Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Theranostic Nanoparticles for Pancreatic Cancer Treatment

Author(s): Leela R. Jaidev*, Laxmi S. Chede and Hemanth K. Kandikattu

Volume 21, Issue 2, 2021

Published on: 16 May, 2020

Page: [203 - 214] Pages: 12

DOI: 10.2174/1871530320666200516164911

Price: $65

conference banner
Abstract

Pancreatic cancer is one of the low vascular permeable tumors with a high mortality rate. The five-year survival period is ~5%. The field of drug delivery is at its pace in developing unique drug delivery carriers to treat high mortality rate cancers such as pancreatic cancer. Theranostic nanoparticles are the new novel delivery carriers where the carrier is loaded with both diagnostic and therapeutic agents. The present review discusses various therapeutic and theranostic nanocarriers for pancreatic cancer.

Keywords: Theranostics, pancreatic cancer, nanoparticles, chemotherapy, imaging, magnetic hyperthermia, combinatorial treatment and 3D pancreatic cancer.

Graphical Abstract
[1]
Street, W. Cancer Facts & Figures 2019; American Cancer Society: Atlanta, GA, USA, 2019.
[2]
Odze, R.D.; Goldblum, J.R. Surgical pathology of the GI tract, liver, biliary tract, and pancreas; Elsevier Health Sciences, 2009.
[3]
Delpu, Y.; Hanoun, N.; Lulka, H.; Sicard, F.; Selves, J.; Buscail, L.; Torrisani, J.; Cordelier, P. Genetic and epigenetic alterations in pancreatic carcinogenesis. Curr. Genomics, 2011, 12(1), 15-24.
[http://dx.doi.org/10.2174/138920211794520132] [PMID: 21886451]
[4]
Lowy, A.M.; Leach, S.D.; Philip, P. Pancreatic cancer; Springer Science & Business Media, 2008.
[http://dx.doi.org/10.1007/978-0-387-69252-4]
[5]
Bamford, S.; Dawson, E.; Forbes, S.; Clements, J.; Pettett, R.; Dogan, A.; Flanagan, A.; Teague, J.; Futreal, P.A.; Stratton, M.R.; Wooster, R. The COSMIC (Catalogue of somatic mutations in cancer) database and website. Br. J. Cancer, 2004, 91(2), 355-358.
[http://dx.doi.org/10.1038/sj.bjc.6601894] [PMID: 15188009]
[6]
Hall, J.M.; Lee, M.K.; Newman, B.; Morrow, J.E.; Anderson, L.A.; Huey, B.; King, M-C. Linkage of early-onset familial breast cancer to chromosome 17q21. Science, 1990, 250(4988), 1684-1689.
[http://dx.doi.org/10.1126/science.2270482] [PMID: 2270482]
[7]
Miyaki, M.; Kuroki, T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun., 2003, 306(4), 799-804.
[http://dx.doi.org/10.1016/S0006-291X(03)01066-0] [PMID: 12821112]
[8]
Ballehaninna, U.K.; Chamberlain, R.S. Serum CA 19-9 as a biomarker for pancreatic cancer—a comprehensive review. Indian J. Surg. Oncol., 2011, 2(2), 88-100.
[http://dx.doi.org/10.1007/s13193-011-0042-1] [PMID: 22693400]
[9]
Koprowski, H.; Herlyn, M.; Steplewski, Z.; Sears, H.F. Specific antigen in serum of patients with colon carcinoma. Science, 1981, 212(4490), 53-55.
[http://dx.doi.org/10.1126/science.6163212] [PMID: 6163212]
[10]
Duffy, M.J. CA 19-9 as a marker for gastrointestinal cancers: a review. Ann. Clin. Biochem., 1998, 35(Pt 3), 364-370.
[http://dx.doi.org/10.1177/000456329803500304] [PMID: 9635101]
[11]
Lamerz, R. Role of tumour markers, cytogenetics. Annals of oncology, 1999, 10(suppl_4), S145-S149.
[http://dx.doi.org/10.1093/annonc/10.suppl_4.S145]
[12]
Steinberg, W. The clinical utility of the CA 19-9 tumor-associated antigen. Am. J. Gastroenterol., 1990, 85(4), 350-355.
[PMID: 2183589]
[13]
Goonetilleke, K.S.; Siriwardena, A.K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol., 2007, 33(3), 266-270.
[http://dx.doi.org/10.1016/j.ejso.2006.10.004] [PMID: 17097848]
[14]
Duffy, M.J.; Sturgeon, C.; Lamerz, R.; Haglund, C.; Holubec, V.L.; Klapdor, R.; Nicolini, A.; Topolcan, O.; Heinemann, V. Tumor markers in pancreatic cancer: a European group on tumor markers (EGTM) status report. Ann. Oncol., 2010, 21(3), 441-447.
[http://dx.doi.org/10.1093/annonc/mdp332] [PMID: 19690057]
[15]
Jalanko, H.; Kuusela, P.; Roberts, P.; Sipponen, P.; Haglund, C.A.; Mäkelä, O. Comparison of a new tumour marker, CA 19-9, with alpha-fetoprotein and carcinoembryonic antigen in patients with upper gastrointestinal diseases. J. Clin. Pathol., 1984, 37(2), 218-222.
[http://dx.doi.org/10.1136/jcp.37.2.218] [PMID: 6198342]
[16]
Ma, Z.; Ma, Q.; Wang, Z. An evaluation of the diagnostic value of CA19-9 and CEA levels in patients with pancreatic cancer. J. Nanjing Med. Uni., 2009, 23(3), 199-202.
[http://dx.doi.org/10.1016/S1007-4376(09)60055-1]
[17]
Uygur-Bayramiçli, O.; Dabak, R.; Orbay, E.; Dolapçıoğlu, C.; Sargin, M.; Kılıçoğlu, G.; Güleryüzlü, Y.; Mayadağlı, A. Type 2 diabetes mellitus and CA 19-9 levels. World J. Gastroenterol., 2007, 13(40), 5357-5359.
[http://dx.doi.org/10.3748/wjg.v13.i40.5357] [PMID: 17879406]
[18]
Mann, D.V.; Edwards, R.; Ho, S.; Lau, W.Y.; Glazer, G. Elevated tumour marker CA19-9: clinical interpretation and influence of obstructive jaundice. Eur. J. Surg. Oncol., 2000, 26(5), 474-479.
[http://dx.doi.org/10.1053/ejso.1999.0925] [PMID: 11016469]
[19]
Steinberg, W.M.; Gelfand, R.; Anderson, K.K.; Glenn, J.; Kurtzman, S.H.; Sindelar, W.F.; Toskes, P.P. Comparison of the sensitivity and specificity of the CA19-9 and carcinoembryonic antigen assays in detecting cancer of the pancreas. Gastroenterology, 1986, 90(2), 343-349.
[http://dx.doi.org/10.1016/0016-5085(86)90930-3] [PMID: 2416628]
[20]
Ona, F.V.; Zamcheck, N.; Dhar, P.; Moore, T.; Kupchik, H.Z. Carcinoembryonic antigen (CEA) in the diagnosis of pancreatic cancer. Cancer, 1973, 31(2), 324-327.
[http://dx.doi.org/10.1002/1097-0142(197302)31:2<324:AID-CNCR2820310208>3.0.CO;2-Y] [PMID: 4687879]
[21]
Abe, T.; Koi, C.; Kohi, S.; Song, K-B.; Tamura, K.; Macgregor-Das, A.; Kitaoka, N.; Chuidian, M.; Ford, M.; Dbouk, M. Gene variants that affect levels of circulating tumor markers increase identification of patients with pancreatic cancer. Clin. Gastroenterol. Hepatol., 2019, 8(5), 1161-1169.e5.
[http://dx.doi.org/10.1016/j.cgh.2019.10.036] [PMID: 31676359]
[22]
Palmer, D.H.; Stocken, D.D.; Hewitt, H.; Markham, C.E.; Hassan, A.B.; Johnson, P.J.; Buckels, J.A.; Bramhall, S.R. A randomized phase 2 trial of neoadjuvant chemotherapy in resectable pancreatic cancer: gemcitabine alone versus gemcitabine combined with cisplatin. Ann. Surg. Oncol., 2007, 14(7), 2088-2096.
[http://dx.doi.org/10.1245/s10434-007-9384-x] [PMID: 17453298]
[23]
Burris, H.; Storniolo, A.M. Assessing clinical benefit in the treatment of pancreas cancer: gemcitabine compared to 5-fluorouracil. Eur. J. Cancer, 1997, 33(Suppl. 1), S18-S22.
[http://dx.doi.org/10.1016/S0959-8049(96)00324-3] [PMID: 9166095]
[24]
Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; Bennouna, J.; Bachet, J.B.; Khemissa-Akouz, F.; Péré-Vergé, D.; Delbaldo, C.; Assenat, E.; Chauffert, B.; Michel, P.; Montoto-Grillot, C.; Ducreux, M. Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med., 2011, 364(19), 1817-1825.
[http://dx.doi.org/10.1056/NEJMoa1011923] [PMID: 21561347]
[25]
Riess, H.; Helm, A.; Niedergethmann, M.; Schmidt-Wolf, I.; Moik, M.; Hammer, C.; Zippel, K.; Weigang-Kohler, K.; Stauch, M.; Oettle, H. A randomised, prospective, multicenter, phase III trial of gemcitabine, 5-fluorouracil (5-FU), folinic acid vs. gemcitabine alone in patients with advanced pancreatic cancer. J. Clin. Oncol., 2005, 23(16_suppl), LBA4009-LBA4009.
[26]
Landry, J.; Catalano, P.J.; Staley, C.; Harris, W.; Hoffman, J.; Talamonti, M.; Xu, N.; Cooper, H.; Benson, A.B. III Randomized phase II study of gemcitabine plus radiotherapy versus gemcitabine, 5-fluorouracil, and cisplatin followed by radiotherapy and 5-fluorouracil for patients with locally advanced, potentially resectable pancreatic adenocarcinoma. J. Surg. Oncol., 2010, 101(7), 587-592.
[http://dx.doi.org/10.1002/jso.21527] [PMID: 20461765]
[27]
Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; Frese, K.K.; Denicola, G.; Feig, C.; Combs, C.; Winter, S.P.; Ireland-Zecchini, H.; Reichelt, S.; Howat, W.J.; Chang, A.; Dhara, M.; Wang, L.; Rückert, F.; Grützmann, R.; Pilarsky, C.; Izeradjene, K.; Hingorani, S.R.; Huang, P.; Davies, S.E.; Plunkett, W.; Egorin, M.; Hruban, R.H.; Whitebread, N.; McGovern, K.; Adams, J.; Iacobuzio-Donahue, C.; Griffiths, J.; Tuveson, D.A. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009, 324(5933), 1457-1461.
[http://dx.doi.org/10.1126/science.1171362] [PMID: 19460966]
[28]
Li, X.; Huang, D.; Zhang, Q.; Guo, C.; Fu, Q.; Zhang, X.; Tang, T-Y.; Su, W.; Chen, Y-W.; Chen, W. The efficacy and toxicity of chemotherapy in the elderly with advanced pancreatic cancer. Pancreatology, 2020, 20(1), 95-100.
[http://dx.doi.org/10.1016/j.pan.2019.11.012] [PMID: 31786057]
[29]
Li, F.; Zhao, X.; Wang, H.; Zhao, R.; Ji, T.; Ren, H.; Anderson, G.J.; Nie, G.; Hao, J. Multiple layer-by-layer lipid-polymer hybrid nanoparticles for improved FOLFIRINOX chemotherapy in pancreatic tumor models. Adv. Funct. Mater., 2015, 25(5), 788-798.
[http://dx.doi.org/10.1002/adfm.201401583]
[30]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[31]
Hu, C-M.J.; Kaushal, S.; Tran Cao, H.S.; Aryal, S.; Sartor, M.; Esener, S.; Bouvet, M.; Zhang, L. Half-antibody functionalized lipid-polymer hybrid nanoparticles for targeted drug delivery to carcinoembryonic antigen presenting pancreatic cancer cells. Mol. Pharm., 2010, 7(3), 914-920.
[http://dx.doi.org/10.1021/mp900316a] [PMID: 20394436]
[32]
Aggarwal, S.; Yadav, S.; Gupta, S. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer. J. Biomed. Nanotechnol., 2011, 7(1), 137-138.
[http://dx.doi.org/10.1166/jbn.2011.1238] [PMID: 21485840]
[33]
Snima, K.S.; Jayakumar, R.; Unnikrishnan, A.G.; Nair, S.V.; Lakshmanan, V-K. O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells. Carbohydr. Polym., 2012, 89(3), 1003-1007.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.050] [PMID: 24750892]
[34]
Jaidev, L.R.; Krishnan, U.M.; Sethuraman, S. Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Mater. Sci. Eng. C, 2015, 47, 40-47.
[http://dx.doi.org/10.1016/j.msec.2014.11.027] [PMID: 25492170]
[35]
Zhang, Y.; Kim, W.Y.; Huang, L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials, 2013, 34(13), 3447-3458.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.063] [PMID: 23380359]
[36]
Arya, G.; Vandana, M.; Acharya, S.; Sahoo, S.K. Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine (Lond.), 2011, 7(6), 859-870.
[http://dx.doi.org/10.1016/j.nano.2011.03.009] [PMID: 21550422]
[37]
Vandana, M.; Sahoo, S.K. Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials, 2010, 31(35), 9340-9356.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.010] [PMID: 20851464]
[38]
Réjiba, S.; Reddy, L.H.; Bigand, C.; Parmentier, C.; Couvreur, P.; Hajri, A. Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomedicine (Lond.), 2011, 7(6), 841-849.
[http://dx.doi.org/10.1016/j.nano.2011.02.012] [PMID: 21419876]
[39]
Jia, L.; Zheng, J-J.; Jiang, S-M.; Huang, K-H. Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles. World J. Gastroenterol., 2010, 16(8), 1008-1013.
[http://dx.doi.org/10.3748/wjg.v16.i8.1008] [PMID: 20180242]
[40]
Yoshida, M.; Takimoto, R.; Murase, K.; Sato, Y.; Hirakawa, M.; Tamura, F.; Sato, T.; Iyama, S.; Osuga, T.; Miyanishi, K.; Takada, K.; Hayashi, T.; Kobune, M.; Kato, J. Targeting anticancer drug delivery to pancreatic cancer cells using a fucose-bound nanoparticle approach. PLoS One, 2012, 7(7)e39545
[http://dx.doi.org/10.1371/journal.pone.0039545] [PMID: 22808043]
[41]
Qian, C.; Wang, Y.; Chen, Y.; Zeng, L.; Zhang, Q.; Shuai, X.; Huang, K. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles. Biomaterials, 2013, 34(26), 6175-6184.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.056] [PMID: 23721794]
[42]
David, K.I.; Jaidev, L.R.; Sethuraman, S.; Krishnan, U.M. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer. Colloids Surf. B Biointerfaces, 2015, 135, 689-698.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.038] [PMID: 26340358]
[43]
Wason, M.S.; Colon, J.; Das, S.; Seal, S.; Turkson, J.; Zhao, J.; Baker, C.H. Sensitization of pancreatic cancer cells to radiation by cerium oxide nanoparticle-induced ROS production. Nanomedicine (Lond.), 2013, 9(4), 558-569.
[http://dx.doi.org/10.1016/j.nano.2012.10.010] [PMID: 23178284]
[44]
Lu, J.; Li, Z.; Zink, J.I.; Tamanoi, F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine (Lond.), 2012, 8(2), 212-220.
[http://dx.doi.org/10.1016/j.nano.2011.06.002] [PMID: 21703996]
[45]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Bauer, N.A.; Chauhan, N.; Kumar, D.; Jaggi, M.; Chauhan, S.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine, 2012, 7, 1761-1779.
[PMID: 22619526]
[46]
Patra, C.R.; Bhattacharya, R.; Wang, E.; Katarya, A.; Lau, J.S.; Dutta, S.; Muders, M.; Wang, S.; Buhrow, S.A.; Safgren, S.L.; Yaszemski, M.J.; Reid, J.M.; Ames, M.M.; Mukherjee, P.; Mukhopadhyay, D. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res., 2008, 68(6), 1970-1978.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6102] [PMID: 18339879]
[47]
Pittella, F.; Miyata, K.; Maeda, Y.; Suma, T.; Watanabe, S.; Chen, Q.; Christie, R.J.; Osada, K.; Nishiyama, N.; Kataoka, K. Pancreatic cancer therapy by systemic administration of VEGF siRNA contained in calcium phosphate/charge-conversional polymer hybrid nanoparticles. J. Control. Release, 2012, 161(3), 868-874.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.005] [PMID: 22580114]
[48]
Zeng, L.; Li, J.; Wang, Y.; Qian, C.; Chen, Y.; Zhang, Q.; Wu, W.; Lin, Z.; Liang, J.; Shuai, X.; Huang, K. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. Nanomedicine (Lond.), 2014, 10(2), 463-472.
[http://dx.doi.org/10.1016/j.nano.2013.08.007] [PMID: 24028894]
[49]
Girgis, M.D.; Federman, N.; Rochefort, M.M.; McCabe, K.E.; Wu, A.M.; Nagy, J.O.; Denny, C.; Tomlinson, J.S. An engineered anti-CA19-9 cys-diabody for positron emission tomography imaging of pancreatic cancer and targeting of polymerized liposomal nanoparticles. J. Surg. Res., 2013, 185(1), 45-55.
[http://dx.doi.org/10.1016/j.jss.2013.05.095]
[50]
Kumagai, M.; Kano, M.R.; Morishita, Y.; Ota, M.; Imai, Y.; Nishiyama, N.; Sekino, M.; Ueno, S.; Miyazono, K.; Kataoka, K. Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-β inhibitor. J. Control. Release, 2009, 140(3), 306-311.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.002] [PMID: 19524625]
[51]
Eck, W.; Craig, G.; Sigdel, A.; Ritter, G.; Old, L.J.; Tang, L.; Brennan, M.F.; Allen, P.J.; Mason, M.D. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano, 2008, 2(11), 2263-2272.
[http://dx.doi.org/10.1021/nn800429d] [PMID: 19206392]
[52]
Kaushal, S.; McElroy, M.K.; Luiken, G.A.; Talamini, M.A.; Moossa, A.R.; Hoffman, R.M.; Bouvet, M. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J. Gastrointest. Surg., 2008, 12(11), 1938-1950.
[http://dx.doi.org/10.1007/s11605-008-0581-0] [PMID: 18665430]
[53]
Montet, X.; Weissleder, R.; Josephson, L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug. Chem., 2006, 17(4), 905-911.
[http://dx.doi.org/10.1021/bc060035+] [PMID: 16848396]
[54]
Yang, L.; Mao, H.; Cao, Z.; Wang, Y. A.; Peng, X.; Wang, X.; Sajja, H. K.; Wang, L.; Duan, H.; Ni, C. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterol, 2009, 136(5), 1514-1525. e2
[http://dx.doi.org/10.1053/j.gastro.2009.01.006]
[55]
Basel, M.T.; Balivada, S.; Wang, H.; Shrestha, T.B.; Seo, G.M.; Pyle, M.; Abayaweera, G.; Dani, R.; Koper, O.B.; Tamura, M.; Chikan, V.; Bossmann, S.H.; Troyer, D.L. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomedicine, 2012, 7, 297-306.
[http://dx.doi.org/10.2147/IJN.S28344] [PMID: 22287840]
[56]
Wang, L.; Dong, J.; Ouyang, W.; Wang, X.; Tang, J. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles. Oncol. Rep., 2012, 27(3), 719-726.
[PMID: 22134718]
[57]
Maier-Hauff, K.; Ulrich, F.; Nestler, D.; Niehoff, H.; Wust, P.; Thiesen, B.; Orawa, H.; Budach, V.; Jordan, A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol., 2011, 103(2), 317-324.
[http://dx.doi.org/10.1007/s11060-010-0389-0] [PMID: 20845061]
[58]
Kelkar, S.S.; Reineke, T.M. Theranostics: combining imaging and therapy. Bioconjug. Chem., 2011, 22(10), 1879-1903.
[http://dx.doi.org/10.1021/bc200151q] [PMID: 21830812]
[59]
Agarwal, V.; Chatterjee, K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale, 2018, 10(35), 16365-16397.
[http://dx.doi.org/10.1039/C8NR04284E] [PMID: 30151537]
[60]
Agarwal, V.; Varghese, N.; Dasgupta, S.; Sood, A.; Chatterjee, K. Engineering a 3D MoS2 foam using keratin exfoliated nanosheets. Chem. Eng. J., 2019, 374, 254-262.
[http://dx.doi.org/10.1016/j.cej.2019.05.185]
[61]
Taib, N.I.; Agarwal, V.; Smith, N.M.; Woodward, R.C.; Pierre, T.G.S.; Iyer, K.S. Direct correlation of PNIPAM thermal transition and magnetic resonance relaxation of iron oxide nanoparticles. Mater. Chem. Front., 2017, 1(11), 2335-2340.
[http://dx.doi.org/10.1039/C7QM00202E]
[62]
Agarwal, V.; Ho, D.; Ho, D.; Galabura, Y.; Yasin, F.; Gong, P.; Ye, W.; Singh, R.; Munshi, A.; Saunders, M.; Woodward, R.C.; St Pierre, T.; Wood, F.M.; Fear, M.; Lorenser, D.; Sampson, D.D.; Zdyrko, B.; Luzinov, I.; Smith, N.M.; Iyer, K.S. Functional reactive polymer electrospun matrix. ACS Appl. Mater. Interfaces, 2016, 8(7), 4934-4939.
[http://dx.doi.org/10.1021/acsami.5b11447] [PMID: 26780245]
[63]
Jaidev, L.R.; Chellappan, D.R.; Bhavsar, D.V.; Ranganathan, R.; Sivanantham, B.; Subramanian, A.; Sharma, U.; Jagannathan, N.R.; Krishnan, U.M.; Sethuraman, S. Multi-functional nanoparticles as theranostic agents for the treatment & imaging of pancreatic cancer. Acta Biomater., 2017, 49, 422-433.
[http://dx.doi.org/10.1016/j.actbio.2016.11.053] [PMID: 27890622]
[64]
Zhu, L.; Wang, D.; Wei, X.; Zhu, X.; Li, J.; Tu, C.; Su, Y.; Wu, J.; Zhu, B.; Yan, D. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J. Control. Release, 2013, 169(3), 228-238.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.015] [PMID: 23485450]
[65]
Lee, G.Y.; Qian, W.P.; Wang, L.; Wang, Y.A.; Staley, C.A.; Satpathy, M.; Nie, S.; Mao, H.; Yang, L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano, 2013, 7(3), 2078-2089.
[http://dx.doi.org/10.1021/nn3043463] [PMID: 23402593]
[66]
Chen, W.; Ayala-Orozco, C.; Biswal, N.C.; Perez-Torres, C.; Bartels, M.; Bardhan, R.; Stinnet, G.; Liu, X-D.; Ji, B.; Deorukhkar, A.; Brown, L.V.; Guha, S.; Pautler, R.G.; Krishnan, S.; Halas, N.J.; Joshi, A. Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine (Lond.), 2014, 9(8), 1209-1222.
[http://dx.doi.org/10.2217/nnm.13.84] [PMID: 24063415]
[67]
Singh, A.; Dilnawaz, F.; Mewar, S.; Sharma, U.; Jagannathan, N.R.; Sahoo, S.K. Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl. Mater. Interfaces, 2011, 3(3), 842-856.
[http://dx.doi.org/10.1021/am101196v] [PMID: 21370886]
[68]
Moniaux, N.; Chakraborty, S.; Yalniz, M.; Gonzalez, J.; Shostrom, V.K.; Standop, J.; Lele, S.M.; Ouellette, M.; Pour, P.M.; Sasson, A.R.; Brand, R.E.; Hollingsworth, M.A.; Jain, M.; Batra, S.K. Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br. J. Cancer, 2008, 98(9), 1540-1547.
[http://dx.doi.org/10.1038/sj.bjc.6604329] [PMID: 18392050]
[69]
Chen, Y.; Li, Z.; Wang, H.; Wang, Y.; Han, H.; Jin, Q.; Ji, J. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-IR imaging and photothermal therapy of pancreatic cancer. ACS Appl. Mater. Interfaces, 2016, 8(11), 6852-6858.
[http://dx.doi.org/10.1021/acsami.6b00251] [PMID: 26918365]
[70]
Spring, B.; Mai, Z.; Rai, P. Theranostic nanocells for simultaneous imaging and photodynamic therapy of pancreatic cancer, optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy XIX; Int. Soc. Opt. Photo, 2010, p. 755104.
[http://dx.doi.org/10.1117/12.843725]
[71]
Jaidev, L.R.; Bhavsar, D.V.; Sharma, U.; Jagannathan, N.R.; Krishnan, U.M.; Sethuraman, S. Engineered multifunctional nanomaterials for multimodal imaging of retinoblastoma cells in vitro. J. Biomater. Sci. Polym. Ed., 2014, 25(11), 1093-1109.
[http://dx.doi.org/10.1080/09205063.2014.917040] [PMID: 24911385]
[72]
Kar, S.; Gajewicz, A.; Puzyn, T.; Roy, K. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol. In Vitro, 2014, 28(4), 600-606.
[http://dx.doi.org/10.1016/j.tiv.2013.12.018] [PMID: 24412539]
[73]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[74]
Von Hoff, D.D.; Ramanathan, R.K.; Borad, M.J.; Laheru, D.A.; Smith, L.S.; Wood, T.E.; Korn, R.L.; Desai, N.; Trieu, V.; Iglesias, J.L.; Zhang, H.; Soon-Shiong, P.; Shi, T.; Rajeshkumar, N.V.; Maitra, A.; Hidalgo, M. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol., 2011, 29(34), 4548-4554.
[http://dx.doi.org/10.1200/JCO.2011.36.5742] [PMID: 21969517]
[75]
Van Cutsem, E.; Vervenne, W.L.; Bennouna, J.; Humblet, Y.; Gill, S.; Van Laethem, J-L.; Verslype, C.; Scheithauer, W.; Shang, A.; Cosaert, J.; Moore, M.J. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol., 2009, 27(13), 2231-2237.
[http://dx.doi.org/10.1200/JCO.2008.20.0238] [PMID: 19307500]
[76]
Kandikattu, H.K.; Upparahalli Venkateshaiah, S.; Mishra, A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev., 2019, 47, 83-98.
[http://dx.doi.org/10.1016/j.cytogfr.2019.05.003] [PMID: 31126874]
[77]
Verma, A.K.; Kandikattu, H.K.; Manohar, M.; Shukla, A.; Upparahalli Venkateshaiah, S.; Zhu, X.; Mishra, A. Intestinal overexpression of IL-18 promotes eosinophils-mediated allergic disorders. Immunology, 2019, 157(2), 110-121.
[http://dx.doi.org/10.1111/imm.13051] [PMID: 30779114]
[78]
Sandersa, N.L.; Venkateshaiah, S.U.; Manohar, M.; Verma, A.K.; Kandikattu, H.K.; Mishra, A. Interleukin-18 has an important role in differentiation and maturation of mucosal mast cells. J. Mucosal. Immunol. Res., 2018, 2(1), 109.
[PMID: 30474083]
[79]
Manohar, M.; Kandikattu, H.K.; Verma, A.K.; Mishra, A. IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(6), G954-G965.
[http://dx.doi.org/10.1152/ajpgi.00139.2018] [PMID: 30212254]
[80]
Venkateshaiah, S.U.; Niranjan, R.; Manohar, M.; Verma, A.K.; Kandikattu, H.K.; Lasky, J.A.; Mishra, A. Attenuation of allergen, IL-13-and TGF-α-induced lung fibrosis following the treatment of IL-15 in mice. Am. J. Respir. Cell Mol. Biol., 2019, 61(1), 97-109.
[81]
Cullis, J.; Siolas, D.; Avanzi, A.; Barui, S.; Maitra, A.; Bar-Sagi, D. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res., 2017, 5(3), 182-190.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0125] [PMID: 28108630]
[82]
Cao, X.; Hu, Y.; Luo, S.; Wang, Y.; Gong, T.; Sun, X.; Fu, Y.; Zhang, Z. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm. Sin. B, 2019, 9(3), 575-589.
[http://dx.doi.org/10.1016/j.apsb.2018.12.009] [PMID: 31193785]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy