DK. Evolutionary perspectives on the links between mitochondrial genotype and disease phenotype. Biochim Biophys Acta 2014; 1840(4): 1393-403.
[http://dx.doi.org/10.1016/j.bbagen.2013.11.013] [PMID: 24246955]
[9]
Mposhi A, Van der Wijst MG, Faber KN, Rots MG. Regulation of mitochondrial gene expression, the epigenetic enigma. Front Biosci 2017; 22: 1099-113.
[http://dx.doi.org/10.2741/4535] [PMID: 28199194]
[10]
D’Aquila P, Bellizzi D, Passarino G. Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16(5): 569-85.
[http://dx.doi.org/10.1007/s10522-015-9562-3] [PMID: 25711915]
[11]
Behzad MM, Shahrabi S, Jaseb K, Bertacchini J, Ketabchi N, Saki N. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response. Biochem Genet 2018; 56(3): 149-75.
[http://dx.doi.org/10.1007/s10528-018-9841-1] [PMID: 29388070]
[12]
Liu Y, Tan Q, Liu F. Differentially methylated circulating DNA: A novel biomarker to monitor beta cell death. J Diabetes Complications 2018; 32(3): 349-53.
[http://dx.doi.org/10.1016/j.jdiacomp.2017.08.012] [PMID: 29415820]
[13]
Xin Y, O’Donnell AH, Ge Y, et al. Role of CpG context and content in evolutionary signatures of brain DNA methylation. Epigenetics 2011; 6(11): 1308-18.
[http://dx.doi.org/10.4161/epi.6.11.17876] [PMID: 22048252]
[14]
Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 2006; 103(5): 1412-7.
[http://dx.doi.org/10.1073/pnas.0510310103] [PMID: 16432200]
[15]
Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 2013; 110(1-2): 25-34.
[http://dx.doi.org/10.1016/j.ymgme.2013.07.012] [PMID: 23920043]
[16]
Bellizzi D, D’Aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013; 20(6): 537-47.
[http://dx.doi.org/10.1093/dnares/dst029] [PMID: 23804556]
[17]
Bianchessi V, Vinci MC, Nigro P, et al. Methylation profiling by bisulfite sequencing analysis of the mtDNA Non-Coding Region in replicative and senescent Endothelial Cells. Mitochondrion 2016; 27: 40-7.
[http://dx.doi.org/10.1016/j.mito.2016.02.004] [PMID: 26910457]
[18]
Saini SK, Mangalhara KC, Prakasam G, Bamezai RNK. DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep 2017; 7(1): 1525.
[http://dx.doi.org/10.1038/s41598-017-01743-y] [PMID: 28484249]
[19]
Gowher H, Jeltsch A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol 2001; 309(5): 1201-8.
[http://dx.doi.org/10.1006/jmbi.2001.4710] [PMID: 11399089]
[20]
Yu D, Du Z, Pian L, et al. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells. Stem Cells Int 2017.20171764549
[http://dx.doi.org/10.1155/2017/1764549] [PMID: 28484495]
[21]
Jia Y, Song H, Gao G, Cai D, Yang X, Zhao R. Maternal Betaine Supplementation during Gestation Enhances Expression of mtDNA-Encoded Genes through D-Loop DNA Hypomethylation in the Skeletal Muscle of Newborn Piglets. J Agric Food Chem 2015; 63(46): 10152-60.
[http://dx.doi.org/10.1021/acs.jafc.5b04418] [PMID: 26527363]
[22]
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484-92.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[23]
Byun HM, Panni T, Motta V, et al. Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 2013; 10: 18.
[http://dx.doi.org/10.1186/1743-8977-10-18] [PMID: 23656717]
[24]
Pirola CJ, Gianotti TF, Burgueño AL, et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2013; 62(9): 1356-63.
[http://dx.doi.org/10.1136/gutjnl-2012-302962] [PMID: 22879518]
[25]
Blanch M, Mosquera JL, Ansoleaga B, Ferrer I, Barrachina M. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease. Am J Pathol 2016; 186(2): 385-97.
[http://dx.doi.org/10.1016/j.ajpath.2015.10.004] [PMID: 26776077]
[26]
Devall M, Mill J, Lunnon K. The mitochondrial epigenome: a role in Alzheimer’s disease? Epigenomics 2014; 6(6): 665-75.
[http://dx.doi.org/10.2217/epi.14.50] [PMID: 25531259]
[27]
Mishra M, Kowluru RA. Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2015; 56(9): 5133-42.
[http://dx.doi.org/10.1167/iovs.15-16937] [PMID: 26241401]
[28]
Taylor RW, Taylor GA, Durham SE, Turnbull DM. The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations. Nucleic Acids Res 2001; 29(15): E74-4.
[http://dx.doi.org/10.1093/nar/29.15.e74] [PMID: 11470889]
[29]
Kumar S, Bellis C, Zlojutro M, Melton PE, Blangero J, Curran JE. Large scale mitochondrial sequencing in Mexican Americans suggests a reappraisal of Native American origins. BMC Evol Biol 2011; 11: 293.
[http://dx.doi.org/10.1186/1471-2148-11-293] [PMID: 21978175]
[30]
Lott MT, Leipzig JN, Derbeneva O, et al. Wallace, mtDNA Variation and Analysis Using Mitomap and Mitomaster Curr Protoc Bioinformatics 2013 44: 1 23-1-26.
[31]
Matsuda S, Yasukawa T, Sakaguchi Y, et al. Accurate estimation of 5-methylcytosine in mammalian mitochondrial DNA. Sci Rep 2018; 8(1): 5801.
[http://dx.doi.org/10.1038/s41598-018-24251-z] [PMID: 29643477]
[32]
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013; 38(1): 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[33]
Lioznova AV, Khamis AM, Artemov AV, et al. CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics 2019; 20(1): 102.
[http://dx.doi.org/10.1186/s12864-018-5387-1] [PMID: 30709331]
[34]
Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2(6): 607-17.
[http://dx.doi.org/10.1177/1947601910393957] [PMID: 21941617]
[35]
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24(5): 556-76.
[http://dx.doi.org/10.1093/humupd/dmy021] [PMID: 29992283]
[36]
Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 2014; 1839(12): 1362-72.
[http://dx.doi.org/10.1016/j.bbagrm.2014.02.007] [PMID: 24560929]
[37]
Ficz G. New insights into mechanisms that regulate DNA methylation patterning. J Exp Biol 2015; 218(Pt 1): 14-20.
[http://dx.doi.org/10.1242/jeb.107961] [PMID: 25568447]
[38]
Raine A, Liljedahl U, Nordlund J. Data quality of whole genome bisulfite sequencing on Illumina platforms. PLoS One 2018; 13(4)e0195972
[http://dx.doi.org/10.1371/journal.pone.0195972] [PMID: 29668744]
[39]
Urich MA, Nery JR, Lister R, Schmitz RJ, Ecker JR. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat Protoc 2015; 10(3): 475-83.
[http://dx.doi.org/10.1038/nprot.2014.114] [PMID: 25692984]
[40]
Mechta M, Ingerslev LR, Fabre O, Picard M, Barrès R. Evidence Suggesting Absence of Mitochondrial DNA Methylation. Front Genet 2017; 8: 166.
[http://dx.doi.org/10.3389/fgene.2017.00166] [PMID: 29163634]
[41]
Abel ED. Mitochondrial Dynamics and Metabolic Regulation in Cardiac and Skeletal Muscle. Trans Am Clin Climatol Assoc 2018; 129: 266-78.
[PMID: 30166722]
[42]
Lundsgaard AM, Fritzen AM, Kiens B. Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends Endocrinol Metab 2018; 29(1): 18-30.
[http://dx.doi.org/10.1016/j.tem.2017.10.011] [PMID: 29221849]
[43]
Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008; 9(6): 465-76.
[http://dx.doi.org/10.1038/nrg2341] [PMID: 18463664]
[44]
Feng J, Zhou Y, Campbell SL, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010; 13(4): 423-30.
[http://dx.doi.org/10.1038/nn.2514] [PMID: 20228804]
[45]
Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M. Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 1984; 12(12): 4811-24.
[http://dx.doi.org/10.1093/nar/12.12.4811] [PMID: 6330684]
[46]
Infantino V, Castegna A, Iacobazzi F, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 2011; 102(3): 378-82.
[http://dx.doi.org/10.1016/j.ymgme.2010.11.166] [PMID: 21195648]
[47]
Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 2011; 108(9): 3630-5.
[http://dx.doi.org/10.1073/pnas.1012311108] [PMID: 21321201]
[48]
Ghosh S, Sengupta S, Scaria V. Hydroxymethyl cytosine marks in the human mitochondrial genome are dynamic in nature. Mitochondrion 2016; 27: 25-31.
[http://dx.doi.org/10.1016/j.mito.2016.01.003] [PMID: 26826294]
[49]
Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. Biology (Basel) 2016; 5(1)E3
[http://dx.doi.org/10.3390/biology5010003] [PMID: 26751487]
[50]
Morris J, Grimmer-Somers K, Kumar S, et al. Effectiveness of a physiotherapy-initiated telephone triage of orthopedic waitlist patients. Patient Relat Outcome Meas 2011; 2: 151-9.
[PMID: 22915976]
[51]
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 2010; 5(1)e8888
[52]
Martinez-Cortes J, Salazar-Flores J, Haro-Guerrero R, et al. Maternal admixture and population structure in Mexican-Mestizos based on mtDNA haplogroups. Am J Phys Anthropol 2013; 151(4): 526-37.
[PMID: 23754474]
[53]
Patil V, Cuenin C, Chung F, et al. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res 2019; 47(19): 10072-85.
[http://dx.doi.org/10.1093/nar/gkz762] [PMID: 31665742]
[54]
Cardon LR, Burge C, Clayton DA, Karlin S. Pervasive CpG suppression in animal mitochondrial genomes. Proc Natl Acad Sci USA 1994; 91(9): 3799-803.
[http://dx.doi.org/10.1073/pnas.91.9.3799] [PMID: 8170990]
[55]
Guo JU, Su Y, Shin JH, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 2014; 17(2): 215-22.
[http://dx.doi.org/10.1038/nn.3607] [PMID: 24362762]
[56]
Grandjean V, Yaman R, Cuzin F, Rassoulzadegan M. Inheritance of an epigenetic mark: the CpG DNA methyltransferase 1 is required for de novo establishment of a complex pattern of non-CpG methylation. PLoS One 2007; 2(11)e1136
[http://dx.doi.org/10.1371/journal.pone.0001136] [PMID: 17989773]
[57]
Wong M, Gertz B, Chestnut BA, Martin LJ. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci 2013; 7: 279.
[http://dx.doi.org/10.3389/fncel.2013.00279] [PMID: 24399935]
[58]
Denis H, Ndlovu MN, Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep 2011; 12(7): 647-56.
[http://dx.doi.org/10.1038/embor.2011.110] [PMID: 21660058]
[59]
Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care 2012; 35(2): 375-82.
[http://dx.doi.org/10.2337/dc11-1593] [PMID: 22210577]
[60]
Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. Exp Gerontol 2014; 56: 175-81.
[http://dx.doi.org/10.1016/j.exger.2014.03.027] [PMID: 24709344]
[61]
Kim JA, Kwon M, Kim J. Allosteric Regulation of Chromatin-Modifying Enzymes. Biochemistry 2018.
[PMID: 30335997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy