Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization

Author(s): Patricia Bento da Silva*, Victor Hugo Sousa Araújo, Bruno Fonseca-Santos, Mariana Cristina Solcia, Camila Maringolo Ribeiro, Isabel Cristiane da Silva, Renata Carolina Alves, Andressa Maria Pironi, Ana Carolina Lopes Silva, Francesca Damiani Victorelli, Mariza Aires Fernandes, Paula Scanavez Ferreira, Gilmar Hanck da Silva, Fernando Rogério Pavan* and Marlus Chorilli*

Volume 28, Issue 10, 2021

Published on: 13 May, 2020

Page: [1906 - 1956] Pages: 51

DOI: 10.2174/0929867327666200513080719

Price: $65

conference banner
Abstract

The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.

Keywords: Bacterial resistance, WHO priority list, nanotechnology, metallic nanoparticles, copper, gold, platinum, silver, titanium, zinc.

[1]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[2]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[http://dx.doi.org/10.1016/j.addr.2013.07.011] [PMID: 23892192]
[3]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[4]
OPAS/OMS Brasil. OMS publica lista de bactérias para as quais se necessitam novos antibióticos urgentemente, 2017. Available at: http://www.paho.org/bra/index.php?option=com_content&view=article&id=5357:oms-publica-lista-debacterias-para-as-quais-se-necessitam-novos-antibioticosurgentemente&Itemid=812 (Accessed: 20 Feb, 2018).
[5]
The Union. The Union welcomes the WHO’s recognition of Mycobacterium tuberculosis alongside other pathogens as priority for R&D, 2017. Available at: https://theunion.org/news/the-union-welcomes-the-whosrecognition-of-mycobacterium-tuberculosis-alongside-otherpathogens-as-priority-for-rd (Accessed: 20 March, 2018).
[6]
da Silva, P.B.; Campos, D.L.; Ribeiro, C.M.; da Silva, I.C.; Pavan, F.R. New antimycobacterial agents in the pre-clinical phase or beyond: recent advances in patent literature (2001-2016) Expert Opin. Ther. Pat., 2017, 27(3), 269-282.
[http://dx.doi.org/10.1080/13543776.2017.1253681] [PMID: 27796146]
[7]
World Health Organization. Tuberculosis (TB): WHO report highlights TB as a top priority for research and development of new antibiotics, 2017. Available at: http://www. who.int/tb/features_archive/WHO_report_highlights_TB_top_priority/en/ (Accessed: 20 March 2018).
[8]
Singh, R.; Smitha, M.S.; Singh, S.P. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol., 2014, 14(7), 4745-4756.
[http://dx.doi.org/10.1166/jnn.2014.9527] [PMID: 24757944]
[9]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[10]
Banerjee, A.; Halder, U.; Bandopadhyay, R. Preparations and applications of polysaccharide based green synthesized metal nanoparticles: a state-of-the-art. J. Cluster Sci., 2017, 28(4), 1803-1813.
[http://dx.doi.org/10.1007/s10876-017-1219-8]
[11]
Sau, T.K.; Rogach, A.L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv. Mater., 2010, 22(16), 1781-1804.
[http://dx.doi.org/10.1002/adma.200901271] [PMID: 20512953]
[12]
Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3(3), 135-140.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[13]
Banach, M.; Pulit-Prociak, J. Proecological method for the preparation of metal nanoparticles. J. Clean. Prod., 2017, 141, 1030-1039.
[http://dx.doi.org/10.1016/j.jclepro.2016.09.180]
[14]
Liz-Marzán, L.M. Nanometals: formation and color. Mater. Today, 2004, 7(2), 26-31.
[http://dx.doi.org/10.1016/S1369-7021(04)00080-X]
[15]
Brust, M.; Kiely, C.J. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A Physicochem. Eng. Asp., 2002, 202(2-3), 175-186.
[http://dx.doi.org/10.1016/S0927-7757(01)01087-1]
[16]
Faraday, M. X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc., 1857, 147, 145-181.
[http://dx.doi.org/10.1098/rstl.1857.0011]
[17]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[18]
Zhang, T.; Wang, L.; Chen, Q.; Chen, C. Cytotoxic potential of silver nanoparticles. Yonsei Med. J., 2014, 55(2), 283-291.
[http://dx.doi.org/10.3349/ymj.2014.55.2.283] [PMID: 24532494]
[19]
Naghdi, M.; Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein J. Nanotechnol., 2015, 6(1), 2354-2376.
[http://dx.doi.org/10.3762/bjnano.6.243] [PMID: 26734527]
[20]
Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles: a review. J. Nanotechnol., 2014, 2014, , 510246..
[http://dx.doi.org/10.1155/2014/510246]
[21]
Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 2011, 82(4), 489-494.
[http://dx.doi.org/10.1016/j.chemosphere.2010.10.023] [PMID: 21055786]
[22]
Siegel, J.; Staszek, M.; Polívková, M.; Řezníčková, A.; Rimpelová, S.; Švorčík, V. Green synthesized noble metals for biological applications. Mater Today Proc., 2016, 3(2), 608-616.
[http://dx.doi.org/10.1016/j.matpr.2016.01.098]
[23]
Park, T.J.; Lee, K.G.; Lee, S.Y. Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol., 2016, 100(2), 521-534.
[http://dx.doi.org/10.1007/s00253-015-6904-7] [PMID: 26300292]
[24]
Siegel, J.; Kolávrova, K.; Vosmanská, V.; Rimpelová, S.; Leitner, J.; Svorcik, V. Antibacterial properties of green-synthesized noble metal nanoparticles. Mater. Lett., 2013, 113, 59-62.
[http://dx.doi.org/10.1016/j.matlet.2013.09.047]
[25]
Xia, Y. Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal. Bioanal. Chem., 2016, 408(11), 2813-2825.
[http://dx.doi.org/10.1007/s00216-015-9203-3] [PMID: 26650732]
[26]
Zhang, J.; Chaker, M.; Ma, D. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J. Colloid Interface Sci., 2017, 489, 138-149.
[http://dx.doi.org/10.1016/j.jcis.2016.07.050] [PMID: 27554172]
[27]
Elguindi, J.; Hao, X.; Lin, Y.; Alwathnani, H.A.; Wei, G.; Rensing, C. Advantages and challenges of increased antimicrobial copper use and copper mining. Appl. Microbiol. Biotechnol., 2011, 91(2), 237-249.
[http://dx.doi.org/10.1007/s00253-011-3383-3] [PMID: 21656137]
[28]
Sorenson, J.R. Copper complexes offer a physiological approach to treatment of chronic diseases. Prog. Med. Chem., 1989, 26, 437-568.
[http://dx.doi.org/10.1016/S0079-6468(08)70246-7] [PMID: 2690187]
[29]
Gould, S.W.J.; Fielder, M.D.; Kelly, A.F.; Morgan, M.; Kenny, J.; Naughton, D.P. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann. Microbiol., 2009, 59(1), 151-156.
[http://dx.doi.org/10.1007/BF03175613]
[30]
Michels, H.T.; Wilks, S.A.; Noyce, J.O.; Keevil, C.W. Copper alloys for human infectious disease control. Mater. Sci. Technol., 2005, 1, 3-13.
[31]
Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol., 2011, 77(5), 1541-1547.
[http://dx.doi.org/10.1128/AEM.02766-10] [PMID: 21193661]
[32]
O’Gorman, J.; Humphreys, H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect., 2012, 81(4), 217-223.
[http://dx.doi.org/10.1016/j.jhin.2012.05.009] [PMID: 22738611]
[33]
Chatterjee, A.K.; Sarkar, R.K.; Chattopadhyay, A.P.; Aich, P.; Chakraborty, R.; Basu, T. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology, 2012, 23(8), , 085103..
[http://dx.doi.org/10.1088/0957-4484/23/8/085103] [PMID: 22293320]
[34]
Usman, M.S.; El Zowalaty, M.E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomedicine, 2013, 8, 4467-4479.
[http://dx.doi.org/10.2147/ijn.s50837] [PMID: 24293998]
[35]
Shaker, M.A.; Shaaban, M.I. Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. Int. J. Pharm., 2017, 525(1), 71-84.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.019] [PMID: 28411141]
[36]
Daniel, M.C.M.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[37]
Ficai, A.; Grumezescu, A.M. Nanostructures for Antimicrobial Therapy, 1st ed.; Elsevier, 2017.
[38]
Perry, D.L. Handbook of Inorganic Compounds, 2nd ed.; Taylor & Francis, 2011, p. 553.
[http://dx.doi.org/10.1201/b10908]
[39]
Atkins, P.W.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F.A. Shriver & Atkins Information Retrieval; Oxford University Press, 2006.
[40]
Atkins, P.W.; Overton, T. Shriver and Atkin’s Inorganic Chemistry, 5th ed.; Oxford University Press: USA, 2010.
[41]
Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825.
[http://dx.doi.org/10.2174/138161210791209009] [PMID: 20337575]
[42]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534-1568.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[43]
Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int. J. Nanomedicine, 2015, 10, 4203-4222.
[http://dx.doi.org/10.2147/IJN.S83953] [PMID: 26170659]
[44]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1(10), 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[45]
O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol., 2000, 54, 49-79.
[http://dx.doi.org/10.1146/annurev.micro.54.1.49] [PMID: 11018124]
[46]
Clement, J.L.; Jarrett, P.S. Antibacterial silver. Met. Based Drugs, 1994, 1(5-6), 467-482.
[http://dx.doi.org/10.1155/MBD.1994.467] [PMID: 18476264]
[47]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[48]
Wan, G.; Ruan, L.; Yin, Y.; Yang, T.; Ge, M.; Cheng, X. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int. J. Nanomedicine, 2016, 11, 3789-3800.
[http://dx.doi.org/10.2147/IJN.S104166] [PMID: 27574420]
[49]
Amin, M.; Hameed, S.; Ali, A.; Anwar, F.; Shahid, S.A.; Shakir, I.; Yaqoob, A.; Hasan, S.; Khan, S.A. Green synthesis of silver nanoparticles: structural features and in vivo and in vitro therapeutic effects against Helicobacter pylori induced gastritis. Bioinorg Chem. Appl., 2014, 2014, 135824.
[http://dx.doi.org/10.1155/2014/135824] [PMID: 25214825]
[50]
Wong, K.K.Y.; Liu, X. Silver nanoparticles - the real “silver bullet” in clinical medicine? Med. Chem. Comm., 2010, 1(2), 125-131.
[http://dx.doi.org/10.1039/c0md00069h]
[51]
Colling, J.H.; Dunderdale, J. The durability of paint films containing titanium dioxide - contraction, erosion and clear layer theories. Prog. Org. Coat., 1981, 9(1), 47-84.
[http://dx.doi.org/10.1016/0033-0655(81)80015-5]
[52]
Day, R.E. The role of titanium dioxide pigments in the degradation and stabilisation of polymers in the plastics industry. Polym. Degrad. Stabil., 1990, 29(1), 73-92.
[http://dx.doi.org/10.1016/0141-3910(90)90023-Z]]
[53]
Jaroenworaluck, A.; Sunsaneeyametha, W.; Kosachan, N.; Stevens, R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf. Interf. Anal., 2006, 38(4), 473-477.
[http://dx.doi.org/10.1002/sia.2313]
[54]
Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre Toxicol., 2013, 10, 15-48.
[http://dx.doi.org/10.1186/1743-8977-10-15] [PMID: 23587290]
[55]
Horvat, B.; Rečnik, A.; Dražić, G. The growth of anatase bipyramidal crystals during hydrothermal synthesis. J. Cryst. Growth, 2012, 347(1), 19-24.
[http://dx.doi.org/10.1016/j.jcrysgro.2012.03.027]
[56]
Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence, 2011, 2(5), 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035] [PMID: 21921677]
[57]
Liu, Y.; Li, J.; Qiu, X.; Burda, C. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J. Photochem. Photobiol. Chem., 2007, 190(1), 94-100.
[http://dx.doi.org/10.1016/j.jphotochem.2007.03.017]
[58]
Chaleshtori, M.Z.; Masud, S.M.S.; Saupe, G.B. Using new porous nanocomposites for photocatalytic water decontamination. Proc. MRS, 2009, 1145, 436.
[http://dx.doi.org/10.1557/PROC-1145-MM04-36]
[59]
Grumezescu, A.M. Food Preservation, 1st ed.; Academic Press, 2006.
[60]
Gelover, S.; Gómez, L.A.; Reyes, K.; Teresa Leal, M. A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res., 2006, 40(17), 3274-3280.
[http://dx.doi.org/10.1016/j.watres.2006.07.006] [PMID: 16949121]
[61]
Yemmireddy, V.K.; Hung, Y-C. Effect of binder on the physical stability and bactericidal property of titanium dioxide (TiO2) nanocoatings on food contact surfaces. Food Control, 2015, 57, 82-88.
[http://dx.doi.org/10.1016/j.foodcont.2015.04.009]
[62]
US Food and Drug Administration. CFR - Code of Federal Regulations Title 21, 2017. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=73.2575 (Accessed: Mar 16, 2018).
[63]
Martirosyan, A.; Schneider, Y.J. Engineered nanomaterials in food: implications for food safety and consumer health. Int. J. Environ. Res. Public Health, 2014, 11(6), 5720-5750.
[http://dx.doi.org/10.3390/ijerph110605720] [PMID: 24879486]
[64]
De Jong, B.; Meeder, A.M.; Koekkoek, K.W.A.C.; Schouten, M.A.; Westers, P.; Van Zanten, A.R.H. Pre-post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study. J. Hosp. Infect., 2018, 99(3), 256-262.
[http://dx.doi.org/10.1016/j.jhin.2017.04.008] [PMID: 28545831]
[65]
Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp., 2014, 457(1), 263-274.
[http://dx.doi.org/10.1016/j.colsurfa.2014.05.057]
[66]
Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 2007, 90(213902), 2139021-2139023.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[67]
Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett., 2008, 279(1), 71-76.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01012.x] [PMID: 18081843]
[68]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[69]
Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev., 2008, 21(3), 538-582.
[http://dx.doi.org/10.1128/CMR.00058-07] [PMID: 18625687]
[70]
Vaneechoutte, M.; Dijkshoorn, L.; Nemec, A.; Kämpfer, P.; Wauters, G. Acinetobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods.In: Manual of Clinical Microbiology; Jorgensen, J.H.; Carroll, K.C.; Funke, G.; Pfaller, M.A.; Landry, M.L.; Richter, S.S.; Warnock, D.W., Eds.; Wiley Online Library, 2011, pp. 714-738.
[http://dx.doi.org/10.1128/9781555817381.ch44]
[71]
Fournier, P.E.; Richet, H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis., 2006, 42(5), 692-699.
[http://dx.doi.org/10.1086/500202] [PMID: 16447117]
[72]
Joly-Guillou, M.L. Clinical impact and pathogenicity of Acinetobacter. Clin. Microbiol. Infect., 2005, 11(11), 868-873.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01227.x] [PMID: 16216100]
[73]
Falagas, M.E.; Rafailidis, P.I. Attributable mortality of Acinetobacter baumannii: no longer a controversial issue. Crit. Care, 2007, 11(3), 134.
[http://dx.doi.org/10.1186/cc5911] [PMID: 17543135]
[74]
Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no escape! An update from the infectious diseases society of America. Clin. Infect. Dis., 2009, 48(1), 1-12.
[http://dx.doi.org/10.1086/595011] [PMID: 19035777]
[75]
Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol., 2007, 5(12), 939-951.
[http://dx.doi.org/10.1038/nrmicro1789] [PMID: 18007677]
[76]
Lee, K.; Yong, D.; Jeong, S.H.; Chong, Y. Multidrug-resistant Acinetobacter spp.: increasingly problematic nosocomial pathogens. Yonsei Med. J., 2011, 52(6), 879-891.
[http://dx.doi.org/10.3349/ymj.2011.52.6.879] [PMID: 22028150]
[77]
Maragakis, L.L.; Perl, T.M. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis., 2008, 46(8), 1254-1263.
[http://dx.doi.org/10.1086/529198] [PMID: 18444865]
[78]
Blanco, N.; Harris, A.D.; Rock, C.; Johnson, J.K.; Pineles, L.; Bonomo, R.A.; Srinivasan, A.; Pettigrew, M.M.; Thom, K.A. The CDC Epicenters Program. Risk factors and outcomes associated with multidrug-resistant Acinetobacter baumannii upon ICU admission. Antimicrob. Agents Chemother., 2017, 62(1), e01631-17.
[http://dx.doi.org/10.1128/aac.01631-17] [PMID: 29133567]
[79]
Coelho, J.; Woodford, N.; Turton, J.; Livermore, D.M. Multiresistant Acinetobacter in the UK: how big a threat? J. Hosp. Infect., 2004, 58(3), 167-169.
[http://dx.doi.org/10.1016/j.jhin.2003.12.019] [PMID: 15501329]
[80]
Liu, C.-P.; Shih, S.-C.; Wang, N.-Y.; Wu, A.Y.; Sun, F.-J.; Chow, S.-F.; Chen, T.L.; Yan, T.R. Risk factors of mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect., 2016, 49(6), 934-940.
[http://dx.doi.org/10.1016/j.jmii.2014.10.006] [PMID: 25553994]
[81]
Kluytmans-Vandenbergh, M.F.Q.; Kluytmans, J.A.J.W.; Voss, A. Dutch guideline for preventing nosocomial transmission of highly resistant microorganisms (HRMO). Infection, 2005, 33(5-6), 309-313.
[http://dx.doi.org/10.1007/s15010-005-5079-z] [PMID: 16258859]
[82]
Durante-Mangoni, E.; Zarrilli, R. Global spread of drug-resistant Acinetobacter baumannii: molecular epidemiology and management of antimicrobial resistance. Future Microbiol., 2011, 6(4), 407-422.
[http://dx.doi.org/10.2217/fmb.11.23] [PMID: 21526942]
[83]
Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect., 2006, 12(9), 826-836.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01456.x] [PMID: 16882287]
[84]
Bonomo, R.A.; Szabo, D. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis., 2006, 43(Suppl. 2), S49-S56.
[http://dx.doi.org/10.1086/504477] [PMID: 16894515]
[85]
Fernández-Cuenca, F.; Martínez-Martínez, L.; Conejo, M.C.; Ayala, J.A.; Perea, E.J.; Pascual, A. Relationship between beta-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii. J. Antimicrob. Chemother., 2003, 51(3), 565-574.
[http://dx.doi.org/10.1093/jac/dkg097] [PMID: 12615856]
[86]
Limansky, A.S.; Mussi, M.A.; Viale, A.M. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J. Clin. Microbiol., 2002, 40(12), 4776-4778.
[http://dx.doi.org/10.1128/JCM.40.12.4776-4778.2002] [PMID: 12454194]
[87]
Mussi, M.A.; Limansky, A.S.; Viale, A.M. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrob. Agents Chemother., 2005, 49(4), 1432-1440.
[http://dx.doi.org/10.1128/AAC.49.4.1432-1440.2005] [PMID: 15793123]
[88]
European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2016 - Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, 2017.
[89]
Łysakowska, M.E.; Ciebiada-Adamiec, A.; Klimek, L.; Sienkiewicz, M. The activity of silver nanoparticles (axonnite) on clinical and environmental strains of Acinetobacter spp. Burns, 2015, 41(2), 364-371.
[http://dx.doi.org/10.1016/j.burns.2014.07.014] [PMID: 25145873]
[90]
Tiwari, M.; Raghav, R.; Tiwari, V. Comparative anti-bacterial activity of differently capped silver nanomaterial on the carbapenem sensitive and resistant strains of Acinetobacter baumannii. Nanomed. Nanotechnol., 2015, 6(5), 314.
[http://dx.doi.org/10.4172/2157-7439.1000314]
[91]
Jafari, A.; Majidpour, A.; Safarkar, R.; Masumeh Mirnurollahi, S.; Arastoo, S. The synthesis and characterizes of nano-metallic particles against antibiotic resistant bacteria, isolated from Rasoul-e-Akram hospital’s patients, Tehran, Iran. J. Mol. Biol. Res., 2016, 6(1), 80.
[http://dx.doi.org/10.5539/jmbr.v6n1p80]
[92]
Tsai, T.M.; Chang, H.H.; Chang, K.C.; Liu, Y.L.; Tseng, C.C. A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria. J. Chem. Technol. Biotechnol., 2010, 85(12), 1642-1653.
[http://dx.doi.org/10.1002/jctb.2476]
[93]
Bergey, D.H.; Krieg, N.R.; Holt, J.G. Bergey’s manual of systematic bacteriology; Williams & Wilkins: Baltimore, MD, 1984, vol. 1, p. 408.
[94]
Klockgether, J.; Tümmler, B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000 Res., 2017, 6(0), 1261.
[http://dx.doi.org/10.12688/f1000research.10506.1] [PMID: 28794863]
[95]
Jones, R.N.; Kirby, J.T.; Beach, M.L.; Biedenbach, D.J.; Pfaller, M.A. Geographic variations in activity of broad-spectrum β-lactams against Pseudomonas aeruginosa: summary of the worldwide SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn. Microbiol. Infect. Dis., 2002, 43(3), 239-243.
[http://dx.doi.org/10.1016/S0732-8893(02)00390-5] [PMID: 12106958]
[96]
Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol., 2017, 7, 39.
[http://dx.doi.org/10.3389/fcimb.2017.00039] [PMID: 28261568]
[97]
Gonçalves-de-Albuquerque, C.F.; Silva, A.R.; Burth, P.; Rocco, P.R.M.; Castro-Faria, M.V.; Castro-Faria-Neto, H.C. Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Int. J. Med. Microbiol., 2016, 306(1), 20-28.
[http://dx.doi.org/10.1016/j.ijmm.2015.11.001] [PMID: 26652129]
[98]
Micek, S.T.; Lloyd, A.E.; Ritchie, D.J.; Reichley, R.M.; Fraser, V.J.; Kollef, M.H. Pseudomonas aeruginosa bloodstream infection: importance of appropriate initial antimicrobial treatment. Antimicrob. Agents Chemother., 2005, 49(4), 1306-1311.
[http://dx.doi.org/10.1128/AAC.49.4.1306-1311.2005] [PMID: 15793102]
[99]
Sader, H.S.; Jones, R.N. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int. J. Antimicrob. Agents, 2005, 25(2), 95-109.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.10.002] [PMID: 15664479]
[100]
Buhl, M.; Peter, S.; Willmann, M. Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: a systematic review. Expert Rev. Anti Infect. Ther., 2015, 13(9), 1159-1170.
[http://dx.doi.org/10.1586/14787210.2015.1064310] [PMID: 26153817]
[101]
Ruiz-Garbajosa, P.; Cantón, R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev. Esp. Quimioter., 2017, 30(Suppl. 1), 8-12.
[PMID: 28882007]
[102]
Carmeli, Y.; Troillet, N.; Eliopoulos, G.M.; Samore, M.H. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob. Agents Chemother., 1999, 43(6), 1379-1382.
[http://dx.doi.org/10.1128/AAC.43.6.1379] [PMID: 10348756]
[103]
Strateva, T.; Yordanov, D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J. Med. Microbiol., 2009, 58(Pt 9), 1133-1148.
[http://dx.doi.org/10.1099/jmm.0.009142-0] [PMID: 19528173]
[104]
Fusté, E.; López-Jiménez, L.; Segura, C.; Gainza, E.; Vinuesa, T.; Viñas, M. Carbapenem-resistance mechanisms of multidrug-resistant Pseudomonas aeruginosa. J. Med. Microbiol., 2013, 62(Pt 9), 1317-1325.
[http://dx.doi.org/10.1099/jmm.0.058354-0] [PMID: 23722434]
[105]
Logan, L.K.; Gandra, S.; Mandal, S.; Klein, E.Y.; Levinson, J.; Weinstein, R.A.; Laxminarayan, R. Prevention Epicenters Program, US Centers for Disease Control and Prevention. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012 J. Pediatric Infect. Dis. Soc., 2017, 6(4), 352-359.
[http://dx.doi.org/10.1093/jpids/piw064] [PMID: 27856730]
[106]
Buehrle, D.J.; Shields, R.K.; Clarke, L.G.; Potoski, B.A.; Clancy, C.J.; Nguyen, M.H. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: risk factors for mortality and microbiologic treatment failure. Antimicrob. Agents Chemother., 2016, 61(1), e01243-16.
[http://dx.doi.org/10.1128/aac.01243-16] [PMID: 27821456]
[107]
Zhang, Y.; Chen, X.L.; Huang, A.W.; Liu, S.L.; Liu, W.J.; Zhang, N.; Lu, X.Z. Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: a meta-analysis of cohort studies. Emerg. Microbes Infect., 2016, 5(3), , e27..
[http://dx.doi.org/10.1038/emi.2016.22] [PMID: 27004762]
[108]
World Health Organization. Guidelines for the Prevention and Control of Carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in Health Care Facilities 2017. Available at: https://www. who.int/infection-prevention/publications/guidelines-cre/en/ (Accessed: 30 June, 2018).
[109]
Labarca, J.A.; Salles, M.J.C.; Seas, C.; Guzmán-Blanco, M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Crit. Rev. Microbiol., 2017, 2014(7828), 1-17.
[http://dx.doi.org/10.3109/1040841x.2014.940494] [PMID: 25159043]
[110]
Farra, A.; Islam, S.; Strålfors, A.; Sörberg, M.; Wretlind, B. Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int. J. Antimicrob. Agents, 2008, 31(5), 427-433.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.12.016] [PMID: 18375104]
[111]
Poole, K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 255-264.
[PMID: 11321581]
[112]
Pai, H.; Kim, J.; Kim, J.; Lee, J.H.; Choe, K.W.; Gotoh, N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother., 2001, 45(2), 480-484.
[http://dx.doi.org/10.1128/AAC.45.2.480-484.2001] [PMID: 11158744]
[113]
Meletis, G.; Exindari, M.; Vavatsi, N.; Sofianou, D.; Diza, E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa., 2012.
[114]
Rizek, C.; Fu, L.; Dos Santos, L.C.; Leite, G.; Ramos, J.; Rossi, F.; Guimaraes, T.; Levin, A.S.; Costa, S.F. Characterization of carbapenem-resistant Pseudomonas aeruginosa clinical isolates, carrying multiple genes coding for this antibiotic resistance. Ann. Clin. Microbiol. Antimicrob., 2014, 13(1), 43.
[http://dx.doi.org/10.1186/s12941-014-0043-3] [PMID: 25179208]
[115]
Llanes, C.; Neuwirth, C.; El Garch, F.; Hocquet, D.; Plésiat, P.; De Bacte, L. Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 beta-lactamase. Clin. Microbiol. Infect., 2006, 12(3), 270-278.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01333.x] [PMID: 16451415]
[116]
F.; MubarakAli, D.; Nithya, C.; Priyanka, R.; Gopinath, V.; Alharbi, N.S.; Thajuddin, N. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling, 2015, 31(4), 379-391.
[http://dx.doi.org/10.1080/08927014.2015.1048686] [PMID: 26057498]
[117]
Guo, J.; Gao, S-H.; Lu, J.; Bond, P.L.; Verstraete, W.; Yuan, Z. Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl. Mater. Interfaces, 2017, 9(27), 22298-22307.
[http://dx.doi.org/10.1021/acsami.7b06433] [PMID: 28636321]
[118]
Amirulhusni, A.N.; Palanisamy, N.K.; Zain, Z.M.; Ping, L.J.; Durairaj, R. Antibacterial effect of silver nanoparticles on multi drug resistant Pseudomonas aeruginosa., 2012.
[119]
Cavassin, E.D.; de Figueiredo, L.F.P.; Otoch, J.P.; Seckler, M.M.; de Oliveira, R.A.; Franco, F.F.; Marangoni, V.S.; Zucolotto, V.; Levin, A.S.; Costa, S.F. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J. Nanobiotechnology, 2015, 13(1), 64.
[http://dx.doi.org/10.1186/s12951-015-0120-6] [PMID: 26438142]
[120]
Raja, M.M.M.; John, S.A. Biosynthesis of silver nanoparticles by marine Micromonospora species (KU 867645) with antibacterial activity against multidrug-resistant hospital-acquired uropathogens. Indian J. Pharm. Sci., 2017, 79(3), 369-376.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000239]
[121]
Salomoni, R.; Léo, P.; Montemor, A.F.; Rinaldi, B.G.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl., 2017, 10, 115-121.
[http://dx.doi.org/10.2147/NSA.S133415] [PMID: 28721025]
[122]
Murray, P.R.; Baron, E.J. American Society for Microbiology. Manual of Clinical Microbiology, 8th ed.; ASM Press: Washington, D.C., 2003.
[123]
Linton, A.H.; Hinton, M.H. Enterobacteriaceae associated with animals in health and disease. Soc. Appl. Bacteriol. Symp. Ser., 1988, 17, 71S-85S.
[PMID: 3142053]
[124]
Lutgring, J.D.; Limbago, B.M. The problem of carbapenemase-producing-carbapenem-resistant-enterobacteriaceae detection. J. Clin. Microbiol., 2016, 54(3), 529-534.
[http://dx.doi.org/10.1128/JCM.02771-15] [PMID: 26739152]
[126]
Young, H.K. Antimicrobial resistance spread in aquatic environments. J. Antimicrob. Chemother., 1993, 31(5), 627-635.
[http://dx.doi.org/10.1093/jac/31.5.627] [PMID: 8335494]
[127]
Matyar, F. 2016.
[128]
Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med., 2010, 362(19), 1804-1813.
[http://dx.doi.org/10.1056/NEJMra0904124] [PMID: 20463340]
[129]
Logan, L.K.; Logan, L.K. Carbapenem-resistant enterobacteriaceae: an emerging problem in children. Clin. Infect. Dis., 2012, 55(6), 852-859.
[http://dx.doi.org/10.1093/cid/cis543] [PMID: 22700827]
[130]
Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis., 2009, 9(4), 228-236.
[http://dx.doi.org/10.1016/S1473-3099(09)70054-4] [PMID: 19324295]
[131]
Zurfluh, K.; Hächler, H.; Nüesch-Inderbinen, M.; Stephan, R. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing enterobacteriaceae isolates from rivers and lakes in Switzerland. Appl. Environ. Microbiol., 2013, 79(9), 3021-3026.
[http://dx.doi.org/10.1128/AEM.00054-13] [PMID: 23455339]
[132]
Thomson, K.S. Extended-spectrum-beta-lactamase, AmpC, and carbapenemase issues. J. Clin. Microbiol., 2010, 48(4), 1019-1025.
[http://dx.doi.org/10.1128/JCM.00219-10] [PMID: 20181902]
[133]
Kocsis, B.; Szabo, D. Antibiotic Resistance Mechanisms in Enterobactericeae.Microbial Pathogens and Strategies for Combating them: Science, Technology and Education; Mendez-Vilas, A.E., Ed.; Formatex Research Center: Spain, 2013, Vol. 1, pp. 251-257.
[134]
van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing enterobacteriaceae. Virulence, 2017, 8(4), 460-469.
[http://dx.doi.org/10.1080/21505594.2016.1222343] [PMID: 27593176]
[135]
Endimiani, A.; Carias, L.L.; Hujer, A.M.; Bethel, C.R.; Hujer, K.M.; Perez, F.; Hutton, R.A.; Fox, W.R.; Hall, G.S.; Jacobs, M.R.; Paterson, D.L.; Rice, L.B.; Jenkins, S.G.; Tenover, F.C.; Bonomo, R.A. Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob. Agents Chemother., 2008, 52(7), 2680-2682.
[http://dx.doi.org/10.1128/AAC.00158-08] [PMID: 18426899]
[136]
Perez, F.; Van Duin, D. Carbapenem-resistant enterobacteriaceae: a menace to our most vulnerable patients. Cleve. Clin. J. Med., 2013, 80(4), 225-233.
[http://dx.doi.org/10.3949/ccjm.80a.12182] [PMID: 23547093]
[137]
Iovleva, A.; Doi, Y. Carbapenem-resistant enterobacteriaceae. Clin. Lab. Med., 2017, 37(2), 303-315.
[http://dx.doi.org/10.1016/j.cll.2017.01.005] [PMID: 28457352]
[138]
Potter, R.F.; D’Souza, A.W.; Dantas, G. The rapid spread of carbapenem-resistant enterobacteriaceae. Drug Resist. Updat., 2016, 29, 30-46.
[http://dx.doi.org/10.1016/j.drup.2016.09.002] [PMID: 27912842]
[139]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[140]
Meletis, G. Carbapenem resistance: overview of the problem and future perspectives. Ther. Adv. Infect. Dis., 2016, 3(1), 15-21.
[http://dx.doi.org/10.1177/2049936115621709] [PMID: 26862399]
[141]
Xia, J.; Gao, J.; Tang, W. Nosocomial infection and its molecular mechanisms of antibiotic resistance. Biosci. Trends, 2016, 10(1), 14-21.
[http://dx.doi.org/10.5582/bst.2016.01020] [PMID: 26877142]
[142]
Shaikh, S.; Rizvi, S.M.D.; Shakil, S.; Hussain, T.; Alshammari, T.M.; Ahmad, W.; Tabrez, S.; Al-Qahtani, M.H.; Abuzenadah, A.M. Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J. Cell. Biochem., 2017, 118(9), 2802-2808.
[http://dx.doi.org/10.1002/jcb.25929] [PMID: 28181300]
[143]
Gu, H.; Ho, P.L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[144]
Picoli, S.U.; Durán, M.; Andrade, P.F.; Duran, N. Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL). Front. Nanosci. Nanotechnol., 2016, 2(2), 107-110.
[http://dx.doi.org/10.15761/FNN.1000117]
[145]
Gygli, S.M.; Borrell, S.; Trauner, A.; Gagneux, S. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol. Rev., 2017, 41(3), 354-373.
[http://dx.doi.org/10.1093/femsre/fux011] [PMID: 28369307]
[146]
Gordon, S.V.; Parish, T. Microbe profile: Mycobacterium tuberculosis: humanity’s deadly microbial foe. Microbiology, 2018, 164(4), 437-439.
[http://dx.doi.org/10.1099/mic.0.000601] [PMID: 29465344]
[147]
Falzon, D.; Schünemann, H.J.; Harausz, E.; González-Angulo, L.; Lienhardt, C.; Jaramillo, E.; Weyer, K. World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur. Respir. J., 2017, 49(3), , 1602308..
[http://dx.doi.org/10.1183/13993003.02308-2016] [PMID: 28331043]
[148]
Zignol, M.; Dean, A.S.; Falzon, D.; van Gemert, W.; Wright, A.; van Deun, A.; Portaels, F.; Laszlo, A.; Espinal, M.A.; Pablos-Méndez, A.; Bloom, A.; Aziz, M.A.; Weyer, K.; Jaramillo, E.; Nunn, P.; Floyd, K.; Raviglione, M.C. 2016.
[149]
Crofton, J.; Mitchison, D.A. Streptomycin resistance in pulmonary tuberculosis. BMJ, 1948, 2(4588), 1009-1015.
[http://dx.doi.org/10.1136/bmj.2.4588.1009] [PMID: 18100441]
[150]
Maitre, T.; Aubry, A.; Jarlier, V.; Robert, J.; Veziris, N.; Bernard, C. CNR-MyRMA. Multidrug and extensively drug-resistant tuberculosis. Med. Mal. Infect., 2017, 47(1), 3-10.
[http://dx.doi.org/10.1016/j.medmal.2016.07.006] [PMID: 27637852]
[151]
Critron, K.M. 1976.
[152]
Matteelli, A.; Roggi, A.; Carvalho, A.C. Extensively drug-resistant tuberculosis: epidemiology and management. Clin. Epidemiol., 2014, 6, 111-118.
[http://dx.doi.org/10.2147/CLEP.S35839] [PMID: 24729727]
[153]
Palomino, J.C.; Martin, A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3(3), 317-340.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[155]
Antimicrobial resistance., 1983.
[156]
Davis, M.A.; Bynum, J.P.W.; Sirovich, B.E. Association between apple consumption and physician visits: appealing the conventional wisdom that an apple a day keeps the doctor away., 2015.
[157]
Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E.A.; London, L.; Lessem, E.; Theron, G.; van Helden, P.; Niemann, S.; Merker, M.; Dowdy, D.; Van Rie, A.; Siu, G.K.; Pasipanodya, J.G.; Rodrigues, C.; Clark, T.G.; Sirgel, F.A.; Esmail, A.; Lin, H.H.; Atre, S.R.; Schaaf, H.S.; Chang, K.C.; Lange, C.; Nahid, P.; Udwadia, Z.F.; Horsburgh, C.R. Jr.; Churchyard, G.J.; Menzies, D.; Hesseling, A.C.; Nuermberger, E.; McIlleron, H.; Fennelly, K.P.; Goemaere, E.; Jaramillo, E.; Low, M.; Jara, C.M.; Padayatchi, N.; Warren, R.M. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med., 2017, 5(4), 291-360.
[http://dx.doi.org/10.1016/S2213-2600(17)30079-6] [PMID: 28344011]
[158]
Zhang, Y; Yew, W.-W. 2015.
[159]
Chaudhari, K.; Surana, S.; Jain, P.; Patel, H.M. Mycobacterium tuberculosis (Mtb) GyrB inhibitors: an attractive approach for developing novel drugs against TB. Eur. J. Med. Chem., 2016, 124, 160-185.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.034] [PMID: 27569197]
[160]
Islam, M.M.; Hameed, H.M.A.; Mugweru, J.; Chhotaray, C.; Wang, C.; Tan, Y.; Liu, J.; Li, X.; Tan, S.; Ojima, I.; Yew, W.W.; Nuermberger, E.; Lamichhane, G.; Zhang, T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genomics, 2017, 44(1), 21-37.
[http://dx.doi.org/10.1016/j.jgg.2016.10.002] [PMID: 28117224]
[161]
Fonseca, J.D.; Knight, G.M.; McHugh, T.D. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int. J. Infect. Dis., 2015, 32, 94-100.
[http://dx.doi.org/10.1016/j.ijid.2015.01.014] [PMID: 25809763]
[162]
Tousif, S.; Singh, D.K.; Mukherjee, S.; Ahmad, S.; Arya, R.; Nanda, R.; Ranganathan, A.; Bhattacharyya, M.; Van Kaer, L.; Kar, S.K.; Das, G. Nanoparticle-formulated curcumin prevents posttherapeutic disease reactivation and reinfection with Mycobacterium tuberculosis following isoniazid therapy. Front. Immunol., 2017, 8, 739.
[http://dx.doi.org/10.3389/fimmu.2017.00739] [PMID: 28713372]
[163]
Mailaender, C.; Reiling, N.; Engelhardt, H.; Bossmann, S.; Ehlers, S.; Niederweis, M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology, 2004, 150(Pt 4), 853-864.
[http://dx.doi.org/10.1099/mic.0.26902-0] [PMID: 15073295]
[164]
Green, K.D.; Garneau-Tsodikova, S. Resistance in tuberculosis: what do we know and where can we go? Front. Microbiol., 2013, 4, 208.
[http://dx.doi.org/10.3389/fmicb.2013.00208] [PMID: 23888158]
[165]
Hugonnet, J-E.; Blanchard, J.S. Irreversible inhibition of the Mycobacterium tuberculosis beta-lactamase by clavulanate. Biochemistry, 2007, 46(43), 11998-12004.
[http://dx.doi.org/10.1021/bi701506h] [PMID: 17915954]
[166]
Hugonnet, J.-E.; Tremblay, L.W.; Boshoff, H.I.; Barry, C.E. 2009.
[167]
Zaunbrecher, M.A.; Sikes, R.D. Jr.; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20004-20009.
[http://dx.doi.org/10.1073/pnas.0907925106] [PMID: 19906990]
[168]
Chen, W.; Biswas, T.; Porter, V.R.; Tsodikov, O.V.; Garneau-Tsodikova, S. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc. Natl. Acad. Sci. USA, 2011, 108(24), 9804-9808.
[http://dx.doi.org/10.1073/pnas.1105379108] [PMID: 21628583]
[169]
Viveiros, M.; Leandro, C.; Amaral, L. Mycobacterial efflux pumps and chemotherapeutic implications. Int. J. Antimicrob. Agents, 2003, 22(3), 274-278.
[http://dx.doi.org/10.1016/S0924-8579(03)00208-5] [PMID: 13678834]
[170]
Lakshmanan, M.; Xavier, A.S. Bedaquiline - The first ATP synthase inhibitor against multi drug resistant tuberculosis. J. Young Pharm., 2013, 5(4), 112-115.
[http://dx.doi.org/10.1016/j.jyp.2013.12.002] [PMID: 24563587]
[171]
Malinga, L.A.; Stoltz, A.; Van der Walt, M. Efflux pump mediated second-line tuberculosis drug resistance. Mycobact. Dis., 2016, 6(3), 1-9.
[http://dx.doi.org/10.4172/2161-1068.1000222]
[172]
da Silva, P.E.A.; Von Groll, A.; Martin, A.; Palomino, J.C. Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol., 2011, 63(1), 1-9.
[http://dx.doi.org/10.1111/j.1574-695X.2011.00831.x] [PMID: 21668514]
[173]
Marquez, B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie, 2005, 87(12), 1137-1147.
[http://dx.doi.org/10.1016/j.biochi.2005.04.012] [PMID: 15951096]
[174]
Milano, A.; Pasca, M.R.; Provvedi, R.; Lucarelli, A.P.; Manina, G.; Ribeiro, A.L.; Manganelli, R.; Riccardi, G. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis (Edinb.), 2009, 89(1), 84-90.
[http://dx.doi.org/10.1016/j.tube.2008.08.003] [PMID: 18851927]
[175]
Hartkoorn, R.C.; Uplekar, S.; Cole, S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(5), 2979-2981.
[http://dx.doi.org/10.1128/AAC.00037-14] [PMID: 24590481]
[176]
Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 2001, 104(6), 901-912.
[http://dx.doi.org/10.1016/S0092-8674(01)00286-0] [PMID: 11290327]
[177]
Bakuła, Z.; Napiórkowska, A.; Bielecki, J.; Augustynowicz-Kopeć, E.; Zwolska, Z.; Jagielski, T. Mutations in the embB gene and their association with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland., 2013.
[178]
Takiff, H.E.; Salazar, L.; Guerrero, C.; Philipp, W.; Huang, W.M.; Kreiswirth, B.; Cole, S.T.; Jacobs, W.R. Jr.; Telenti, A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother., 1994, 38(4), 773-780.
[http://dx.doi.org/10.1128/AAC.38.4.773] [PMID: 8031045]
[179]
Wachino, J.; Shibayama, K.; Kimura, K.; Yamane, K.; Suzuki, S.; Arakawa, Y. RmtC introduces G1405 methylation in 16S rRNA and confers high-level aminoglycoside resistance on Gram-positive microorganisms. FEMS Microbiol. Lett., 2010, 311(1), 56-60.
[http://dx.doi.org/10.1111/j.1574-6968.2010.02068.x] [PMID: 20722735]
[180]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[181]
Spies, F.S.; Ribeiro, A.W.; Ramos, D.F.; Ribeiro, M.O.; Martin, A.; Palomino, J.C.; Rossetti, M.L.; da Silva, P.E.; Zaha, A. Streptomycin resistance and lineage-specific polymorphisms in Mycobacterium tuberculosis gidB gene. J. Clin. Microbiol., 2011, 49(7), 2625-2630.
[http://dx.doi.org/10.1128/JCM.00168-11] [PMID: 21593257]
[182]
Wong, S.Y.; Lee, J.S.; Kwak, H.K.; Via, L.E.; Boshoff, H.I.M.; Barry, C.E. III. Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(6), 2515-2522.
[http://dx.doi.org/10.1128/AAC.01814-10] [PMID: 21444711]
[183]
Ramaswamy, S.V.; Reich, R.; Dou, S-J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E.A. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(4), 1241-1250.
[http://dx.doi.org/10.1128/AAC.47.4.1241-1250.2003] [PMID: 12654653]
[184]
Desjardins, C.A.; Cohen, K.A.; Munsamy, V.; Abeel, T.; Maharaj, K.; Walker, B.J.; Shea, T.P.; Almeida, D.V.; Manson, A.L.; Salazar, A.; Padayatchi, N.; O'Donnell, M.R.; Mlisana, K.P.; Wortman, J.; Birren, B.W.; Grosset, J.; Earl, A.M.; Pym, A.S. Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in Dcycloserine resistance. Nature Genet., 2016, 48(5), 544-551.
[http://dx.doi.org/10.1038/ng.3548] [PMID: 27064254]
[185]
Praba, V.L.; Kathirvel, M.; Vallayyachari, K.; Surendar, K.; Muthuraj, M.; Jesuraj, P.J.; Govindarajan, S.; Raman, K.V. Bactericidal effect of silver nanoparticles against Mycobacterium tuberculosis. J Bionanoscience., 2013, 7(3), 282-287.
[http://dx.doi.org/10.1166/jbns.2013.1138]
[186]
Sarkar, S.; Leo, B.F.; Carranza, C.; Chen, S.; Rivas-Santiago, C.; Porter, A.E.; Ryan, M.P.; Gow, A.; Chung, K.F.; Tetley, T.D.; Zhang, J.J.; Georgopoulos, P.G.; Ohman-Strickland, P.A.; Schwander, S. Modulation of human macrophage responses to Mycobacterium tuberculosis by silver nanoparticles of different size and surface modification. PLoS One, 2015, 10(11), , e0143077..
[http://dx.doi.org/10.1371/journal.pone.0143077] [PMID: 26580078]
[187]
Jafari, A.; Mosavari, N.; Movahedzadeh, F.; Nodooshan, S.J.; Safarkar, R.; Moro, R.; Kamalzadeh, M.; Majidpour, A.; Boustanshenas, M.; Mosavi, T. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines. Microb. Pathog., 2017, 110, 335-344.
[http://dx.doi.org/10.1016/j.micpath.2017.07.010] [PMID: 28710015]
[188]
Taranath, T.C.; Patil, B.N. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: a potent tool against Mycobacterium tuberculosis. Int. J. Mycobacteriol., 2016, 5(2), 197-204.
[http://dx.doi.org/10.1016/j.ijmyco.2016.03.004] [PMID: 27242232]
[189]
Aher, Y.B.; Jain, G.H.; Patil, G.E.; Savale, A.R.; Ghotekar, S.K.; Pore, D.M.; Pansambal, S.S.; Deshmukh, K.K. Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against the selected human pathogens. Int. J. Mol. Clin. Microbiol., 2017, 7(1), 776-786.
[190]
Leclercq, R.; Derlot, E.; Duval, J.; Courvalin, P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med., 1988, 319(3), 157-161.
[http://dx.doi.org/10.1056/NEJM198807213190307] [PMID: 2968517]
[191]
Satilmis, L.; Vanhems, P.; Bénet, T. Outbreaks of vancomycin-resistant enterococci in hospital settings: a systematic review and calculation of the basic reproductive number. Infect. Control Hosp. Epidemiol., 2016, 37(3), 289-294.
[http://dx.doi.org/10.1017/ice.2015.301] [PMID: 26669221]
[192]
Zheng, J.X.; Li, H.; Pu, Z.Y.; Wang, H.Y.; Deng, X.B.; Liu, X.J.; Deng, Q.W.; Yu, Z.J. Bloodstream infections caused by Enterococcus spp: a 10-year retrospective analysis at a tertiary hospital in China. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2017, 37(2), 257-263.
[http://dx.doi.org/10.1007/s11596-017-1725-9] [PMID: 28397040]
[193]
Manassero, N.C.; Navarro, M.; Rocchi, M.; di Bella, H.; Gasparotto, A.M.; Ocaña Carrizo, A.V.; Novillo, F.; Furiasse, D.; Monterisi, A. Analysis of 117 episodes of enterococcal bacteremia: study of epidemiology, microbiology and antimicrobial susceptibility. Rev. Argent. Microbiol., 2016, 48(4), 298-302.
[http://dx.doi.org/10.1016/j.ram.2016.05.002] [PMID: 27567523]
[194]
Huycke, M.M.; Sahm, D.F.; Gilmore, M.S. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg. Infect. Dis., 1998, 4(2), 239-249.
[http://dx.doi.org/10.3201/eid0402.980211] [PMID: 9621194]
[195]
A Paractical Guide, 2nd ed.; Geneva, Switzerland, 2002, pp. 1-64.
[197]
Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 2012, 3(5), 421-433.
[http://dx.doi.org/10.4161/viru.21282] [PMID: 23076243]
[198]
Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther., 2014, 12(10), 1221-1236.
[http://dx.doi.org/10.1586/14787210.2014.956092] [PMID: 25199988]
[199]
Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG clinical guideline: treatment of Helicobacter pylori infection. Am. J. Gastroenterol., 2017, 112(2), 212-239.
[http://dx.doi.org/10.1038/ajg.2016.563] [PMID: 28071659]
[200]
Courvalin, P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis., 2006, 42(Suppl. 1), S25-S34.
[http://dx.doi.org/10.1086/491711] [PMID: 16323116]
[201]
Arthur, M.; Molinas, C.; Courvalin, P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol., 1992, 174(8), 2582-2591.
[http://dx.doi.org/10.1128/JB.174.8.2582-2591.1992] [PMID: 1556077]
[202]
Coburn, B.; Low, D.E.; Patel, S.N.; Poutanen, S.M.; Shahinas, D.; Eshaghi, A.; Willey, B.M.; McGeer, A. Vancomycin-variable Enterococcus faecium: in vivo emergence of vancomycin resistance in a vancomycin-susceptible isolate. J. Clin. Microbiol., 2014, 52(5), 1766-1767.
[http://dx.doi.org/10.1128/JCM.03579-13] [PMID: 24523476]
[203]
Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev., 2000, 13(4), 686-707.
[http://dx.doi.org/10.1128/CMR.13.4.686] [PMID: 11023964]
[204]
Arthur, M.; Molinas, C.; Dutka-Malen, S.; Courvalin, P. Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene, 1991, 103(1), 133-134.
[http://dx.doi.org/10.1016/0378-1119(91)90405-Z] [PMID: 1908809]
[205]
Bugg, T.D.H.; Wright, G.D.; Dutka-Malen, S.; Arthur, M.; Courvalin, P.; Walsh, C.T. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry, 1991, 30(43), 10408-10415.
[http://dx.doi.org/10.1021/bi00107a007] [PMID: 1931965]
[206]
Evers, S.; Sahm, D.F.; Courvalin, P. The vanB gene of vancomycin-resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide-resistance proteins VanA and VanC. Gene, 1993, 124(1), 143-144.
[http://dx.doi.org/10.1016/0378-1119(93)90779-3] [PMID: 8440477]
[207]
Clark, N.C.; Cooksey, R.C.; Hill, B.C.; Swenson, J.M.; Tenover, F.C. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob. Agents Chemother., 1993, 37(11), 2311-2317.
[http://dx.doi.org/10.1128/AAC.37.11.2311] [PMID: 8285611]
[208]
Handwerger, S.; Skoble, J. Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother., 1995, 39(11), 2446-2453.
[http://dx.doi.org/10.1128/AAC.39.11.2446] [PMID: 8585724]
[209]
Perichon, B.; Reynolds, P.; Courvalin, P. VanD-type glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob. Agents Chemother., 1997, 41(9), 2016-2018.
[http://dx.doi.org/10.1128/AAC.41.9.2016] [PMID: 9303405]
[210]
Xu, X.; Lin, D.; Yan, G.; Ye, X.; Wu, S.; Guo, Y.; Zhu, D.; Hu, F.; Zhang, Y.; Wang, F.; Jacoby, G.A.; Wang, M. vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob. Agents Chemother., 2010, 54(11), 4643-4647.
[http://dx.doi.org/10.1128/AAC.01710-09] [PMID: 20733041]
[211]
Cha, J.O.; Yoo, J.I.; Kim, H.K.; Kim, H.S.; Yoo, J.S.; Lee, Y.S.; Jung, Y.H. 2013.
[212]
Chen, C.; Sun, J.; Guo, Y.; Lin, D.; Guo, Q.; Hu, F.; Zhu, D.; Xu, X.; Wang, M. High prevalence of vanM in vancomycin-resistant Enterococcus faecium isolates from Shanghai, China. Antimicrob. Agents Chemother., 2015, 59(12), 7795-7798.
[http://dx.doi.org/10.1128/AAC.01732-15] [PMID: 26369966]
[213]
Nasaj, M.; Mousavi, S.M.; Hosseini, S.M.; Arabestani, M.R. 2016.
[214]
Werner, G.; Klare, I.; Fleige, C.; Geringer, U.; Witte, W.; Just, H-M.; Ziegler, R. Vancomycin-resistant vanB-type Enterococcus faecium isolates expressing varying levels of vancomycin resistance and being highly prevalent among neonatal patients in a single ICU. Antimicrob. Resist. Infect. Control, 2012, 1(1), 21.
[http://dx.doi.org/10.1186/2047-2994-1-21] [PMID: 22958440]
[215]
Simonsen, G.S.; Småbrekke, L.; Monnet, D.L.; Sørensen, T.L.; Møller, J.K.; Kristinsson, K.G.; Lagerqvist-Widh, A.; Torell, E.; Digranes, A.; Harthug, S.; Sundsfjord, A. Prevalence of resistance to ampicillin, gentamicin and vancomycin in Enterococcus faecalis and Enterococcus faecium isolates from clinical specimens and use of antimicrobials in five Nordic hospitals. J. Antimicrob. Chemother., 2003, 51(2), 323-331.
[http://dx.doi.org/10.1093/jac/dkg052] [PMID: 12562698]
[216]
Corso, A.C.; Gagetti, P.S.; Rodríguez, M.M.; Melano, R.G.; Ceriana, P.G.; Faccone, D.F.; Galas, M.F. Molecular epidemiology of vancomycin-resistant Enterococcus faecium in Argentina. Int. J. Infect. Dis., 2007, 11(1), 69-75.
[http://dx.doi.org/10.1016/j.ijid.2006.02.003] [PMID: 16793306]
[217]
Correia, S.; Ponce, P.; Jones-Dias, D.; Caniça, M.; Igrejas, G.; Poeta, P. Vancomycin-resistant enterococci among haemodialysis patients in Portugal: prevalence and molecular characterization of resistance, virulence and clonality. Enferm. Infecc. Microbiol. Clin., 2014, 32(3), 174-176.
[http://dx.doi.org/10.1016/j.eimc.2013.09.001] [PMID: 24169320]
[218]
Huang, W-C.; Tsai, P-J.; Chen, Y-C. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine (Lond.), 2007, 2(6), 777-787.
[http://dx.doi.org/10.2217/17435889.2.6.777] [PMID: 18095845]
[219]
Thuc, D.T.; Huy, T.Q.; Hoang, L.H.; Hoang, T.H.; Le, A.T.; Anh, D.D. Antibacterial activity of electrochemically synthesized colloidal silver nanoparticles against hospital-acquired infections. J. Electron. Mater., 2017, 46(6), 3433-3439.
[http://dx.doi.org/10.1007/s11664-017-5315-1]
[220]
Iram, S.; Khan, J.A.; Aman, N.; Nadhman, A.; Zulfiqar, Z.; Yameen, M.A. Enhancing the anti-enterococci activity of different antibiotics by combining with metal oxide nanoparticles. Jundishapur J. Microbiol., 2016, 9(3), , e31302..
[http://dx.doi.org/10.5812/jjm.31302] [PMID: 27226875]
[221]
Hiramatsu, K.; Hanaki, H.; Ino, T.; Yabuta, K.; Oguri, T.; Tenover, F.C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother., 1997, 40(1), 135-136.
[http://dx.doi.org/10.1093/jac/40.1.135] [PMID: 9249217]
[222]
Gardete, S.; Tomasz, A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Invest., 2014, 124(7), 2836-2840.
[http://dx.doi.org/10.1172/JCI68834] [PMID: 24983424]
[223]
Wayne, P.A. , 2008.
[224]
Kim, E.S.; Bae, I.G.; Cho, J.E.; Choi, Y.J.; Kim, I.H.; Kang, G.S.; Sin, H.Y.; Song, K.H.; Park, C.; Lee, D.G.; Kim, M.; Park, K.U.; Kim, H.B. Clinical and molecular characterization of invasive heteroresistant vancomycin-intermediate Staphylococcus aureus infections in Korean hospitals. J. Clin. Microbiol., 2016, 54(3), 760-763.
[http://dx.doi.org/10.1128/JCM.02595-15] [PMID: 26677256]
[225]
Cui, L.; Iwamoto, A.; Lian, J.Q.; Neoh, H.M.; Maruyama, T.; Horikawa, Y.; Hiramatsu, K. Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 428-438.
[http://dx.doi.org/10.1128/AAC.50.2.428-438.2006] [PMID: 16436693]
[226]
Meehl, M.; Herbert, S.; Götz, F.; Cheung, A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 2007, 51(8), 2679-2689.
[http://dx.doi.org/10.1128/AAC.00209-07] [PMID: 17502406]
[227]
Howden, B.P.; Stinear, T.P.; Allen, D.L.; Johnson, P.D.R.; Ward, P.B.; Davies, J.K. Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob. Agents Chemother., 2008, 52(10), 3755-3762.
[http://dx.doi.org/10.1128/AAC.01613-07] [PMID: 18644967]
[228]
Shekarabi, M.; Hajikhani, B.; Chirani, A.S.; Fazeli, M.; Goudarzi, M. 2017.
[229]
Hasan, R.; Acharjee, M.; Noor, R. Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound infections. Ci Ji Yi Xue Za Zhi, 2016, 28(2), 49-53.
[http://dx.doi.org/10.1016/j.tcmj.2016.03.002] [PMID: 28757721]
[230]
Kavanagh, K.T.; Abusalem, S.; Calderon, L.E. The incidence of MRSA infections in the United States: is a more comprehensive tracking system needed? Antimicrob. Resist. Infect. Control, 2017, 6, 34.
[http://dx.doi.org/10.1186/s13756-017-0193-0] [PMID: 28396730]
[231]
Adhikari, R.; Pant, N.D.; Neupane, S.; Neupane, M.; Bhattarai, R.; Bhatta, S. 2017.
[232]
de Lencastre, H.; Sá Figueiredo, A.M.; Urban, C.; Rahal, J.; Tomasz, A. Multiple mechanisms of methicillin resistance and improved methods for detection in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother., 1991, 35(4), 632-639.
[http://dx.doi.org/10.1128/AAC.35.4.632] [PMID: 2069369]
[233]
Fuda, C.C.S.; Fisher, J.F.; Mobashery, S. β-lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cell. Mol. Life Sci., 2005, 62(22), 2617-2633.
[http://dx.doi.org/10.1007/s00018-005-5148-6] [PMID: 16143832]
[234]
de Lencastre, H.; Tomasz, A. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 1994, 38(11), 2590-2598.
[http://dx.doi.org/10.1128/AAC.38.11.2590] [PMID: 7872753]
[235]
de Lencastre, H.; de Jonge, B.L.; Matthews, P.R.; Tomasz, A. Molecular aspects of methicillin resistance in Staphylococcus aureus. J. Antimicrob. Chemother., 1994, 33(1), 7-24.
[http://dx.doi.org/10.1093/jac/33.1.7] [PMID: 8157576]
[236]
Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 2009, 33(6), 587-590.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.12.004] [PMID: 19195845]
[237]
Christena, L.R.; Mangalagowri, V.; Pradheeba, P.; Ahmed, K.B.A.; Shalini, B.I.S.; Vidyalakshmi, M.; Anbazhagan, V.; Subramanian, N.S. Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Advances, 2015, 5, 12899-12909.
[http://dx.doi.org/10.1039/C4RA15382K]
[238]
Hsueh, Y-H.; Tsai, P-H.; Lin, K-S.; Grumezescu, A.M.; Holban, A.M. pH-dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int. J. Mol. Sci., 2017, 18(4), 793-807.
[http://dx.doi.org/10.3390/ijms18040793] [PMID: 28397766]
[239]
Alavi, M.; Karimi, N. Biosynthesis of Ag and Cu NPs by secondary metabolites of usnic acid and thymol with biological macromolecules aggregation and antibacterial activities against multi drug resistant (MDR) bacteria. Int. J. Biol. Macromol., 2019, 128(128), 893-901.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.177] [PMID: 30708006]
[240]
Akram, F.E.; El-Tayeb, T.; Abou-Aisha, K.; El-Azizi, M. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 48.
[http://dx.doi.org/10.1186/s12941-016-0164-y] [PMID: 27530257]
[241]
Ayala-Núñez, N.V.; Villegas, H.H.L.; Turrent, L.C.I.; Padilla, C.R. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter., 2009.
[242]
de Moraes, A.C.M.; Lima, B.A.; de Faria, A.F.; Brocchi, M.; Alves, O.L. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. Int. J. Nanomedicine, 2015, 10, 6847-6861.
[http://dx.doi.org/10.2147/IJN.S90660] [PMID: 26586946]
[243]
Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity., 2013.
[244]
Fayaz, A.M.; Girilal, M.; Mahdy, S.A.; Somsundar, S.S.; Venkatesan, R.; Kalaichelvan, P.T. Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem., 2011, 46(3), 636-641.
[http://dx.doi.org/10.1016/j.procbio.2010.11.001]
[245]
Brown, A.N.; Smith, K.; Samuels, T.A.; Lu, J.; Obare, S.O.; Scott, M.E. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol., 2012, 78(8), 2768-2774.
[http://dx.doi.org/10.1128/AEM.06513-11] [PMID: 22286985]
[246]
Roy, A.S.; Parveen, A.; Koppalkar, A.R.; Prasad, M.V.N.A. Effect of nano - titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J. Biomater. Nanobiotechnol., 2010, 1(1), 37-41.
[http://dx.doi.org/10.4236/jbnb.2010.11005]
[247]
Jesline, A.; John, N.P.; Narayanan, P.M.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci., 2015, 5(2), 157-162.
[http://dx.doi.org/10.1007/s13204-014-0301-x]
[248]
Martinez-Gutierrez, F.; Olive, P.L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E.M.; Ruiz, F.; Bach, H.; Av-Gay, Y. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine (Lond.), 2010, 6(5), 681-688.
[http://dx.doi.org/10.1016/j.nano.2010.02.001] [PMID: 20215045]
[249]
Esfahani, F.; Fozouni, L.; Pordeli, H. A study on the antimicrobial effect of zinc oxide nanoparticles on clinical strains of Staphylococcus aureus resistant to vancomycin. Int. J. Mol. Clin. Microbiol., 2016, 6(2), 693-699.
[250]
Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 886-891.
[http://dx.doi.org/10.1016/j.saa.2014.08.064] [PMID: 25280336]
[251]
Dalvand, L.F.; Hosseini, F.; Dehaghi, S.M.; Torbati, E.S. Inhibitory effect of bismuth oxide nanoparticles produced by Bacillus licheniformis on methicillin-resistant Staphylococcus aureus strains (MRSA). Iranian J. Biotechnol., 2019, 16(4), 279-286.
[http://dx.doi.org/10.21859/ijb.2102] [PMID: 31457035]
[252]
Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G.; Ng, S.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology, 2017, 153(2), 420-429.
[http://dx.doi.org/10.1053/j.gastro.2017.04.022] [PMID: 28456631]
[253]
Goodwin, C.S.; Armstrong, J.A.; Marshall, B.J. Campylobacter pyloridis, gastritis, and peptic ulceration. J. Clin. Pathol., 1986, 39(4), 353-365.
[http://dx.doi.org/10.1136/jcp.39.4.353] [PMID: 3517070]
[254]
Polk, D.B.; Peek, R.M. Jr. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer, 2010, 10(6), 403-414.
[http://dx.doi.org/10.1038/nrc2857] [PMID: 20495574]
[255]
Gregson, D.B.; Low, D.E.; Cohen, M.M.; Cooter, N.B.; Wolman, S.L.; Simor, A.E. The prevalence of Campylobacterpylori gastritis among asymptomatic adults., 1989.
[256]
Yamada, T.; Searle, J.G.; Ahnen, D.; Aipers, D.H.; Greenberg, H.B.; Gray, M.; Joscelyn, K.B.; Kauffman, G.; Podolsky, D.K.; Ray, W.A.; Schaberg, D. Helicobacter pylori in peptic ulcer disease. JAMA, 1994, 272(1), 65-69.
[http://dx.doi.org/10.1001/jama.1994.03520010077036]
[257]
Buck, G.E. Campylobacter pylori and gastroduodenal disease. Clin. Microbiol. Rev., 1990, 3(1), 1-12.
[http://dx.doi.org/10.1128/CMR.3.1.1] [PMID: 2404565]
[258]
Copeland, C.E.; Stahlfeld, K. Two tall poppies and the discovery of Helicobacter pylori. J. Am. Coll. Surg., 2012, 214(2), 237-241.
[http://dx.doi.org/10.1016/j.jamcollsurg.2011.09.026] [PMID: 22056357]
[259]
Lind, T.; Veldhuyzen van Zanten, S.; Unge, P.; Spiller, R.; Bayerdörffer, E.; O’Morain, C.; Bardhan, K.D.; Bradette, M.; Chiba, N.; Wrangstadh, M.; Cederberg, C.; Idström, J.P. Eradication of Helicobacter pylori using one-week triple therapies combining omeprazole with two antimicrobials: the MACH I study. Helicobacter, 1996, 1(3), 138-144.
[http://dx.doi.org/10.1111/j.1523-5378.1996.tb00027.x] [PMID: 9398894]
[260]
Luther, J.; Higgins, P.D.R.; Schoenfeld, P.S.; Moayyedi, P.; Vakil, N.; Chey, W.D. Empiric quadruple vs. triple therapy for primary treatment of Helicobacter pylori infection: systematic review and meta-analysis of efficacy and tolerability. Am. J. Gastroenterol., 2010, 105(1), 65-73.
[http://dx.doi.org/10.1038/ajg.2009.508] [PMID: 19755966]
[261]
Goldman, R.C.; Zakula, D.; Flamm, R.; Beyer, J.; Capobianco, J. Tight binding of clarithromycin, its 14-(R)-hydroxy metabolite, and erythromycin to Helicobacter pylori ribosomes. Antimicrob. Agents Chemother., 1994, 38(7), 1496-1500.
[http://dx.doi.org/10.1128/AAC.38.7.1496] [PMID: 7979278]
[262]
Menninger, J.R.; Otto, D.P. Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes. Antimicrob. Agents Chemother., 1982, 21(5), 811-818.
[http://dx.doi.org/10.1128/AAC.21.5.811] [PMID: 6179465]
[263]
Versalovic, J.; Shortridge, D.; Kibler, K.; Griffy, M.V.; Beyer, J.; Flamm, R.K.; Tanaka, S.K.; Graham, D.Y.; Go, M.F. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrob. Agents Chemother., 1996, 40(2), 477-480.
[http://dx.doi.org/10.1128/AAC.40.2.477] [PMID: 8834903]
[264]
Versalovic, J.; Osato, M.S.; Spakovsky, K.; Dore, M.P.; Reddy, R.; Stone, G.G.; Shortridge, D.; Flamm, R.K.; Tanaka, S.K.; Graham, D.Y. Point mutations in the 23S rRNA gene of Helicobacter pylori associated with different levels of clarithromycin resistance. J. Antimicrob. Chemother., 1997, 40(2), 283-286.
[http://dx.doi.org/10.1093/jac/40.2.283] [PMID: 9301997]
[265]
Rimbara, E.; Noguchi, N.; Kijima, H.; Yamaguchi, T.; Kawai, T.; Sasatsu, M. Mutations in the 23S rRNA gene of clarithromycin-resistant Helicobacter pylori from Japan. Int. J. Antimicrob. Agents, 2007, 30(3), 250-254.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.04.009] [PMID: 17590317]
[266]
Amin, M.; Anwar, F.; Janjua, M.R.S.A.; Iqbal, M.A.; Rashid, U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci., 2012, 13(8), 9923-9941.
[http://dx.doi.org/10.3390/ijms13089923] [PMID: 22949839]
[267]
Wang, Y.; Zhang, M.; Deng, F.; Shen, Z.; Wu, C.; Zhang, J.; Zhang, Q.; Shen, J. Emergence of multidrug-resistant Campylobacter species isolates with a horizontally acquired rRNA methylase. Antimicrob. Agents Chemother., 2014, 58(9), 5405-5412.
[http://dx.doi.org/10.1128/AAC.03039-14] [PMID: 24982085]
[268]
Cha, W.; Mosci, R.; Wengert, S.L.; Singh, P.; Newton, D.W.; Salimnia, H.; Lephart, P.; Khalife, W.; Mansfield, L.S.; Rudrik, J.T.; Manning, S.D. Antimicrobial susceptibility profiles of human Campylobacter jejuni isolates and association with phylogenetic lineages. Front. Microbiol., 2016, 7(APR), 589.
[http://dx.doi.org/10.3389/fmicb.2016.00589] [PMID: 27199922]
[269]
Frasão, B.D.S.; Medeiros, V.; Barbosa, A.V.; de Aguiar, W.S.; dos Santos, F.F.; Abreu, D.L.D.C.; Clementino, M.M.; de Aquino, M.H.C. Detection of fluoroquinolone resistance by mutation in gyr A gene of Campylobacter spp. isolates from broiler and laying (Gallus gallus domesticus) hens, from Rio de Janeiro State, Brazil. Cienc. Rural, 2015, 45(11), 2013-2018.
[http://dx.doi.org/10.1590/0103-8478cr20141712]
[270]
Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms, 2017, 5(1), 11.
[http://dx.doi.org/10.3390/microorganisms5010011] [PMID: 28335438]
[271]
Luo, N.; Sahin, O.; Lin, J.; Michel, L.O.; Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother., 2003, 47(1), 390-394.
[http://dx.doi.org/10.1128/AAC.47.1.390-394.2003] [PMID: 12499221]
[272]
Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res. Int., 2013, 2013, , 340605..
[http://dx.doi.org/10.1155/2013/340605] [PMID: 23865047]
[273]
Guo, B.; Lin, J.; Reynolds, D.L.; Zhang, Q. Contribution of the multidrug efflux transporter CmeABC to antibiotic resistance in different Campylobacter species. Foodborne Pathog. Dis., 2010, 7(1), 77-83.
[http://dx.doi.org/10.1089/fpd.2009.0354] [PMID: 19785541]
[274]
Grinnage-Pulley, T.; Zhang, Q. Genetic basis and functional consequences of differential expression of the CmeABC efflux pump in Campylobacter jejuni isolates. PLoS One, 2015, 10(7), , e0131534..
[http://dx.doi.org/10.1371/journal.pone.0131534] [PMID: 26132196]
[275]
Zhang, T.; Cheng, Y.; Luo, Q.; Lu, Q.; Dong, J.; Zhang, R.; Wen, G.; Wang, H.; Luo, L.; Wang, H.; Liu, G.; Shao, H. Correlation between gyrA and CmeR box polymorphism and fluoroquinolone resistance in Campylobacter jejuni isolates in China. Antimicrob. Agents Chemother., 2017, 61(7), e00422-e17.
[http://dx.doi.org/10.1128/AAC.00422-17] [PMID: 28438942]
[276]
Han, J.; Sahin, O.; Barton, Y-W.; Zhang, Q. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog., 2008, 4(6), , e1000083..
[http://dx.doi.org/10.1371/journal.ppat.1000083] [PMID: 18535657]
[277]
Piva, S.; Florio, D.; Mion, D.; Zanoni, R.G. Antimicrobial susceptibility of Campylobacter cuniculorum isolated from rabbits reared in intensive and rural farms. Ital. J. Food Saf., 2016, 5(3), 5829.
[http://dx.doi.org/10.4081/ijfs.2016.5829] [PMID: 27853713]
[278]
El-Tayeb, M.A.; Ibrahim, A.S.S.; Al-Salamah, A.A.; Almaary, K.S.; Elbadawi, Y.B. Prevalence, serotyping and antimicrobials resistance mechanism of Salmonella enterica isolated from clinical and environmental samples in Saudi Arabia. Braz. J. Microbiol., 2017, 48(3), 499-508.
[http://dx.doi.org/10.1016/j.bjm.2016.09.021] [PMID: 28245965]
[279]
Casas, M.R.T.; Camargo, C.H.; Soares, F.B.; da Silveira, W.D.; Fernandes, S.A. Presence of plasmid-mediated quinolone resistance determinants and mutations in gyrase and topoisomerase in Salmonella enterica isolates with resistance and reduced susceptibility to ciprofloxacin. Diagn. Microbiol. Infect. Dis., 2016, 85(1), 85-89.
[http://dx.doi.org/10.1016/j.diagmicrobio.2016.01.016] [PMID: 26971183]
[280]
Mąka, Ł.; Popowska, M. 2016.
[281]
Lee, S.-J.; Awji, E.G.; Park, N.-H.; Park, S.-C. Using in vitro dynamic models to evaluate fluoroquinolone activity against emergence of resistant Salmonella enterica serovar typhimurium., 2017.
[282]
Cosby, D.E.; Cox, N.A.; Harrison, M.A.; Wilson, J.L.; Buhr, R.J.; Fedorka-Cray, P.J. Salmonella and antimicrobial resistance in broilers: a review. J. Appl. Poult. Res., 2015, 24(3), 408-426.
[http://dx.doi.org/10.3382/japr/pfv038]
[283]
Fang, F.C. Fluoroquinolone resistance in Salmonella and the utility of pefloxacin disk diffusion. J. Clin. Microbiol., 2015, 53(11), 3401-3404.
[http://dx.doi.org/10.1128/JCM.02270-15] [PMID: 26311864]
[284]
Kim, S.Y.; Lee, S.K.; Park, M.S.; Na, H.T. Analysis of the fluoroquinolone antibiotic resistance mechanism of Salmonella enterica isolates. J. Microbiol. Biotechnol., 2016, 26(9), 1605-1612.
[http://dx.doi.org/10.4014/jmb.1602.02063] [PMID: 27116992]
[285]
Skov, R.; Matuschek, E.; Sjölund-Karlsson, M.; Åhman, J.; Petersen, A.; Stegger, M.; Torpdahl, M.; Kahlmeter, G. Development of a pefloxacin disk diffusion method for detection of fluoroquinolone-resistant Salmonella enterica. J. Clin. Microbiol., 2015, 53(11), 3411-3417.
[http://dx.doi.org/10.1128/JCM.01287-15] [PMID: 26292292]
[286]
Wong, M.H.; Chan, E.W.; Liu, L.Z.; Chen, S. PMQR genes oqxAB and aac(6′)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front. Microbiol., 2014, 5, 521.
[http://dx.doi.org/10.3389/fmicb.2014.00521] [PMID: 25324840]
[287]
Yu, F.; Chen, Q.; Yu, X.; Pan, J.; Li, Q.; Yang, L.; Chen, C.; Zhuo, C.; Li, X.; Zhang, X.; Huang, J.; Wang, L. High prevalence of plasmid-mediated quinolone resistance determinant aac(6′)-Ib-cr amongst Salmonella enterica serotype typhimurium isolates from hospitalised paediatric patients with diarrhoea in China. Int. J. Antimicrob. Agents, 2011, 37(2), 152-155.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.10.021] [PMID: 21163630]
[288]
Wong, M.H.Y.; Yan, M.; Chan, E.W.C.; Biao, K.; Chen, S. Emergence of clinical Salmonella enterica serovar typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrob. Agents Chemother., 2014, 58(7), 3752-3756.
[http://dx.doi.org/10.1128/AAC.02770-13] [PMID: 24752251]
[289]
Abatcha, G.; Kaur, G.; Thong, L. A trend of Salmonella and antibiotic resistance. Adv. Life Sci. Technol., 2014, 17, 9-21.
[290]
Ramkumar, V.S.; Pugazhendhi, A.; Prakash, S.; Ahila, N.K.; Vinoj, G.; Selvam, S.; Kumar, G.; Kannapiran, E.; Rajendran, R.B. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother., 2017, 92, 479-490.
[http://dx.doi.org/10.1016/j.biopha.2017.05.076] [PMID: 28570982]
[291]
Saleh, N.M.; Attia, M.S. Conquer fluoroquinolone multi-drug resistant Salmonella enterica: based on biological synthesis of silver nanoparticles using Citrus sinesis peel extract as an alternative therapeutic pathway. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(12), 398-414.
[http://dx.doi.org/10.20546/ijcmas.2016.512.044]
[292]
Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev., 2014, 27(3), 587-613.
[http://dx.doi.org/10.1128/CMR.00010-14] [PMID: 24982323]
[293]
Soge, O.O.; Salipante, S.J.; No, D.; Duffy, E.; Roberts, M.C. In vitro activity of delafloxacin against clinical Neisseria gonorrhoeae isolates and selection of gonococcal delafloxacin resistance. Antimicrob. Agents Chemother., 2016, 60(5), 3106-3111.
[http://dx.doi.org/10.1128/AAC.02798-15] [PMID: 26976873]
[294]
Unemo, M.; Shafer, W.M.; Affairs, V. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann. N. Y. Acad. Sci., 2011, 1230, E19-E28.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06215.x] [PMID: 22239555]
[295]
Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.R.; Ramon-Pardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med., 2017, 14(7), , e1002344..
[http://dx.doi.org/10.1371/journal.pmed.1002344] [PMID: 28686231]
[296]
da Costa-Lourenço, A.P.R.; Dos Santos, K.T.B.; Moreira, B.M.; Fracalanzza, S.E.L.; Bonelli, R.R. Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Braz. J. Microbiol., 2017, 48(4), 617-628.
[http://dx.doi.org/10.1016/j.bjm.2017.06.001] [PMID: 28754299]
[297]
Lucas, C.E.; Balthazar, J.T.; Hagman, K.E.; Shafer, W.M. The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae. J. Bacteriol., 1997, 179(13), 4123-4128.
[http://dx.doi.org/10.1128/JB.179.13.4123-4128.1997] [PMID: 9209024]
[298]
Tomberg, J.; Unemo, M.; Ohnishi, M.; Davies, C.; Nicholas, R.A. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrob. Agents Chemother., 2013, 57(7), 3029-3036.
[http://dx.doi.org/10.1128/AAC.00093-13] [PMID: 23587946]
[299]
Unemo, M.; Golparian, D.; Nicholas, R.; Ohnishi, M.; Gallay, A.; Sednaoui, P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother., 2012, 56(3), 1273-1280.
[http://dx.doi.org/10.1128/AAC.05760-11] [PMID: 22155830]
[300]
Lee, S.G.; Lee, H.; Jeong, S.H.; Yong, D.; Chung, G.T.; Lee, Y.S.; Chong, Y.; Lee, K. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J. Antimicrob. Chemother., 2010, 65(4), 669-675.
[http://dx.doi.org/10.1093/jac/dkp505] [PMID: 20093260]
[301]
Ohnishi, M.; Watanabe, Y.; Ono, E.; Takahashi, C.; Oya, H.; Kuroki, T.; Shimuta, K.; Okazaki, N.; Nakayama, S.; Watanabe, H. Spread of a chromosomal cefixime-resistant penA gene among different Neisseria gonorrhoeae lineages. Antimicrob. Agents Chemother., 2010, 54(3), 1060-1067.
[http://dx.doi.org/10.1128/AAC.01010-09] [PMID: 20028823]
[302]
Kulkarni, S.; Bala, M.; Sane, S.; Pandey, S.; Bhattacharya, J.; Risbud, A. Mutations in the gyrA and parC genes of quinolone-resistant Neisseria gonorrhoeae isolates in India. Int. J. Antimicrob. Agents, 2012, 40(6), 549-553.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.08.007] [PMID: 23063097]
[303]
Uehara, A.A.; Amorin, E.L.T.; Ferreira, M.F.; Andrade, C.F.; Clementino, M.B.M.; de Filippis, I.; Neves, F.P.; Pinto, T.C.; Teixeira, L.M.; Giambiagi-Demarval, M.; Fracalanzza, S.E.L. Molecular characterization of quinolone-resistant Neisseria gonorrhoeae isolates from Brazil. J. Clin. Microbiol., 2011, 49(12), 4208-4212.
[http://dx.doi.org/10.1128/JCM.01175-11] [PMID: 21976763]
[304]
Li, L.H.; Yen, M.Y.; Ho, C.C.; Wu, P.; Wang, C.C.; Maurya, P.K.; Chen, P.S.; Chen, W.; Hsieh, W.Y.; Chen, H.W. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS One, 2013, 8(5), , e64794..
[http://dx.doi.org/10.1371/journal.pone.0064794] [PMID: 23705013]
[305]
Wadood, A.; Jamal, A.; Riaz, M.; Khan, A.; Uddin, R.; Jelani, M.; Azam, S.S. Subtractive genome analysis for in silico identification and characterization of novel drug targets in Streptococcus pneumonia strain JJA. Microb. Pathog., 2018, 115(115), 194-198.
[http://dx.doi.org/10.1016/j.micpath.2017.12.063] [PMID: 29277475]
[306]
Diawara, I.; Barguigua, A.; Katfy, K.; Nayme, K.; Belabbes, H.; Timinouni, M.; Zerouali, K.; Elmdaghri, N. Molecular characterization of penicillin non-susceptible Streptococcus pneumoniae isolated before and after pneumococcal conjugate vaccine implementation in Casablanca, Morocco. Ann. Clin. Microbiol. Antimicrob., 2017, 16(1), 23.
[http://dx.doi.org/10.1186/s12941-017-0200-6] [PMID: 28376809]
[307]
Overweg, K.; Bogaert, D.; Sluijter, M.; de Groot, R.; Hermans, P.W.M. Molecular characteristics of penicillin-binding protein genes of penicillin-nonsusceptible Streptococcus pneumoniae isolated in the Netherlands. Microb. Drug Resist., 2001, 7(4), 323-334.
[http://dx.doi.org/10.1089/10766290152773338] [PMID: 11822772]
[308]
Zhou, X.; Liu, J.; Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y. Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China. Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(4), 633-645.
[http://dx.doi.org/10.1007/s10096-016-2582-3] [PMID: 26972430]
[309]
Rattanaumpawan, P.; Chaiwarith, R.; Supparatpinyo, K.; Punjaisee, S.; Kotarathititum, V.; Sirisanthana, T. Prevalence of penicillin-resistant Streptococcus pneumoniae (PRSP) infection at Maharaj Nakorn Chiang Mai Hospital. J. Infect. Dis. Antimicrob. Agents, 2005, 22(3), 93-101.
[310]
Kumari, N.; Navaratnam, P.; Sekaran, S.D. 2008.
[311]
Jernigan, D.B.; Cetron, M.S.; Breiman, R.F. Defining the public health impact of drug-resistant Streptococcus pneumoniae: report of a working group., 1996.
[312]
Imai, S.; Ito, Y.; Ishida, T.; Hirai, T.; Ito, I.; Maekawa, K.; Takakura, S.; Iinuma, Y.; Ichiyama, S.; Mishima, M. High prevalence of multidrug-resistant pneumococcal molecular epidemiology network clones among Streptococcus pneumoniae isolates from adult patients with community-acquired pneumonia in Japan. Clin. Microbiol. Infect., 2009, 15(11), 1039-1045.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02935.x] [PMID: 19694764]
[313]
Greenberg, D.; Speert, D.P.; Mahenthiralingam, E.; Henry, D.A.; Campbell, M.E.; Scheifele, D.W. CPS/LCDC IMPACT Monitoring Network. Emergence of penicillin-nonsusceptible Streptococcus pneumoniae invasive clones in Canada. J. Clin. Microbiol., 2002, 40(1), 68-74.
[http://dx.doi.org/10.1128/JCM.40.1.68-74.2002] [PMID: 11773094]
[314]
Chenoweth, C.E.; Saint, S.; Martinez, F.; Lynch, J.P. III.; Fendrick, A.M. Antimicrobial resistance in Streptococcus pneumoniae: implications for patients with community-acquired pneumonia. Mayo Clin. Proc., 2000, 75(11), 1161-1168.
[http://dx.doi.org/10.4065/75.11.1161] [PMID: 11075746]
[315]
Ruhe, J.J.; Myers, L.; Mushatt, D.; Hasbun, R. High-level penicillin-nonsusceptible Streptococcus pneumoniae bacteremia: identification of a low-risk subgroup. Clin. Infect. Dis., 2004, 38(4), 508-514.
[http://dx.doi.org/10.1086/381197] [PMID: 14765343]
[316]
Ruhe, J.J.; Hasbun, R. Streptococcus pneumoniae bacteremia: duration of previous antibiotic use and association with penicillin resistance. Clin. Infect. Dis., 2003, 36(9), 1132-1138.
[http://dx.doi.org/10.1086/374556] [PMID: 12715307]
[317]
Levin, A.S.; Sessegolo, J.F.; Teixeira, L.M.; Barone, A.A. Factors associated with penicillin-nonsusceptible pneumococcal infections in Brazil. Braz. J. Med. Biol. Res., 2003, 36(6), 807-813.
[http://dx.doi.org/10.1590/S0100-879X2003000600017] [PMID: 12792711]
[318]
Wayne, P.A. , 2014.
[319]
Horna, G.; Molero, M.L.; Benites, L.; Roman, S.; Carbajal, L.; Mercado, E.; Castillo, M.E.; Zerpa, R.; Chaparro, E.; Hernandez, R.; Silva, W.; Campos, F.; Saenz, A.; Reyes, I.; Villalobos, A.; Ochoa, T.J. Oxacillin disk diffusion testing for the prediction of penicillin resistance in Streptococcus pneumonia., 2016.
[320]
Liu, E.Y-M.; Chang, J-C.; Lin, J-C.; Chang, F-Y.; Fung, C-P. Important mutations contributing to high-level penicillin resistance in Taiwan19F-14, Taiwan23F-15, and Spain23F-1 of Streptococcus pneumoniae isolated from Taiwan. Microb. Drug Resist., 2016, 22(8), 646-654.
[http://dx.doi.org/10.1089/mdr.2015.0261] [PMID: 27042760]
[321]
Biçmen, M.; Gülay, Z.; Ramaswamy, S.V.; Musher, D.M.; Gür, D. Analysis of mutations in the pbp genes of penicillin-non-susceptible Pneumococci from Turkey. Clin. Microbiol. Infect., 2006, 12(2), 150-155.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01334.x] [PMID: 16441453]
[322]
Schrag, S.J.; McGee, L.; Whitney, C.G.; Beall, B.; Craig, A.S.; Choate, M.E.; Jorgensen, J.H.; Facklam, R.R.; Klugman, K.P. Active Bacterial Core Surveillance Team. Emergence of Streptococcus pneumoniae with very-high-level resistance to penicillin. Antimicrob. Agents Chemother., 2004, 48(8), 3016-3023.
[http://dx.doi.org/10.1128/AAC.48.8.3016-3023.2004] [PMID: 15273115]
[323]
Akmaz, S.; Adiguzel, E.D.; Yasar, M.; Erguven, O. The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv. Mater. Sci. Eng., 2013, 2013(3), 1-6.
[http://dx.doi.org/10.1155/2013/690918]
[324]
Kiedrowska, M.; Kuch, A.; Żabicka, D.; Waśko, I.; Ronkiewicz, P.; Wasiak, K.; Bojarska, K.; Hryniewicz, W.; Skoczyńska, A. β-lactam resistance among Haemophilus influenzae isolates in Poland. J. Glob. Antimicrob. Resist., 2017, 11, 161-166.
[http://dx.doi.org/10.1016/j.jgar.2017.08.005] [PMID: 28818575]
[325]
Van Eldere, J.; Slack, M.P.E.; Ladhani, S.; Cripps, A.W. Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect. Dis., 2014, 14(12), 1281-1292.
[http://dx.doi.org/10.1016/S1473-3099(14)70734-0] [PMID: 25012226]
[326]
Casagrande, S.T.; Vicente, E.J.; Landgraf, I.M.; Kobata, A.M.; Microbiologia, D. Antimicrobial resistance patterns of Haemophilus influenzae isolated from patients with meningitis in São Paulo, Brazil. Braz. J. Med. Biol. Res., 2000, 33(3), 295-300.
[http://dx.doi.org/10.1590/S0100-879X2000000300006] [PMID: 10719380]
[327]
Thornsberry, C.; McDougal, L.K. Ampicillin-resistant Haemophilus influenzae. 1. Incidence, mechanism, and detection. Postgrad. Med., 1982, 71(1), 133-136, 140, 144-145.
[http://dx.doi.org/10.1080/00325481.1982.11715965] [PMID: 6976566]
[328]
Minami, M.; Sakakibara, R.; Imura, T.; Watanabe, M.; Morita, H.; Kanemaki, N.; Ohta, M. Clinical characteristics of Haemophilus influenzae at general hospital in the central region of Japan. J. Biosci. Med., 2016, 4(6), 18-23.
[http://dx.doi.org/10.4236/jbm.2016.46003]
[329]
Vega, R.; Sadoff, H.L.; Patterson, M.J. Mechanisms of ampicillin resistance in Haemophilus influenzae type B. Antimicrob. Agents Chemother., 1976, 9(1), 164-168.
[http://dx.doi.org/10.1128/AAC.9.1.164] [PMID: 1083199]
[330]
Hüseyin, K.L.Ç.; Akyol, S.; Parkan, Õ.M.; Dinç, G.; Sav, H.; Aydemir, G. Molecular characterization and antibiotic susceptibility of Haemophilus influenzae clinical isolates. Infez. Med., 2017, 25(1), 27-32.
[PMID: 28353452]
[331]
Shuel, M.; Whyte, K.; Drew, T.; Wylie, J.; Lefebvre, B.; Hoang, L.; Tsang, R.S. Differential susceptibility of invasive Haemophilus influenzae serotype a and serotype b to ampicillin and other commonly prescribed antibiotics. Lett. Appl. Microbiol., 2014, 59(2), 193-199.
[http://dx.doi.org/10.1111/lam.12265] [PMID: 24712310]
[332]
Cherkaoui, A.; Diene, S.M.; Emonet, S.; Renzi, G.; Francois, P.; Schrenzel, J. Ampicillin-resistant Haemophilus influenzae isolates in Geneva: serotype, antimicrobial susceptibility, and β-lactam resistance mechanisms. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(10), 1937-1945.
[http://dx.doi.org/10.1007/s10096-015-2435-5] [PMID: 26187432]
[333]
Tristram, S.; Jacobs, M.R.; Appelbaum, P.C. Antimicrobial resistance in Haemophilus influenzae. Clin. Microbiol. Rev., 2007, 20(2), 368-389.
[http://dx.doi.org/10.1128/CMR.00040-06] [PMID: 17428889]
[334]
García-Cobos, S.; Campos, J.; Lázaro, E.; Román, F.; Cercenado, E.; García-Rey, C.; Pérez-Vázquez, M.; Oteo, J.; de Abajo, F. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob. Agents Chemother., 2007, 51(7), 2564-2573.
[http://dx.doi.org/10.1128/AAC.00354-07] [PMID: 17470649]
[335]
Hasegawa, K.; Yamamoto, K.; Chiba, N.; Kobayashi, R.; Nagai, K.; Jacobs, M.R.; Appelbaum, P.C.; Sunakawa, K.; Ubukata, K. Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb. Drug Resist., 2003, 9(1), 39-46.
[http://dx.doi.org/10.1089/107662903764736337] [PMID: 12705682]
[336]
Kakuta, R.; Yano, H.; Hidaka, H.; Kanamori, H.; Endo, S.; Ichimura, S.; Ogawa, M.; Shimojima, M.; Ozawa, D.; Inomata, S.; Tanouchi, A.; Kaku, M.; Katori, Y. Molecular epidemiology of ampicillin-resistant Haemophilus influenzae causing acute otitis media in Japanese infants and young children. Pediatr. Infect. Dis. J., 2016, 35(5), 501-506.
[http://dx.doi.org/10.1097/INF.0000000000001066] [PMID: 26808724]
[337]
Bae, S.; Lee, J.; Lee, J.; Kim, E.; Lee, S.; Yu, J.; Kang, Y. Antimicrobial resistance in Haemophilus influenzae respiratory tract isolates in Korea: results of a nationwide acute respiratory infections surveillance. Antimicrob. Agents Chemother., 2010, 54(1), 65-71.
[http://dx.doi.org/10.1128/AAC.00966-09] [PMID: 19884366]
[338]
Farrell, D.J.; Morrissey, I.; Bakker, S.; Buckridge, S.; Felmingham, D. Global distribution of TEM-1 and ROB-1 beta-lactamases in Haemophilus influenzae. J. Antimicrob. Chemother., 2005, 56(4), 773-776.
[http://dx.doi.org/10.1093/jac/dki281] [PMID: 16096320]
[339]
Rubin, L.G.; Medeiros, A.A.; Yolken, R.H.; Moxon, E.R. Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type b meningitis due to novel beta-lactamase. Lancet, 1981, 2(8254), 1008-1010.
[http://dx.doi.org/10.1016/S0140-6736(81)91214-9] [PMID: 6118476]
[340]
Kostyanev, T.S.; Sechanova, L.P. Virulence factors and mechanisms of antibiotic resistance of Haemophilus influenzae. Folia Med. (Plovdiv), 2012, 54(1), 19-23.
[http://dx.doi.org/10.2478/v10153-011-0073-y] [PMID: 22908826]
[341]
Tristram, S.G.; Nichols, S. A multiplex PCR for beta-lactamase genes of Haemophilus influenzae and description of a new blaTEM promoter variant. J. Antimicrob. Chemother., 2006, 58(1), 183-185.
[http://dx.doi.org/10.1093/jac/dkl150] [PMID: 16641114]
[342]
García-Cobos, S.; Campos, J.; Cercenado, E.; Román, F.; Lázaro, E.; Pérez-Vázquez, M.; de Abajo, F.; Oteo, J. Antibiotic resistance in Haemophilus influenzae decreased, except for β-lactamase-negative amoxicillin-resistant isolates, in parallel with community antibiotic consumption in Spain from 1997 to 2007. Antimicrob. Agents Chemother., 2008, 52(8), 2760-2766.
[http://dx.doi.org/10.1128/AAC.01674-07] [PMID: 18505850]
[343]
Markowitz, S.M. Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain of Haemophilus influenzae. Antimicrob. Agents Chemother., 1980, 17(1), 80-83.
[http://dx.doi.org/10.1128/AAC.17.1.80] [PMID: 6965443]
[344]
Kishii, K.; Chiba, N.; Morozumi, M.; Hamano-Hasegawa, K.; Kurokawa, I.; Masaki, J.; Ubukata, K. Diverse mutations in the ftsI gene in ampicillin-resistant Haemophilus influenzae isolates from pediatric patients with acute otitis media. J. Infect. Chemother., 2010, 16(2), 87-93.
[http://dx.doi.org/10.1007/s10156-009-0011-6] [PMID: 20087619]
[345]
Lâm, T.T.; Claus, H.; Elias, J.; Frosch, M.; Vogel, U. Ampicillin resistance of invasive Haemophilus influenzae isolates in Germany 2009-2012. Int. J. Med. Microbiol., 2015, 305(7), 748-755.
[http://dx.doi.org/10.1016/j.ijmm.2015.08.028] [PMID: 26321008]
[346]
Ubukata, K.; Shibasaki, Y.; Yamamoto, K.; Chiba, N.; Hasegawa, K.; Takeuchi, Y.; Sunakawa, K.; Inoue, M.; Konno, M. Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother., 2001, 45(6), 1693-1699.
[http://dx.doi.org/10.1128/AAC.45.6.1693-1699.2001] [PMID: 11353613]
[347]
Niyogi, S.K. Shigellosis. J. Microbiol., 2005, 43(2), 133-143.
[PMID: 15880088]
[348]
Azmi, I.J.; Khajanchi, B.K.; Akter, F.; Hasan, T.N.; Shahnaij, M.; Akter, M.; Banik, A.; Sultana, H.; Hossain, M.A.; Ahmed, M.K.; Faruque, S.M.; Talukder, K.A. Fluoroquinolone resistance mechanisms of Shigella flexneri isolated in Bangladesh. PLoS One, 2014, 9(7), , e102533..
[http://dx.doi.org/10.1371/journal.pone.0102533] [PMID: 25028972]
[349]
Cui, X.; Wang, J.; Yang, C.; Liang, B.; Ma, Q.; Yi, S.; Li, H.; Liu, H.; Li, P.; Wu, Z.; Xie, J.; Jia, L.; Hao, R.; Wang, L.; Hua, Y.; Qiu, S.; Song, H. Prevalence and antimicrobial resistance of Shigella flexneri serotype 2 variant in China. Front. Microbiol., 2015, 6, 435.
[http://dx.doi.org/10.3389/fmicb.2015.00435] [PMID: 25999941]
[350]
Juma, B.W.; Kariuki, S.; Waiyaki, P.G.; Mutugi, M.W. Molecular characterization of fluoroquinolone resistance genes in isolates obtained from patients with diarrhea in Machakos district. African J. Pharmacol. Ther., 2016, 5(3), 118-127.
[351]
Niyogi, S.K. Increasing antimicrobial resistance-an emerging problem in the treatment of shigellosis. Clin. Microbiol. Infect., 2007, 13(12), 1141-1143.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01829.x] [PMID: 17953700]
[352]
Pu, X.Y.; Zhang, Q.; Pan, J.C.; Shen, Z.; Zhang, W. Spontaneous mutation frequency and molecular mechanisms of Shigella flexneri fluoroquinolone resistance under antibiotic selective stress. World J. Microbiol. Biotechnol., 2013, 29(2), 365-371.
[http://dx.doi.org/10.1007/s11274-012-1190-3] [PMID: 23070800]
[353]
Nandy, S.; Mitra, U.; Rajendran, K.; Dutta, P.; Dutta, S. Subtype prevalence, plasmid profiles and growing fluoroquinolone resistance in Shigella from Kolkata, India (2001-2007): a hospital-based study. Trop. Med. Int. Health, 2010, 15(12), 1499-1507.
[http://dx.doi.org/10.1111/j.1365-3156.2010.02656.x] [PMID: 20955371]
[354]
Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 1997, 61(3), 377-392.
[http://dx.doi.org/10.1128/.61.3.377-392.1997] [PMID: 9293187]
[355]
Poole, K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother., 2000, 44(9), 2233-2241.
[http://dx.doi.org/10.1128/AAC.44.9.2233-2241.2000] [PMID: 10952561]
[356]
Rodríguez-Martínez, J.M.; Cano, M.E.; Velasco, C.; Martínez-Martínez, L.; Pascual, A. Plasmid-mediated quinolone resistance: an update. J. Infect. Chemother., 2011, 17(2), 149-182.
[http://dx.doi.org/10.1007/s10156-010-0120-2] [PMID: 20886256]
[357]
Pu, X.Y.; Pan, J.C.; Wang, H.Q.; Zhang, W.; Huang, Z.C.; Gu, Y.M. Characterization of fluoroquinolone-resistant Shigella flexneri in Hangzhou area of China. J. Antimicrob. Chemother., 2009, 63(5), 917-920.
[http://dx.doi.org/10.1093/jac/dkp087] [PMID: 19297378]
[358]
Talukder, K.A.; Khajanchi, B.K.; Islam, M.A.; Islam, Z.; Dutta, D.K.; Rahman, M.; Watanabe, H.; Nair, G.B.; Sack, D.A. Fluoroquinolone resistance linked to both gyrA and parC mutations in the quinolone resistance-determining region of Shigella dysenteriae type 1. Curr. Microbiol., 2006, 52(2), 108-111.
[http://dx.doi.org/10.1007/s00284-005-0140-9] [PMID: 16450072]
[359]
Folster, J.P.; Pecic, G.; Bowen, A.; Rickert, R.; Carattoli, A.; Whichard, J.M. Decreased susceptibility to ciprofloxacin among Shigella isolates in the United States, 2006 to 2009. Antimicrob. Agents Chemother., 2011, 55(4), 1758-1760.
[http://dx.doi.org/10.1128/AAC.01463-10] [PMID: 21220535]
[360]
Eick, S.; Schmitt, A.; Sachse, S.; Schmidt, K.H.; Pfister, W. In vitro antibacterial activity of fluoroquinolones against Porphyromonas gingivalis strains. J. Antimicrob. Chemother., 2004, 54(2), 553-556.
[http://dx.doi.org/10.1093/jac/dkh354] [PMID: 15231772]
[361]
Hänninen, M-L.; Hannula, M. Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli. J. Antimicrob. Chemother., 2007, 60(6), 1251-1257.
[http://dx.doi.org/10.1093/jac/dkm345] [PMID: 17911389]
[362]
Talukder, K.A.; Khajanchi, B.K.; Islam, M.A.; Dutta, D.K.; Islam, Z.; Safa, A.; Khan, G.Y.; Alam, K.; Hossain, M.A.; Malla, S.; Niyogi, S.K.; Rahman, M.; Watanabe, H.; Nair, G.B.; Sack, D.A. Genetic relatedness of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated in south Asia. J. Antimicrob. Chemother., 2004, 54(4), 730-734.
[http://dx.doi.org/10.1093/jac/dkh425] [PMID: 15347639]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy