Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Asialoglycoprotein Receptor and Glycyrrhetinic Acid Receptor-Mediated and/or pH-Responsive Hepatocellular Carcinoma- Targeted Drug Delivery

Author(s): Yu-Lan Li, Xiao-Min Zhu, Hong Liang*, Chris Orvig and Zhen-Feng Chen*

Volume 28, Issue 8, 2021

Published on: 05 May, 2020

Page: [1508 - 1534] Pages: 27

DOI: 10.2174/0929867327666200505085756

Price: $65

conference banner
Abstract

Background: Hepatocellular carcinoma (HCC) seriously affects human health, especially, it easily develops multi-drug resistance (MDR) which results in treatment failure. There is an urgent need to develop highly effective and low-toxicity therapeutic agents to treat HCC and to overcome its MDR. Targeted drug delivery systems (DDS) for cancer therapy, including nanoparticles, lipids, micelles and liposomes, have been studied for decades. Recently, more attention has been paid to multifunctional DDS containing various ligands such as polymer moieties, targeting moieties, and acid-labile linkages. The polymer moieties such as poly(ethylene glycol) (PEG), chitosan (CTS), hyaluronic acid, pullulan, poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO) protect DDS from degradation. Asialoglycoprotein receptor (ASGPR) and glycyrrhetinic acid receptor (GAR) are most often used as the targeting moieties, which are overexpressed on hepatocytes. Acid-labile linkage, catering for the pH difference between tumor cells and normal tissue, has been utilized to release drugs at tumor tissue.

Objectives: This review provides a summary of the recent progress in ASGPR and GAR-mediated and/or pH-responsive HCC-targeted drug delivery.

Conclusion: The multifunctional DDS may prolong systemic circulation, continuously release drugs, increase the accumulation of drugs at the targeted site, enhance the anticancer effect, and reduce side effects both in vitro and in vivo. But it is rarely used to investigate MDR of HCC; therefore, it needs to be further studied before going into clinical trials.

Keywords: Hepatocellular carcinoma, Drug delivery systems, Asialoglycoprotein receptor, Glycyrrhetinic acid receptor, pH-responsive, Chemotherapy drug.

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Mohamed, N.K.; Hamad, M.A.; Hafez, M.Z.; Wooley, K.L.; Elsabahy, M. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int. J. Cancer, 2017, 140(7), 1475-1484.
[http://dx.doi.org/10.1002/ijc.30517] [PMID: 27861850]
[3]
Xiong, X.B.; Lavasanifar, A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano, 2011, 5(6), 5202-5213.
[http://dx.doi.org/10.1021/nn2013707] [PMID: 21627074]
[4]
Tian, G.; Zheng, X.; Zhang, X.; Yin, W.; Yu, J.; Wang, D.; Zhang, Z.; Yang, X.; Gu, Z.; Zhao, Y. TPGS-stabilized NaYbF4: Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.022] [PMID: 25433607]
[5]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[6]
Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23), 2673-2677.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]
[7]
Xue, X.; Liang, X-J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer, 2012, 31(2), 100-109.
[http://dx.doi.org/10.5732/cjc.011.10326] [PMID: 22237039]
[8]
Bupathi, M.; Kaseb, A.; Meric-Bernstam, F.; Naing, A. Hepatocellular carcinoma: where there is unmet need. Mol. Oncol., 2015, 9(8), 1501-1509.
[http://dx.doi.org/10.1016/j.molonc.2015.06.005] [PMID: 26160430]
[9]
Hong, Y.P.; Li, Z.D.; Prasoon, P.; Zhang, Q. Immunotherapy for hepatocellular carcinoma: from basic research to clinical use. World J. Hepatol., 2015, 7(7), 980-992.
[http://dx.doi.org/10.4254/wjh.v7.i7.980] [PMID: 25954480]
[10]
Chen, K.W.; Ou, T.M.; Hsu, C.W.; Horng, C.T.; Lee, C.C.; Tsai, Y.Y.; Tsai, C.C.; Liou, Y.S.; Yang, C.C.; Hsueh, C.W.; Kuo, W.H. Current systemic treatment of hepatocellular carcinoma: a review of the literature. World J. Hepatol., 2015, 7(10), 1412-1420.
[http://dx.doi.org/10.4254/wjh.v7.i10.1412] [PMID: 26052386]
[11]
Zeng, L.; Kuang, S.; Li, G.; Jin, C.; Ji, L.; Chao, H. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy. Chem. Commun (CAMB.), 2017, 53(12), 1977-1980.
[http://dx.doi.org/10.1039/c6cc10330h] [PMID: 28119967]
[12]
Huang, H.; Yu, B.; Zhang, P.; Huang, J.; Chen, Y.; Gasser, G.; Ji, L.; Chao, H. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew. Chem. Int. Ed. Engl., 2015, 54(47), 14049-14052.
[http://dx.doi.org/10.1002/anie.201507800] [PMID: 26447888]
[13]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[14]
Huang, X.; Leroux, J.C.; Castagner, B. Well-defined multivalent ligands for hepatocytes targeting via asialoglycoprotein receptor. Bioconjug. Chem., 2017, 28(2), 283-295.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00651] [PMID: 27966887]
[15]
Cai, Y.; Xu, Y.; Chan, H.F.; Fang, X.; He, C.; Chen, M. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol. Pharm., 2016, 13(3), 699-709.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00677] [PMID: 26808002]
[16]
Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev., 2014, 34(1), 106-135.
[http://dx.doi.org/10.1002/med.21280] [PMID: 23494977]
[17]
Gentile, E.A.; Castronuovo, C.C.; Cuestas, M.L.; Gómez, N.; Davio, C.; Oubiña, J.R.; Mathet, V.L. F127 poloxamer effect on cytotoxicity induction of tumour cell cultures treated with doxorubicin. J. Pharm. Pharmacol., 2019, 71(11), 1655-1662.
[http://dx.doi.org/10.1111/jphp.13158] [PMID: 31456253]
[18]
Alvarez-Lorenzo, C.; Sosnik, A.; Concheiro, A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr. Drug Targets, 2011, 12(8), 1112-1130.
[http://dx.doi.org/10.2174/138945011795906615] [PMID: 21443477]
[19]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[20]
Chung, C.Y.; Fung, S.K.; Tong, K.C.; Wan, P.K.; Lok, C.N.; Huang, Y.; Chen, T.; Che, C.M. A multi-functional PEGylated gold(iii) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem. Sci. (Camb.), 2017, 8(3), 1942-1953.
[http://dx.doi.org/10.1039/C6SC03210A] [PMID: 28451309]
[21]
Wang, B.; Xu, C.; Xie, J.; Yang, Z.; Sun, S. pH controlled release of chromone from chromone-Fe3O4 nanoparticles. J. Am. Chem. Soc., 2008, 130(44), 14436-14437.
[http://dx.doi.org/10.1021/ja806519m] [PMID: 18839952]
[22]
Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L.J.; Feng, P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc., 2010, 132(5), 1500-1501.
[http://dx.doi.org/10.1021/ja907838s] [PMID: 20085351]
[23]
Zhang, J.J.; Lu, W.; Sun, R.W.; Che, C.M. Organogold(III) supramolecular polymers for anticancer treatment. Angew. Chem. Int. Ed. Engl., 2012, 51(20), 4882-4886.
[http://dx.doi.org/10.1002/anie.201108466] [PMID: 22473661]
[24]
Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release, 2011, 152(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[25]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem., 2014, 5, 1519-1528.
[http://dx.doi.org/10.1039/C3PY01192E]
[26]
Santra, S.; Kaittanis, C.; Santiesteban, O.J.; Perez, J.M. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc., 2011, 133(41), 16680-16688.
[http://dx.doi.org/10.1021/ja207463b] [PMID: 21910482]
[27]
Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc., 2009, 131(38), 13639-13645.
[http://dx.doi.org/10.1021/ja902062j] [PMID: 19772360]
[28]
Vankayala, R.; Lin, C.C.; Kalluru, P.; Chiang, C.S.; Hwang, K.C. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials, 2014, 35(21), 5527-5538.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.065] [PMID: 24731706]
[29]
N’Guyen, T.T.; Duong, H.T.; Basuki, J.; Montembault, V.; Pascual, S.; Guibert, C.; Fresnais, J.; Boyer, C.; Whittaker, M.R.; Davis, T.P.; Fontaine, L. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(52), 14152-14156.
[http://dx.doi.org/10.1002/anie.201306724] [PMID: 24255024]
[30]
D’Souza, A.A.; Devarajan, P.V. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J. Control. Rel., 2015, 203, 126-139.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.022] [PMID: 25701309]
[31]
Felber, A.E.; Dufresne, M.H.; Leroux, J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev., 2012, 64(11), 979-992.
[http://dx.doi.org/10.1016/j.addr.2011.09.006] [PMID: 21996056]
[32]
Yu, J.; Chu, X.; Hou, Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem. Commun. (Camb.), 2014, 50(79), 11614-11630.
[http://dx.doi.org/10.1039/C4CC03984J] [PMID: 25058003]
[33]
Lu, J.; Wang, J.; Ling, D. Surface Engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small, 2018, 14(5)
[http://dx.doi.org/10.1002/smll.201702037] [PMID: 29251419]
[34]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[35]
Folberg, R.; Hendrix, M.J.; Maniotis, A.J. Vasculogenic mimicry and tumor angiogenesis. Am. J. Pathol., 2000, 156(2), 361-381.
[http://dx.doi.org/10.1016/S0002-9440(10)64739-6] [PMID: 10666364]
[36]
Semela, D.; Dufour, J.F. Angiogenesis and hepatocellular carcinoma. J. Hepatol., 2004, 41(5), 864-880.
[http://dx.doi.org/10.1016/j.jhep.2004.09.006] [PMID: 15519663]
[37]
Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J.W.; Thurston, G.; Roberge, S.; Jain, R.K.; McDonald, D.M. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol., 2000, 156(4), 1363-1380.
[http://dx.doi.org/10.1016/S0002-9440(10)65006-7] [PMID: 10751361]
[38]
Ballet, F. Hepatic circulation: potential for therapeutic intervention. Pharmacol. Ther., 1990, 47(2), 281-328.
[http://dx.doi.org/10.1016/0163-7258(90)90091-F] [PMID: 2203072]
[39]
Roberts, W.G.; Palade, G.E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res., 1997, 57(4), 765-772.
[PMID: 9044858]
[40]
Liu, J.Y.; Chiang, T.; Liu, C.H.; Chern, G.G.; Lin, T.T.; Gao, D.Y.; Chen, Y. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol. Ther., 2015, 23(11), 1772-1782.
[http://dx.doi.org/10.1038/mt.2015.147] [PMID: 26278330]
[41]
Tong, R.T.; Boucher, Y.; Kozin, S.V.; Winkler, F.; Hicklin, D.J.; Jain, R.K. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res., 2004, 64(11), 3731-3736.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0074] [PMID: 15172975]
[42]
Greish, K.; Iyer, A.k.; Fang, J.; Kawasuji, M.; Maeda, H. Enhanced permeability and retention (EPR) effect and tumor-selective delivery of anticancer drugs. Prot. Pept. Drug Ca, 2006, 37-52.
[http://dx.doi.org/10.1142/9781860948039_0003]
[43]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[44]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[45]
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target., 2007, 15(7-8), 457-464.
[http://dx.doi.org/10.1080/10611860701539584] [PMID: 17671892]
[46]
Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[47]
Nichols, J.W.; Bae, Y.H. EPR: evidence and fallacy. J. Control. Release, 2014, 190, 451-464.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[48]
Kim, Y.; Lin, Q.; Glazer, P.M.; Yun, Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med., 2009, 9(4), 425-434.
[http://dx.doi.org/10.2174/156652409788167113] [PMID: 19519400]
[49]
Michiels, C.; Tellier, C.; Feron, O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim. Biophys. Acta, 2016, 1866(1), 76-86.
[http://dx.doi.org/10.1016/j.bbcan.2016.06.004] [PMID: 27343712]
[50]
Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst., 2007, 99(19), 1441-1454.
[http://dx.doi.org/10.1093/jnci/djm135] [PMID: 17895480]
[51]
Iyer, A.K.; Singh, A.; Ganta, S.; Amiji, M.M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1784-1802.
[http://dx.doi.org/10.1016/j.addr.2013.07.012] [PMID: 23880506]
[52]
Murphy, R.F.; Powers, S.; Cantor, C.R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J. Cell Biol., 1984, 98(5), 1757-1762.
[http://dx.doi.org/10.1083/jcb.98.5.1757] [PMID: 6144684]
[53]
Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res., 1989, 49(23), 6449-6465.
[PMID: 2684393]
[54]
Zhang, X.; Ng, H.L.H.; Lu, A.; Lin, C.; Zhou, L.; Lin, G.; Zhang, Y.; Yang, Z.; Zhang, H. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. Nanomedicine (Lond.), 2016, 12(4), 853-869.
[http://dx.doi.org/10.1016/j.nano.2015.12.381] [PMID: 26772424]
[55]
Feron, O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol., 2009, 92(3), 329-333.
[http://dx.doi.org/10.1016/j.radonc.2009.06.025] [PMID: 19604589]
[56]
Brahimi-Horn, M.C.; Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett., 2007, 581(19), 3582-3591.
[http://dx.doi.org/10.1016/j.febslet.2007.06.018] [PMID: 17586500]
[57]
Sedlakova, O.; Svastova, E.; Takacova, M.; Kopacek, J.; Pastorek, J.; Pastorekova, S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front. Physiol., 2014, 4, 400-400.
[http://dx.doi.org/10.3389/fphys.2013.00400] [PMID: 24409151]
[58]
Yang, X.; Wang, D.; Dong, W.; Song, Z.; Dou, K. Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility. Cancer Lett., 2010, 295(2), 198-204.
[http://dx.doi.org/10.1016/j.canlet.2010.03.001] [PMID: 20338684]
[59]
Chi, S.L.; Pizzo, S.V. Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res., 2006, 66(2), 875-882.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2806] [PMID: 16424020]
[60]
Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today, 2016, 19, 274-283.
[http://dx.doi.org/10.1016/j.mattod.2015.11.025]
[61]
Wang, Y.; Du, H.; Zhai, G. Recent advances in active hepatic targeting drug delivery system. Curr. Drug Targets, 2014, 15(6), 573-599.
[http://dx.doi.org/10.2174/1389450115666140309232100] [PMID: 24606040]
[62]
Zhou, X.; Zhang, M.; Yung, B.; Li, H.; Zhou, C.; Lee, L.J.; Lee, R.J. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomedicine, 2012, 7, 5465-5474.
[http://dx.doi.org/10.2147/ijn.s33965] [PMID: 23093902]
[63]
Wolschek, M.F.; Thallinger, C.; Kursa, M.; Rössler, V.; Allen, M.; Lichtenberger, C.; Kircheis, R.; Lucas, T.; Willheim, M.; Reinisch, W.; Gangl, A.; Wagner, E.; Jansen, B. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology, 2002, 36(5), 1106-1114.
[http://dx.doi.org/10.1053/jhep.2002.36372] [PMID: 12395320]
[64]
Holmström, P.; Gåfvels, M.; Eriksson, L.C.; Dzikaite, V.; Hultcrantz, R.; Eggertsen, G.; Stål, P. Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver Int., 2006, 26(8), 976-985.
[http://dx.doi.org/10.1111/j.1478-3231.2006.01316.x] [PMID: 16953838]
[65]
Niu, C.; Sun, Q.; Zhou, J.; Cheng, D.; Hong, G. Folate-functionalized polymeric micelles based on biodegradable PEG-PDLLA as a hepatic carcinoma-targeting delivery system. Asian Pac. J. Cancer Prev., 2011, 12(8), 1995-1999.
[PMID: 22292640]
[66]
Morell, A.G.; Irvine, R.A.; Sternlieb, I.; Scheinberg, I.H.; Ashwell, G. Physical and chemical studies on ceruloplasmin. V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J. Biol. Chem., 1968, 243(1), 155-159.
[PMID: 5635941]
[67]
Spiess, M. The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry, 1990, 29(43), 10009-10018.
[http://dx.doi.org/10.1021/bi00495a001] [PMID: 2125488]
[68]
Stockert, R.J. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev., 1995, 75(3), 591-609.
[http://dx.doi.org/10.1152/physrev.1995.75.3.591] [PMID: 7624395]
[69]
Diao, J.; Michalak, T.I. Composition, antigenic properties and hepatocyte surface expression of the woodchuck asialoglycoprotein receptor. J. Recept. Signal Transduct. Res., 1996, 16(5-6), 243-271.
[http://dx.doi.org/10.3109/10799899609039951] [PMID: 8968961]
[70]
Li, Y.; Huang, G.; Diakur, J.; Wiebe, L.I. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development. Curr. Drug Deliv., 2008, 5(4), 299-302.
[http://dx.doi.org/10.2174/156720108785915069] [PMID: 18855599]
[71]
Gao, S.; Chen, J.; Xu, X.; Ding, Z.; Yang, Y-H.; Hua, Z.; Zhang, J. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int. J. Pharm., 2003, 255(1-2), 57-68.
[http://dx.doi.org/10.1016/S0378-5173(03)00082-6] [PMID: 12672602]
[72]
Quan, G.; Pan, X.; Wang, Z.; Wu, Q.; Li, G.; Dian, L.; Chen, B.; Wu, C. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J. Nanobiotechnology, 2015, 13, 7.
[http://dx.doi.org/10.1186/s12951-015-0068-6] [PMID: 25643602]
[73]
Negishi, M.; Irie, A.; Nagata, N.; Ichikawa, A. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim. Biophys. Acta, 1991, 1066(1), 77-82.
[http://dx.doi.org/10.1016/0005-2736(91)90253-5] [PMID: 2065071]
[74]
Ismair, M.G.; Stanca, C.; Ha, H.R.; Renner, E.L.; Meier, P.J.; Kullak-Ublick, G.A. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol. Res., 2003, 26(4), 343-347.
[http://dx.doi.org/10.1016/S1386-6346(03)00154-2] [PMID: 12963436]
[75]
Shiki, Y.; Shirai, K.; Saito, Y.; Yoshida, S.; Mori, Y.; Wakashin, M. Effect of glycyrrhizin on lysis of hepatocyte membranes induced by anti-liver cell membrane antibody. J. Gastroenterol. Hepatol., 1992, 7(1), 12-16.
[http://dx.doi.org/10.1111/j.1440-1746.1992.tb00927.x] [PMID: 1543863]
[76]
Il’icheva, T.N.; Proniaeva, T.R.; Smetannikov, A.A.; Pokrovskiĭ, A.G. [Content of progesterone, glucocorticoid and glycyrrhizic acid receptors in normal and tumoral human breast tissue] Vopr. Onkol., 1998, 44(4), 390-394.
[PMID: 9807199]
[77]
Su, X.; Wu, L.; Hu, M.; Dong, W.; Xu, M.; Zhang, P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed. Pharmacother., 2017, 95, 670-678.
[http://dx.doi.org/10.1016/j.biopha.2017.08.123] [PMID: 28886526]
[78]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S81-S91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[79]
Zhi PingXu QH. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61, 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[80]
Yildiz, I.; Shukla, S.; Steinmetz, N.F. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol., 2011, 22(6), 901-908.
[http://dx.doi.org/10.1016/j.copbio.2011.04.020] [PMID: 21592772]
[81]
Kim, C.H.; Lee, S.G.; Kang, M.J.; Lee, S.; Choi, Y.W. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J. Pharm. Investig., 2017, 47, 203-227.
[http://dx.doi.org/10.1007/s40005-017-0329-5]
[82]
Chen, S.; Cheng, S.X.; Zhuo, R.X. Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery. Macromol. Biosci., 2011, 11(5), 576-589.
[http://dx.doi.org/10.1002/mabi.201000427] [PMID: 21188686]
[83]
Zhang, X.; Yang, X.; Ji, J.; Liu, A.; Zhai, G. Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf. B Biointerfaces, 2016, 148, 460-473.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.020] [PMID: 27665379]
[84]
Cheng, M.; Han, J.; Li, Q.; He, B.; Zha, B.; Wu, J.; Zhou, R.; Ye, T.; Wang, W.; Xu, H.; Hou, Y. Synthesis of galactosylated chitosan/5-fluorouracil nanoparticles and its characteristics, in vitro and in vivo release studies. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(8), 2035-2043.
[http://dx.doi.org/10.1002/jbm.b.32767] [PMID: 22865703]
[85]
Yu, C-Y. N-ML Fabrication of galactosylated chitosan–5-fluorouracil acetic acid based nanoparticles for controlled drug delivery. J. Appl. Polym. Sci., 2015, 132, 42625.
[http://dx.doi.org/10.1002/app.42625]
[86]
Zhou, N.; Zan, X.; Wang, Z.; Wu, H.; Yin, D.; Liao, C.; Wan, Y. Galactosylated chitosan-polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr. Polym., 2013, 94(1), 420-429.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.014] [PMID: 23544558]
[87]
Cheng, M.; Liu, Z.; Wan, T.; He, B.; Zha, B.; Han, J.; Chen, H.; Yang, F.; Li, Q.; Wang, W.; Xu, H.; Ye, T. Preliminary pharmacology of galactosylated chitosan/5-fluorouracil nanoparticles and its inhibition of hepatocellular carcinoma in mice. Cancer Biol. Ther., 2012, 13(14), 1407-1416.
[http://dx.doi.org/10.4161/cbt.22001] [PMID: 22954702]
[88]
Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev., 2016, 97, 204-236.
[http://dx.doi.org/10.1016/j.addr.2015.11.011] [PMID: 26592477]
[89]
Jiao, Y.; Pang, X.; Zhai, G. Advances in hyaluronic acid-based drug delivery systems. Curr. Drug Targets, 2016, 17(6), 720-730.
[http://dx.doi.org/10.2174/1389450116666150531155200] [PMID: 26028046]
[90]
Kaneo, Y.; Tanaka, T.; Nakano, T.; Yamaguchi, Y. Evidence for receptor-mediated hepatic uptake of pullulan in rats. J. Control. Release, 2001, 70(3), 365-373.
[http://dx.doi.org/10.1016/S0168-3659(00)00368-0] [PMID: 11182206]
[91]
Li, H.; Bian, S.; Huang, Y.; Liang, J.; Fan, Y.; Zhang, X. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J. Biomed. Mater. Res. A, 2014, 102(1), 150-159.
[http://dx.doi.org/10.1002/jbm.a.34680] [PMID: 23613258]
[92]
Wang, Y.; Chen, H.; Liu, Y.; Wu, J.; Zhou, P.; Wang, Y.; Li, R.; Yang, X.; Zhang, N. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials, 2013, 34(29), 7181-7190.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.081] [PMID: 23791500]
[93]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[94]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[95]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[96]
Maeda, H.; Sawa, T.; Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release, 2001, 74(1-3), 47-61.
[http://dx.doi.org/10.1016/S0168-3659(01)00309-1] [PMID: 11489482]
[97]
Jain, N.K.; Jain, S.K. Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin. AAPS PharmSciTech, 2010, 11(2), 686-697.
[http://dx.doi.org/10.1208/s12249-010-9422-z] [PMID: 20414758]
[98]
Kimoto, T.; Shibuya, T.; Shiobara, S. Safety studies of a novel starch, pullulan: chronic toxicity in rats and bacterial mutagenicity. Food Chem. Toxicol., 1997, 35(3-4), 323-329.
[http://dx.doi.org/10.1016/S0278-6915(97)00001-X] [PMID: 9207894]
[99]
Akiyoshi, K.; Kobayashi, S.; Shichibe, S.; Mix, D.; Baudys, M.; Kim, S.W.; Sunamoto, J. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release, 1998, 54(3), 313-320.
[http://dx.doi.org/10.1016/S0168-3659(98)00017-0] [PMID: 9766251]
[100]
Na, K.; Bae, Y.H. Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm. Res., 2002, 19(5), 681-688.
[http://dx.doi.org/10.1023/A:1015370532543] [PMID: 12069173]
[101]
Karakoti, A.S.; Das, S.; Thevuthasan, S.; Seal, S. PEGylated inorganic nanoparticles. Angew. Chem. Int. Ed. Engl., 2011, 50(9), 1980-1994.
[http://dx.doi.org/10.1002/anie.201002969] [PMID: 21275011]
[102]
Raja, K.S.; Wang, Q.; Gonzalez, M.J.; Manchester, M.; Johnson, J.E.; Finn, M.G. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules, 2003, 4(3), 472-476.
[http://dx.doi.org/10.1021/bm025740+] [PMID: 12741758]
[103]
Steinmetz, N.F.; Manchester, M. PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules, 2009, 10(4), 784-792.
[http://dx.doi.org/10.1021/bm8012742] [PMID: 19281149]
[104]
Kaneo, Y.; Ueno, T.; Tanaka, T.; Iwase, H.; Yamaguchi, Y.; Uemura, T. Pharmacokinetics and biodisposition of fluorescein-labeled arabinogalactan in rats. Int. J. Pharm., 2000, 201(1), 59-69.
[http://dx.doi.org/10.1016/S0378-5173(00)00405-1] [PMID: 10867265]
[105]
Rekha, M.R.; Sharma, C.P. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials, 2009, 30(34), 6655-6664.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.029] [PMID: 19726082]
[106]
Yim, H.; Yang, S.G.; Jeon, Y.S.; Park, I.S.; Kim, M.; Lee, D.H.; Bae, Y.H.; Na, K. The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials, 2011, 32(22), 5187-5194.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.069] [PMID: 21561660]
[107]
Seo, E.H.; Lee, C.S.; Na, K. Photomediated Reactive Oxygen Species-Generable Nanoparticles for Triggered Release and Endo/Lysosomal Escape of Drug upon Attenuated Single Light Irradiation. Adv. Healthc. Mater., 2015, 4(18), 2822-2830.
[http://dx.doi.org/10.1002/adhm.201500622] [PMID: 26449186]
[108]
Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. J. Control. Release, 2013, 169(3), 193-203.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.006] [PMID: 23247039]
[109]
Zhao, X.; Liu, P.; Song, Q.; Gong, N.; Yang, L.; Wu, W.D. Surface charge-reversible polyelectrolyte complex nanoparticles for hepatoma-targeting delivery of doxorubicin. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(30), 6185-6193.
[http://dx.doi.org/10.1039/C5TB00600G] [PMID: 32262737]
[110]
Yuan, R.; Zheng, F.; Zhong, S.; Tao, X.; Zhang, Y.; Gao, F.; Yao, F.; Chen, J.; Chen, Y.; Shi, G. Self-assembled nanoparticles of glycyrrhetic acid-modified pullulan as a novel carrier of curcumin. Molecules, 2014, 19(9), 13305-13318.
[http://dx.doi.org/10.3390/molecules190913305] [PMID: 25170951]
[111]
Guo, H.; Lai, Q.; Wang, W.; Wu, Y.; Zhang, C.; Liu, Y.; Yuan, Z. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int. J. Pharm., 2013, 451(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.025] [PMID: 23618965]
[112]
Bae, Y.; Nishiyama, N.; Kataoka, K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug. Chem., 2007, 18(4), 1131-1139.
[http://dx.doi.org/10.1021/bc060401p] [PMID: 17488066]
[113]
Qu, X.; Yang, Z. Benzoic-imine-based physiological-pH-responsive materials for biomedical applications. Chem. Asian J., 2016, 11(19), 2633-2641.
[http://dx.doi.org/10.1002/asia.201600452] [PMID: 27410679]
[114]
Huang, W.; Wang, W.; Wang, P.; Zhang, C-N.; Tian, Q.; Zhang, Y.; Wang, X-H.; Cha, R-T.; Wang, C-H.; Yuan, Z. Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier. J. Mater. Sci. Mater. Med., 2011, 22(4), 853-863.
[http://dx.doi.org/10.1007/s10856-011-4262-2] [PMID: 21373811]
[115]
Liu, D.; Hu, H.; Zhang, J.; Zhao, X.; Tang, X.; Chen, D. Drug pH-sensitive release in vitro and targeting ability of polyamidoamine dendrimer complexes for tumor cells. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 63-71.
[http://dx.doi.org/10.1248/cpb.59.63] [PMID: 21212549]
[116]
Jung, S.; Nam, J.; Hwang, S.; Park, J.; Hur, J. Im, K.; Park, N.; Kim, S. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Anal. Chem., 2013, 85(16), 7674-7681.
[http://dx.doi.org/10.1021/ac401390m] [PMID: 23883363]
[117]
Ke, C-J.; Su, T-Y.; Chen, H-L.; Liu, H-L.; Chiang, W-L.; Chu, P-C.; Xia, Y.; Sung, H-W. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem. Int. Ed. Engl., 2011, 50(35), 8086-8089.
[http://dx.doi.org/10.1002/anie.201102852] [PMID: 21751316]
[118]
Ke, C-J.; Lin, Y-J.; Hu, Y-C.; Chiang, W-L.; Chen, K-J.; Yang, W-C.; Liu, H-L.; Fu, C-C.; Sung, H-W. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials, 2012, 33(20), 5156-5165.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.056] [PMID: 22484044]
[119]
Ke, C-J.; Chiang, W-L.; Liao, Z-X.; Chen, H-L.; Lai, P-S.; Sun, J-S.; Sung, H-W. Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance. Biomaterials, 2013, 34(1), 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.023] [PMID: 23044041]
[120]
Liu, J.; Ma, H.; Wei, T.; Liang, X-J. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem. Commun. (Camb.), 2012, 48(40), 4869-4871.
[http://dx.doi.org/10.1039/c2cc31697h] [PMID: 22498879]
[121]
Wang, Y.; Jiang, G.; Qiu, T.; Ding, F. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Drug Dev. Ind. Pharm., 2012, 38(9), 1039-1046.
[http://dx.doi.org/10.3109/03639045.2011.637052] [PMID: 22124381]
[122]
Li, J.; Xu, H.; Ke, X.; Tian, J. The anti-tumor performance of docetaxel liposomes surface-modified with glycyrrhetinic acid. J. Drug Target., 2012, 20(5), 467-473.
[http://dx.doi.org/10.3109/1061186X.2012.685475] [PMID: 22577855]
[123]
Cheng, M.; He, B.; Wan, T.; Zhu, W.; Han, J.; Zha, B.; Chen, H.; Yang, F.; Li, Q.; Wang, W.; Xu, H.; Ye, T. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One, 2012, 7(10)e47115
[http://dx.doi.org/10.1371/journal.pone.0047115] [PMID: 23077553]
[124]
Zheng, G.; Zhao, R.; Xu, A.; Shen, Z.; Chen, X.; Shao, J. Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy. Eur. J. Pharm. Sci., 2018, 111, 492-502.
[http://dx.doi.org/10.1016/j.ejps.2017.10.036] [PMID: 29107835]
[125]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol., 2011, 6(12), 815-823.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[126]
Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218.
[http://dx.doi.org/10.1016/j.biopha.2017.09.059] [PMID: 28931213]
[127]
Zhang, C.; Wang, W.; Liu, T.; Wu, Y.; Guo, H.; Wang, P.; Tian, Q.; Wang, Y.; Yuan, Z. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 2012, 33(7), 2187-2196.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.045] [PMID: 22169820]
[128]
Mezghrani, O.; Tang, Y.; Ke, X.; Chen, Y.; Hu, D.; Tu, J.; Zhao, L.; Bourkaib, N. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. Int. J. Pharm., 2015, 478(2), 553-568.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.041] [PMID: 25455765]
[129]
Xia, Y.; Zhong, J.; Zhao, M.; Tang, Y.; Han, N.; Hua, L.; Xu, T.; Wang, C.; Zhu, B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[130]
Ding, J.; Xu, W.; Zhang, Y.; Sun, D.; Xiao, C.; Liu, D.; Zhu, X.; Chen, X. Self-reinforced endocytoses of smart polypeptide nanogels for “on-demand” drug delivery. J. Control. Release, 2013, 172(2), 444-455.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.029] [PMID: 23742879]
[131]
Feng, S-S.; Mu, L.; Win, K.Y.; Huang, G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem., 2004, 11(4), 413-424.
[http://dx.doi.org/10.2174/0929867043455909] [PMID: 14965222]
[132]
Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm., 2002, 235(1-2), 179-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[133]
Nagesh, P.K.B.; Johnson, N.R.; Boya, V.K.N.; Chowdhury, P.; Othman, S.F.; Khalilzad-Sharghi, V.; Hafeez, B.B.; Ganju, A.; Khan, S.; Behrman, S.W.; Zafar, N.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf. B Biointerfaces, 2016, 144, 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[134]
Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009, 30(2), 226-232.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[135]
Huang, C.; Li, N.M.; Gao, P.; Yang, S.; Ning, Q.; Huang, W.; Li, Z.P.; Ye, P.J.; Xiang, L.; He, D.X.; Tan, X.W.; Yu, C.Y. In vitro and in vivo evaluation of macromolecular prodrug GC-FUA based nanoparticle for hepatocellular carcinoma chemotherapy. Drug Deliv., 2017, 24(1), 459-466.
[http://dx.doi.org/10.1080/10717544.2016.1264499] [PMID: 28219253]
[136]
Thapa, R.K.; Choi, J.Y.; Poudel, B.K.; Hiep, T.T.; Pathak, S.; Gupta, B.; Choi, H-G.; Yong, C.S.; Kim, J.O. Multilayer-coated liquid crystalline nanoparticles for effective sorafenib delivery to hepatocellular carcinoma. ACS Appl. Mater. Interfaces, 2015, 7(36), 20360-20368.
[http://dx.doi.org/10.1021/acsami.5b06203] [PMID: 26315487]
[137]
Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res., 1995, 55(17), 3752-3756.
[PMID: 7641188]
[138]
Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4607-4612.
[http://dx.doi.org/10.1073/pnas.95.8.4607] [PMID: 9539785]
[139]
Chauhan, V.P.; Stylianopoulos, T.; Martin, J.D.; Popović, Z.; Chen, O.; Kamoun, W.S.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol., 2012, 7(6), 383-388.
[http://dx.doi.org/10.1038/nnano.2012.45] [PMID: 22484912]
[140]
Liang, H-F.; Yang, T-F.; Huang, C-T.; Chen, M-C.; Sung, H-W. Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J. Control. Release, 2005, 105(3), 213-225.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.021] [PMID: 15916830]
[141]
Hashida, M.; Takemura, S.; Nishikawa, M.; Takakura, Y. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). J. Control. Release, 1998, 53(1-3), 301-310.
[http://dx.doi.org/10.1016/S0168-3659(97)00263-0] [PMID: 9741938]
[142]
Wu, G.Y.; Wu, C.H. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem., 1988, 263(29), 14621-14624.
[PMID: 3049582]
[143]
Yu, W.; Zhang, N.; Li, C. Saccharide modified pharmaceutical nanocarriers for targeted drug and gene delivery. Curr. Pharm. Des., 2009, 15(32), 3826-3836.
[http://dx.doi.org/10.2174/138161209789649547] [PMID: 19925431]
[144]
Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov. Today, 2018, 23(5), 1126-1138.
[http://dx.doi.org/10.1016/j.drudis.2018.02.009] [PMID: 29501708]
[145]
Pinho, S.S.; Reis, C.A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer, 2015, 15(9), 540-555.
[http://dx.doi.org/10.1038/nrc3982] [PMID: 26289314]
[146]
Guhagarkar, S.A.; Gaikwad, R.V.; Samad, A.; Malshe, V.C.; Devarajan, P.V. Polyethylene sebacate-doxorubicin nanoparticles for hepatic targeting. Int. J. Pharm., 2010, 401(1-2), 113-122.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.012] [PMID: 20854883]
[147]
Guhagarkar, S.A.; Majee, S.B.; Samad, A.; Devarajan, P.V. Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line. Cancer Nanotechnol., 2011, 2(1-6), 49-55.
[http://dx.doi.org/10.1007/s12645-011-0012-x] [PMID: 26069484]
[148]
Shen, Z.; Wei, W.; Tanaka, H.; Kohama, K.; Ma, G.; Dobashi, T.; Maki, Y.; Wang, H.; Bi, J.; Dai, S. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol. Res., 2011, 64(4), 410-419.
[http://dx.doi.org/10.1016/j.phrs.2011.06.015] [PMID: 21723392]
[149]
Chen, W.; Zou, Y.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs. Biomacromolecules, 2014, 15(3), 900-907.
[http://dx.doi.org/10.1021/bm401749t] [PMID: 24460130]
[150]
Pathak, P.O.; Nagarsenker, M.S.; Barhate, C.R.; Padhye, S.G.; Dhawan, V.V.; Bhattacharyya, D.; Viswanathan, C.L.; Steiniger, F.; Fahr, A. Cholesterol anchored arabinogalactan for asialoglycoprotein receptor targeting: synthesis, characterization, and proof of concept of hepatospecific delivery. Carbohydr. Res., 2015, 408, 33-43.
[http://dx.doi.org/10.1016/j.carres.2015.03.003] [PMID: 25841057]
[151]
Pathak, P.; Dhawan, V.; Magarkar, A.; Danne, R.; Govindarajan, S.; Ghosh, S.; Steiniger, F.; Chaudhari, P.; Gopal, V.; Bunker, A.; Róg, T.; Fahr, A.; Nagarsenker, M. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation. Int. J. Pharm., 2016, 509(1-2), 149-158.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.041] [PMID: 27231122]
[152]
Elsadek, B.; Mansour, A.; Saleem, T.; Warnecke, A.; Kratz, F. The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Dig. Liver Dis., 2017, 49(2), 213-222.
[http://dx.doi.org/10.1016/j.dld.2016.10.003] [PMID: 27825923]
[153]
Pranatharthiharan, S.; Patel, M.D.; Malshe, V.C.; Pujari, V.; Gorakshakar, A.; Madkaikar, M.; Ghosh, K.; Devarajan, P.V. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv., 2017, 24(1), 20-29.
[http://dx.doi.org/10.1080/10717544.2016.1225856] [PMID: 28155331]
[154]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi, H.; Khadem, M. Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. J. Liposome Res., 2012, 22(3), 224-236.
[http://dx.doi.org/10.3109/08982104.2012.662653] [PMID: 22385296]
[155]
Cheng, M.R.; Li, Q.; Wan, T.; He, B.; Han, J.; Chen, H.X.; Yang, F.X.; Wang, W.; Xu, H.Z.; Ye, T.; Zha, B.B. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J. Gastroenterol., 2012, 18(42), 6076-6087.
[http://dx.doi.org/10.3748/wjg.v18.i42.6076] [PMID: 23155336]
[156]
Liang, H.F.; Chen, C.T.; Chen, S.C.; Kulkarni, A.R.; Chiu, Y.L.; Chen, M.C.; Sung, H.W. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials, 2006, 27(9), 2051-2059.
[http://dx.doi.org/10.1016/j.biomaterials.2005.10.027] [PMID: 16307794]
[157]
Liu, X.; Han, M.; Xu, J.; Geng, S.; Zhang, Y.; Ye, X.; Gou, J.; Yin, T.; He, H.; Tang, X. Asialoglycoprotein receptor-targeted liposomes loaded with a norcantharimide derivative for hepatocyte-selective targeting. Int. J. Pharm., 2017, 520(1-2), 98-110.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.010] [PMID: 28167263]
[158]
Wang, Q.; Zhang, L.; Hu, W.; Hu, Z.H.; Bei, Y.Y.; Xu, J.Y.; Wang, W.J.; Zhang, X.N.; Zhang, Q. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine (Lond.), 2010, 6(2), 371-381.
[http://dx.doi.org/10.1016/j.nano.2009.07.006] [PMID: 19699319]
[159]
Lu, W.; He, L.C.; Wang, C.H.; Li, Y.H.; Zhang, S.Q. The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice. Int. J. Biol. Macromol., 2008, 43(3), 320-324.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.06.006] [PMID: 18619484]
[160]
Li, W.J.; Lian, Y.W.; Guan, Q.S.; Li, N.; Liang, W.J.; Liu, W.X.; Huang, Y.B.; Cheng, Y.; Luo, H. Liver-targeted delivery of liposome-encapsulated curcumol using galactosylated-stearate. Exp. Ther. Med., 2018, 16(2), 925-930.
[http://dx.doi.org/10.3892/etm.2018.6210] [PMID: 30112045]
[161]
Liu, X.; Liu, B.; Gao, S.; Wang, Z.; Tian, Y.; Wu, M.; Jiang, S.; Niu, Z. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(11), 2078-2085.
[http://dx.doi.org/10.1039/C7TB00100B] [PMID: 32263681]
[162]
Tian, Q.; Zhang, C.N.; Wang, X.H.; Wang, W.; Huang, W.; Cha, R.T.; Wang, C.H.; Yuan, Z.; Liu, M.; Wan, H.Y.; Tang, H. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials, 2010, 31(17), 4748-4756.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.042] [PMID: 20303163]
[163]
Qi, W.W.; Yu, H.Y.; Guo, H.; Lou, J.; Wang, Z.M.; Liu, P.; Sapin-Minet, A.; Maincent, P.; Hong, X.C.; Hu, X.M.; Xiao, Y.L. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy. Mol. Pharm., 2015, 12(3), 675-683.
[http://dx.doi.org/10.1021/mp500394v] [PMID: 25584860]
[164]
Wu, F.; Xu, T.; Liu, C.; Chen, C.; Song, X.; Zheng, Y.; He, G. Glycyrrhetinic acid-poly(ethylene glycol)-glycyrrhetinic acid tri-block conjugates based self-assembled micelles for hepatic targeted delivery of poorly water soluble drug. ScientificWorldJournal, 2013, 2013913654
[http://dx.doi.org/10.1155/2013/913654] [PMID: 24376388]
[165]
Feng, R.; Deng, P.; Song, Z.; Chu, W.; Zhu, W.; Teng, F.; Zhou, F. Glycyrrhetinic acid-modified PEG-PCL copolymeric micelles for the delivery of curcumin. React. Funct. Polym., 2017, 111, 30-37.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.12.011]
[166]
Jiang, H.; Li, Z.P.; Tian, G.X.; Pan, R.Y.; Xu, C.M.; Zhang, B.; Wu, J.L. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int. J. Nanomedicine, 2019, 14, 1789-1804.
[http://dx.doi.org/10.2147/IJN.S188971] [PMID: 30880980]
[167]
Chen, F.; Zhang, J.; He, Y.; Fang, X.; Wang, Y.; Chen, M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater. Sci., 2016, 4(1), 167-182.
[http://dx.doi.org/10.1039/C5BM00224A] [PMID: 26484363]
[168]
Tian, Q.; Wang, X.H.; Wang, W.; Zhang, C.N.; Wang, P.; Yuan, Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine (Lond.), 2012, 8(6), 870-879.
[http://dx.doi.org/10.1016/j.nano.2011.11.002] [PMID: 22100756]
[169]
Wang, X.H.; Tian, Q.; Wang, W.; Zhang, C.N.; Wang, P.; Yuan, Z. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin. J. Mater. Sci. Mater. Med., 2012, 23(7), 1663-1674.
[http://dx.doi.org/10.1007/s10856-012-4627-1] [PMID: 22538726]
[170]
Cheng, M.; Chen, H.; Wang, Y.; Xu, H.; He, B.; Han, J.; Zhang, Z. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics. Int. J. Nanomedicine, 2014, 9, 695-710.
[http://dx.doi.org/10.2147/ijn.s55255] [PMID: 24493926]
[171]
Cheng, M.; Gao, X.; Wang, Y.; Chen, H.; He, B.; Xu, H.; Li, Y.; Han, J.; Zhang, Z. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar. Drugs, 2013, 11(9), 3517-3536.
[http://dx.doi.org/10.3390/md11093517] [PMID: 24048270]
[172]
Rohilla, R.; Garg, T.; Bariwal, J.; Goyal, A.K.; Rath, G. Development, optimization and characterization of glycyrrhetinic acid-chitosan nanoparticles of atorvastatin for liver targeting. Drug Deliv., 2016, 23(7), 2290-2297.
[http://dx.doi.org/10.3109/10717544.2014.977460] [PMID: 25379806]
[173]
Yan, G.; Chen, Q.; Xu, L.; Wei, H.; Ma, C.; Sun, Y. Preparation and evaluation of liver-targeting micelles loaded with oxaliplatin. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 491-496.
[http://dx.doi.org/10.3109/21691401.2014.962747] [PMID: 25287740]
[174]
Zhang, L.; Yao, J.; Zhou, J.; Wang, T.; Zhang, Q. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int. J. Pharm., 2013, 441(1-2), 654-664.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.030] [PMID: 23117024]
[175]
Wang, X.; Gu, X.; Wang, H.; Sun, Y.; Wu, H.; Mao, S. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid. Eur. J. Pharm. Sci., 2017, 96, 255-262.
[http://dx.doi.org/10.1016/j.ejps.2016.09.036] [PMID: 27693297]
[176]
Tian, G.; Pan, R.; Zhang, B.; Qu, M.; Lian, B.; Jiang, H.; Gao, Z.; Wu, J. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front. Pharmacol., 2019, 10, 4.
[http://dx.doi.org/10.3389/fphar.2019.00004] [PMID: 30723405]
[177]
Zhang, C.; Wu, Y.; Liu, T.; Zhao, Y.; Wang, X.; Wang, W.; Yuan, Z. Antitumor activity of drug loaded glycyrrhetinic acid modified alginate nanoparticles on mice bearing orthotopic liver tumor. J. Control. Release, 2011, 152(Suppl. 1), e111-e113.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.158] [PMID: 22195787]
[178]
Zu, Y.; Meng, L.; Zhao, X.; Ge, Y.; Yu, X.; Zhang, Y.; Deng, Y. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Int. J. Nanomedicine, 2013, 8, 1207-1222.
[http://dx.doi.org/10.2147/ijn.s40493] [PMID: 23569373]
[179]
Chen, J.; Jiang, H.; Wu, Y.; Li, Y.; Gao, Y. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des. Devel. Ther., 2015, 9, 2265-2275.
[http://dx.doi.org/10.2147/dddt.s81722] [PMID: 25945038]
[180]
Tian, J.; Wang, L.; Wang, L.; Ke, X. A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Deliv., 2014, 21(7), 553-559.
[http://dx.doi.org/10.3109/10717544.2013.853850] [PMID: 24215357]
[181]
Lv, Y.; Li, J.; Chen, H.; Bai, Y.; Zhang, L. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier. Int. J. Nanomedicine, 2017, 12, 4361-4370.
[http://dx.doi.org/10.2147/IJN.S135626] [PMID: 28652738]
[182]
Chen, G.; Li, J.; Cai, Y.; Zhan, J.; Gao, J.; Song, M.; Shi, Y.; Yang, Z. A glycyrrhetinic acid-modified curcumin supramolecular hydrogel for liver tumor targeting therapy. Sci. Rep., 2017, 7, 44210.
[http://dx.doi.org/10.1038/srep44210] [PMID: 28281678]
[183]
Wang, F.Z.; Xing, L.; Tang, Z.H.; Lu, J.J.; Cui, P.F.; Qiao, J.B.; Jiang, L.; Jiang, H.L.; Zong, L. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol. Pharm., 2016, 13(4), 1298-1307.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00879] [PMID: 26894988]
[184]
Tao, Y.; He, J.; Zhang, M.; Hao, Y.; Liu, J.; Ni, P. Galactosylated biodegradable poly(ε-caprolactone-co-phosphoester) random copolymer nanoparticles for potent hepatoma-targeting delivery of doxorubicin. Polym. Chem., 2014, 5, 3443-3452.
[http://dx.doi.org/10.1039/C4PY00024B]
[185]
Shah, S.M.; Goel, P.N.; Jain, A.S.; Pathak, P.O.; Padhye, S.G.; Govindarajan, S.; Ghosh, S.S.; Chaudhari, P.R.; Gude, R.P.; Gopal, V.; Nagarsenker, M.S. Liposomes for targeting hepatocellular carcinoma: use of conjugated arabinogalactan as targeting ligand. Int. J. Pharm., 2014, 477(1-2), 128-139.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.014] [PMID: 25311181]
[186]
Qi, X.; Rui, Y.; Fan, Y.; Chen, H.; Ma, N.; Wu, Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf. B Biointerfaces, 2015, 133, 314-322.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.003] [PMID: 26123852]
[187]
Li, H.; Cui, Y.; Sui, J.; Bian, S.; Sun, Y.; Liang, J.; Fan, Y.; Zhang, X. Efficient delivery of DOX to nuclei of hepatic carcinoma cells in the subcutaneous tumor model using pH-sensitive pullulan-DOX conjugates. ACS Appl. Mater. Interfaces, 2015, 7(29), 15855-15865.
[http://dx.doi.org/10.1021/acsami.5b03150] [PMID: 26140410]
[188]
Zhao, J.; Yan, C.; Chen, Z.; Liu, J.; Song, H.; Wang, W.; Liu, J.; Yang, N.; Zhao, Y.; Chen, L. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J. Colloid Interface Sci., 2019, 540, 66-77.
[http://dx.doi.org/10.1016/j.jcis.2019.01.021] [PMID: 30634060]
[189]
Zhao, R.; Li, T.; Zheng, G.; Jiang, K.; Fan, L.; Shao, J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 2017, 143, 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.030] [PMID: 28755539]
[190]
Liu, Y.; Zong, Y.; Yang, Z.; Luo, M.; Li, G.; Yingsa, W.; Cao, Y.; Xiao, M.; Kong, T.; He, J.; Liu, X.; Lei, J. Dual-targeted controlled delivery based on folic acid modified pectin-based nanoparticles for combination therapy of liver cancer. ACS Sustain. Chem.& Eng., 2019, 7, 3614-3623.
[http://dx.doi.org/10.1021/acssuschemeng.8b06586]
[191]
Tian, Z.; Yang, C.; Wang, W.; Yuan, Z. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(20), 17865-17876.
[http://dx.doi.org/10.1021/am5045339] [PMID: 25233129]
[192]
Zhang, J.; Zhang, M.; Ji, J.; Fang, X.; Pan, X.; Wang, Y.; Wu, C.; Chen, M. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma. Pharm. Res., 2015, 32(10), 3376-3390.
[http://dx.doi.org/10.1007/s11095-015-1714-2] [PMID: 26148773]
[193]
Chen, Q.; Ding, H.; Zhou, J.; Zhao, X.; Zhang, J.; Yang, C.; Li, K.; Qiao, M.; Hu, H.; Ding, P.; Zhao, X. Novel glycyrrhetinic acid conjugated pH-sensitive liposomes for the delivery of doxorubicin and its antitumor activities. RSC Advances, 2016, 6, 17782-17791.
[http://dx.doi.org/10.1039/C6RA01580H]
[194]
Yan, T.; Li, D.; Li, J.; Cheng, F.; Cheng, J.; Huang, Y.; He, J. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy. Colloids Surf. B Biointerfaces, 2016, 145, 526-538.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.070] [PMID: 27281238]
[195]
Yan, T.; Cheng, J.; Liu, Z.; Cheng, F.; Wei, X.; Huang, Y.; He, J. Acid-sensitive polymeric vector targeting to hepatocarcinoma cells via glycyrrhetinic acid receptor-mediated endocytosis. Mater. Sci. Eng. C, 2018, 87, 32-40.
[http://dx.doi.org/10.1016/j.msec.2018.02.013] [PMID: 29549947]
[196]
Wu, J.L.; Tian, G.X.; Yu, W.J.; Jia, G.T.; Sun, T.Y.; Gao, Z.Q. pH-responsive hyaluronic acid-based mixed micelles for the hepatoma-targeting delivery of doxorubicin. Int. J. Mol. Sci., 2016, 17(4), 364.
[http://dx.doi.org/10.3390/ijms17040364] [PMID: 27043540]
[197]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[198]
Thomas, M.B.; Abbruzzese, J.L. Opportunities for targeted therapies in hepatocellular carcinoma. J. Clin. Oncol., 2005, 23(31), 8093-8108.
[http://dx.doi.org/10.1200/JCO.2004.00.1537] [PMID: 16258107]
[199]
Patel, N.R.; Pattni, B.S.; Abouzeid, A.H.; Torchilin, V.P. Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1748-1762.
[http://dx.doi.org/10.1016/j.addr.2013.08.004] [PMID: 23973912]
[200]
Cuestas, M.L.; Castillo, A.I.; Sosnik, A.; Mathet, V.L. Downregulation of mdr1 and abcg2 genes is a mechanism of inhibition of efflux pumps mediated by polymeric amphiphiles. Bioorg. Med. Chem. Lett., 2012, 22(21), 6577-6579.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.012] [PMID: 23031592]
[201]
Batrakova, E.V.; Li, S.; Vinogradov, S.V.; Alakhov, V.Y.; Miller, D.W.; Kabanov, A.V. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. J. Pharmacol. Exp. Ther., 2001, 299(2), 483-493.
[PMID: 11602658]
[202]
Cambón, A.; Brea, J.; Loza, M.I.; Alvarez-Lorenzo, C.; Concheiro, A.; Barbosa, S.; Taboada, P.; Mosquera, V. Cytocompatibility and P-glycoprotein inhibition of block copolymers: structure-activity relationship. Mol. Pharm., 2013, 10(8), 3232-3241.
[http://dx.doi.org/10.1021/mp4002848] [PMID: 23763603]
[203]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[204]
Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release, 2016, 240, 332-348.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.020] [PMID: 26774224]
[205]
Kieber-Emmons, T; Hutchins, LF; Emanuel, PD; Pennisi, A; Makhoul, I Abstract P6-10-06: Inducing immune responses to tumor associated carbohydrate antigens by a carbohydrate mimetic peptide vaccine: clinical experience in phase I and phase II trials. Cancer Res,, 2017. 77, P6-10-06.
[http://dx.doi.org/10.1158/1538-7445.SABCS16-P6-10-06]
[206]
Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: challenges and opportunities. Cancer Lett., 2019, 460, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2019.114428] [PMID: 31207320]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy