Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Vaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia

Author(s): Vaibhav Agrawal*, Olumide B. Gbolahan, Maximilian Stahl, Amer M. Zeidan, Mohammad Abu Zaid, Sherif S. Farag and Heiko Konig*

Volume 20, Issue 7, 2020

Page: [473 - 489] Pages: 17

DOI: 10.2174/1568009620666200502011059

Price: $65

conference banner
Abstract

Over the past decade, our increased understanding of the interactions between the immune system and cancer cells has led to paradigm shifts in the clinical management of solid and hematologic malignancies. The incorporation of immune-targeted strategies into the treatment landscape of acute myeloid leukemia (AML), however, has been challenging. While this is in part due to the inability of the immune system to mount an effective tumor-specific immunogenic response against the heterogeneous nature of AML, the decreased immunogenicity of AML cells also represents a major obstacle in the effort to design effective immunotherapeutic strategies. In fact, AML cells have been shown to employ sophisticated escape mechanisms to evade elimination, such as direct immunosuppression of natural killer cells and decreased surface receptor expression leading to impaired recognition by the immune system. Yet, cellular and humoral immune reactions against tumor-associated antigens (TAA) of acute leukemia cells have been reported and the success of allogeneic stem cell transplantation and monoclonal antibodies in the treatment of AML clearly provides proof that an immunotherapeutic approach is feasible in the management of this disease. This review discusses the recent progress and persisting challenges in cellular immunotherapy for patients with AML.

Keywords: Cancer vaccine, acute myeloid leukemia, drug development, NK cell, adoptive T cell, CAR-T cell.

Graphical Abstract
[1]
Le Dieu, R.; Taussig, D.C.; Ramsay, A.G.; Mitter, R.; Miraki-Moud, F.; Fatah, R.; Lee, A.M.; Lister, T.A.; Gribben, J.G. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood, 2009, 114(18), 3909-3916.
[http://dx.doi.org/10.1182/blood-2009-02-206946] [PMID: 19710498]
[2]
Alatrash, G.; Molldrem, J.J. Vaccines as consolidation therapy for myeloid leukemia. Expert Rev. Hematol., 2011, 4(1), 37-50.
[http://dx.doi.org/10.1586/ehm.10.80] [PMID: 21322777]
[3]
Van Tendeloo, V.F.; Van de Velde, A.; Van Driessche, A.; Cools, N.; Anguille, S.; Ladell, K.; Gostick, E.; Vermeulen, K.; Pieters, K.; Nijs, G.; Stein, B.; Smits, E.L.; Schroyens, W.A.; Gadisseur, A.P.; Vrelust, I.; Jorens, P.G.; Goossens, H.; de Vries, I.J.; Price, D.A.; Oji, Y.; Oka, Y.; Sugiyama, H.; Berneman, Z.N. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13824-13829.
[http://dx.doi.org/10.1073/pnas.1008051107] [PMID: 20631300]
[4]
Oka, Y.; Tsuboi, A.; Murakami, M.; Hirai, M.; Tominaga, N.; Nakajima, H.; Elisseeva, O.A.; Masuda, T.; Nakano, A.; Kawakami, M.; Oji, Y.; Ikegame, K.; Hosen, N.; Udaka, K.; Yasukawa, M.; Ogawa, H.; Kawase, I.; Sugiyama, H. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int. J. Hematol., 2003, 78(1), 56-61.
[http://dx.doi.org/10.1007/BF02983241] [PMID: 12894852]
[5]
Keilholz, U.; Letsch, A.; Busse, A.; Asemissen, A.M.; Bauer, S.; Blau, I.W.; Hofmann, W.K.; Uharek, L.; Thiel, E.; Scheibenbogen, C. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood, 2009, 113(26), 6541-6548.
[http://dx.doi.org/10.1182/blood-2009-02-202598] [PMID: 19389880]
[6]
Tsirigotis, P.; Shimoni, A.; Nagler, A. The expanding horizon of immunotherapy in the treatment of malignant disorders: allogeneic hematopoietic stem cell transplantation and beyond. Ann. Med., 2014, 46(6), 384-396.
[http://dx.doi.org/10.3109/07853890.2014.918463] [PMID: 24888385]
[7]
Qazilbash, M.H.; Wieder, E.; Thall, P.F.; Wang, X.; Rios, R.; Lu, S.; Kanodia, S.; Ruisaard, K.E.; Giralt, S.A.; Estey, E.H.; Cortes, J.; Komanduri, K.V.; Clise-Dwyer, K.; Alatrash, G.; Ma, Q.; Champlin, R.E.; Molldrem, J.J. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia, 2017, 31(3), 697-704.
[http://dx.doi.org/10.1038/leu.2016.254] [PMID: 27654852]
[8]
Rezvani, K.; Yong, A.S.; Mielke, S.; Savani, B.N.; Musse, L.; Superata, J.; Jafarpour, B.; Boss, C.; Barrett, A.J. Leukemia associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood, 2008, 111(1), 236-242.
[http://dx.doi.org/10.1182/blood-2007-08-108241] [PMID: 17875804]
[9]
Greiner, J.; Ringhoffer, M.; Taniguchi, M.; Schmitt, A.; Kirchner, D.; Krähn, G.; Heilmann, V.; Gschwend, J.; Bergmann, L.; Döhner, H.; Schmitt, M. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp. Hematol., 2002, 30(9), 1029-1035.
[http://dx.doi.org/10.1016/S0301-472X(02)00874-3] [PMID: 12225794]
[10]
Greiner, J.; Schmitt, A.; Giannopoulos, K.; Rojewski, M.T.; Götz, M.; Funk, I.; Ringhoffer, M.; Bunjes, D.; Hofmann, S.; Ritter, G.; Döhner, H.; Schmitt, M. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica, 2010, 95(7), 1191-1197.
[http://dx.doi.org/10.3324/haematol.2009.014704] [PMID: 20081055]
[11]
Greiner, J.; Schmitt, M.; Li, L.; Giannopoulos, K.; Bosch, K.; Schmitt, A.; Dohner, K.; Schlenk, R.F.; Pollack, J.R.; Dohner, H.; Bullinger, L. Expression of tumor-associated antigens in acute myeloid leukemia: Implications for specific immunotherapeutic approaches. Blood, 2006, 108(13), 4109-4117.
[http://dx.doi.org/10.1182/blood-2006-01-023127] [PMID: 16931630]
[12]
Rezvani, K.; Yong, A.S.; Tawab, A.; Jafarpour, B.; Eniafe, R.; Mielke, S.; Savani, B.N.; Keyvanfar, K.; Li, Y.; Kurlander, R.; Barrett, A.J. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood, 2009, 113(10), 2245-2255.
[http://dx.doi.org/10.1182/blood-2008-03-144071] [PMID: 18988867]
[13]
Houtenbos, I.; Westers, T.M.; Ossenkoppele, G.J.; van de Loosdrecht, A.A. Leukemia-derived dendritic cells: Towards clinical vac-cination protocols in acute myeloid leukemia. Haematologica, 2006, 91(3), 348-355.
[PMID: 16531258]
[14]
Anguille, S.; Van de Velde, A.L.; Smits, E.L.; Van Tendeloo, V.F.; Juliusson, G.; Cools, N.; Nijs, G.; Stein, B.; Lion, E.; Van Driessche, A.; Vandenbosch, I.; Verlinden, A.; Gadisseur, A.P.; Schroyens, W.A.; Muylle, L.; Vermeulen, K.; Maes, M.B.; Deiteren, K.; Malfait, R.; Gostick, E.; Lammens, M.; Couttenye, M.M.; Jorens, P.; Goossens, H.; Price, D.A.; Ladell, K.; Oka, Y.; Fujiki, F.; Oji, Y.; Sugiyama, H.; Berneman, Z.N. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood, 2017, 130(15), 1713-1721.
[http://dx.doi.org/10.1182/blood-2017-04-780155] [PMID: 28830889]
[15]
Greider, C.W. Telomerase activity, cell proliferation, and cancer. Proc. Natl. Acad. Sci. USA, 1998, 95(1), 90-92.
[http://dx.doi.org/10.1073/pnas.95.1.90] [PMID: 9419332]
[16]
Counter, C.M.; Gupta, J.; Harley, C.B.; Leber, B.; Bacchetti, S. Telomerase activity in normal leukocytes and in hematologic malignancies. Blood, 1995, 85(9), 2315-2320.
[http://dx.doi.org/10.1182/blood.V85.9.2315.bloodjournal8592315] [PMID: 7727765]
[17]
Huh, H.J.; Huh, J.W.; Yoo, E.S.; Seong, C.M.; Lee, M.; Hong, K.S.; Chung, W.S. hTERT mRNA levels by real-time RT-PCR in acute myelogenous leukemia. Am. J. Hematol., 2005, 79(4), 267-273.
[http://dx.doi.org/10.1002/ajh.20394] [PMID: 16044449]
[18]
Ohyashiki, J.H.; Ohyashiki, K.; Iwama, H.; Hayashi, S.; Toyama, K.; Shay, J.W. Clinical implications of telomerase activity levels in acute leukemia. Clin. Cancer Res., 1997, 3(4), 619-625.
[PMID: 9815729]
[19]
Zhang, W.; Piatyszek, M.A.; Kobayashi, T.; Estey, E.; Andreeff, M.; Deisseroth, A.B.; Wright, W.E.; Shay, J.W. Telomerase activity in human acute myelogenous leukemia: inhibition of telomerase activity by differentiation-inducing agents. Clin. Cancer Res., 1996, 2(5), 799-803.
[PMID: 9816233]
[20]
Khoury, H.J.; Collins, R.H., Jr; Blum, W.; Stiff, P.S.; Elias, L.; Lebkowski, J.S.; Reddy, A.; Nishimoto, K.P.; Sen, D.; Wirth, E.D., III; Case, C.C.; DiPersio, J.F. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer, 2017, 123(16), 3061-3072.
[http://dx.doi.org/10.1002/cncr.30696] [PMID: 28411378]
[21]
Rosenblatt, J.; Stone, R.M.; Uhl, L.; Neuberg, D.; Somaiya, P.; Stroopinsky, D.; Joyce, R.; Levine, J.D.; Arnason, J.E.; Luptakova, K.; McMasters, M.; Jain, S.; Steensma, D.P.; DeAngelo, D.J.; Galinsky, I.; Sato-Dilorenzo, A.; Palmer, K.A.; Logan, E.; Bryant, M.P.; Kufe, D.; Avigan, D. DC/Aml fusion cell vaccination administered to aml patients who achieve a complete remission potently expands leukemia reactive T cells and is associated with durable remissions. Blood, 2015, 126(23), 2549-2549.
[http://dx.doi.org/10.1182/blood.V126.23.2549.2549]
[22]
Chevallier, P.; Saiagh, S.; Dehame, V.; Guillaume, T.; Peterlin, P.; Garnier, A.; Le Bris, Y.; Bercegeay, S.; Coulais, D.; Rambaud, MA.; Bossard, C.; Stocco, V.; Dreno, B.; Juge-Morineau, N.; Moreau, P.; Bene, M.; Grégoire, M. A phase I/II study of vaccination by autologous leukemic apoptotic corpse pulsed dendritic cells for elderly acute myeloid leukemia patients in first or second complete remission (LAM DC trial). Blood, 2016, 128, 2821-2821.
[http://dx.doi.org/10.1182/blood.V128.22.2821.2821]
[23]
Lichtenegger, F.; Deiser, K.; Rothe, M.; Schnorfeil, F.; Krupka, C.; Augsberger, C.; Köhnke, T.; Bücklein, V.; Altmann, T.; Moosmann, A.; Brüggemann, M.; Heemskerk, M.; Wittmann, G.; Wagner, B.; Hiddemann, W.; Bigalke, I.; Kvalheim, G.; Subklewe, M. Induction of antigen-specific T-cell responses through dendritic cell vaccination in AML: Results of a phase I/II trial and ex vivo Enhancement by checkpoint blockade. Blood, 2016, 128, 764-764.
[http://dx.doi.org/10.1182/blood.V128.22.764.764]
[24]
Garber, H.R.; Mirza, A.; Mittendorf, E.A.; Alatrash, G. Adoptive T-cell therapy for leukemia. Mol. Cell. Ther., 2014, 2, 25.
[http://dx.doi.org/10.1186/2052-8426-2-25] [PMID: 26056592]
[25]
Cilloni, D.; Carturan, S. Fau - Maffe, C. Maffe C Fau - Messa, F.; Messa F Fau - Arruga, F.; Arruga F Fau - Messa, E.; Messa E Fau - Pradotto, M.; Pradotto M Fau - Pautasso, M.; Pautasso M Fau - Zanone, C.; Zanone C Fau - Fornaciari, P.; Fornaciari P Fau - Defilippi, I.; Defilippi I Fau - Rotolo, A.; Rotolo A Fau - Greco, E.; Greco E Fau - Iacobucci, I.; Iacobucci I Fau - Martinelli, G.; Martinelli G Fau - Lo-Coco, F.; Lo-Coco F Fau - Bracco, E.; Bracco E Fau - Saglio, G.; Saglio, G. WITHDRAWN: Proteinase 3 (PR3) gene is highly expressed in CBF leukemias and codes for a protein with abnormal nuclear localization that confers drug sensitivity. Electronic, 2010, 1476-5551.
[26]
Miwa, H.; Beran, M.; Saunders, G.F. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia, 1992, 6(5), 405-409.
[PMID: 1317488]
[27]
Ma, Q.; Wang, C.; Jones, D.; Quintanilla, K.E.; Li, D.; Wang, Y.; Wieder, E.D.; Clise-Dwyer, K.; Alatrash, G.; Mj, Y.; Munsell, M.F.; Lu, S.; Qazilbash, M.H.; Molldrem, J.J. Adoptive transfer of PR1 cytotoxic T lymphocytes associated with reduced leukemia burden in a mouse acute myeloid leukemia xenograft model. Cytotherapy, 2010, 12(8), 1056-1062.
[http://dx.doi.org/10.3109/14653249.2010.506506] [PMID: 20735170]
[28]
Kim, Y.J.; Cho, S.G.; Lee, S.; Kim, M.S.; Kim, E.K.; Cho, B.S.; Sohn, H.J.; Choi, H.B.; Eom, K.S.; Min, C.K.; Kim, H.J.; Kim, Y.G.; Kim, D.W.; Lee, J.W.; Min, W.S.; Kim, C.C.; Kim, T.G. Potential role of adoptively transferred allogeneic WT1-specific CD4+ and CD8+ T lymphocytes for the sustained remission of refractory AML. Bone Marrow Transplant., 2010, 45(3), 597-599.
[http://dx.doi.org/10.1038/bmt.2009.191] [PMID: 19684628]
[29]
Miller, J.S.; Warren, E.H.; van den Brink, M.R.; Ritz, J.; Shlomchik, W.D.; Murphy, W.J.; Barrett, A.J.; Kolb, H.J.; Giralt, S.; Bishop, M.R.; Blazar, B.R.; Falkenburg, J.H. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: Report from the committee on the biology underlying recurrence of malignant disease following allogeneic HSCT: Graft-versus-Tumor/Leukemia reaction. Biol. Blood Marrow Transplant., 2010, 16(5), 565-586.
[http://dx.doi.org/10.1016/j.bbmt.2010.02.005] [PMID: 20152921]
[30]
Chapuis, A.G.; Ragnarsson, G.B.; Nguyen, H.N.; Chaney, C.N.; Pufnock, J.S.; Schmitt, T.M.; Duerkopp, N.; Roberts, I.M.; Pogosov, G.L.; Ho, W.Y.; Ochsenreither, S.; Wölfl, M.; Bar, M.; Radich, J.P.; Yee, C.; Greenberg, P.D. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post transplant patients. Sci. Transl. Med., 2013, 5(174) 174ra27
[http://dx.doi.org/10.1126/scitranslmed.3004916] [PMID: 23447018]
[31]
Roopenian, D.; Choi, E.Y.; Brown, A. The immunogenomics of minor histocompatibility antigens. Immunol. Rev., 2002, 190, 86-94.
[http://dx.doi.org/10.1034/j.1600-065X.2002.19007.x] [PMID: 12493008]
[32]
Kloosterboer, F.M. van Luxemburg-Heijs, Sa Fau - van Soest, R. A; van Soest Ra Fau - van Egmond, H. M.; van Egmond Hm Fau - Barbui, A. M; Barbui Am Fau - Strijbosch, M. P. W. Strijbosch Mp Fau - Willemze, R.; Willemze R Fau - Falkenburg, J. H. F.; Falkenburg, J. H. Minor histocompatibility antigen-specific T cells with multiple distinct specificities can be isolated by direct cloning of IFNgamma-secreting T cells from patients with relapsed leukemia responding to donor lymphocyte infusion. Leukemia, 2005, 19(1), 83-90.
[33]
Kongtim, P.; Di Stasi, A.; Rondon, G.; Chen, J.; Adekola, K.; Popat, U.; Oran, B.; Kebriaei, P.; Andersson, B.S.; Champlin, R.E.; Ciurea, S.O. Can a female donor for a male recipient decrease the relapse rate for patients with acute myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation? Biol. Blood Marrow Transplant., 2015, 21(4), 713-719.
[http://dx.doi.org/10.1016/j.bbmt.2014.12.018] [PMID: 25540936]
[34]
Bleakley, M.; Riddell, S.R. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat. Rev. Cancer, 2004, 4(5), 371-380.
[http://dx.doi.org/10.1038/nrc1365] [PMID: 15122208]
[35]
Oostvogels, R.; Lokhorst, H.M.; Minnema, M.C.; van Elk, M.; van den Oudenalder, K.; Spierings, E.; Mutis, T.; Spaapen, R.M. Identification of minor histocompatibility antigens based on the 1000 Genomes Project. Haematologica, 2014, 99(12), 1854-1859.
[http://dx.doi.org/10.3324/haematol.2014.109801] [PMID: 25150256]
[36]
Warren, E.H.; Greenberg, P.D.; Riddell, S.R. Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution. Blood, 1998, 91(6), 2197-2207.
[http://dx.doi.org/10.1182/blood.V91.6.2197] [PMID: 9490709]
[37]
Bonnet, D.; Warren, E.H.; Greenberg, P.D.; Dick, J.E.; Riddell, S.R. CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. Proc. Natl. Acad. Sci. USA, 1999, 96(15), 8639-8644.
[http://dx.doi.org/10.1073/pnas.96.15.8639] [PMID: 10411928]
[38]
Meij, P.; Jedema, I.; van der Hoorn, M.A.; Bongaerts, R.; Cox, L.; Wafelman, A.R.; Marijt, E.W.; Willemze, R.; Falkenburg, J.H. Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica, 2012, 97(8), 1205-1208.
[http://dx.doi.org/10.3324/haematol.2011.053371] [PMID: 22511490]
[39]
Warren, E.H.; Fujii, N.; Akatsuka, Y.; Chaney, C.N.; Mito, J.K.; Loeb, K.R.; Gooley, T.A.; Brown, M.L.; Koo, K.K.; Rosinski, K.V.; Ogawa, S.; Matsubara, A.; Appelbaum, F.R.; Riddell, S.R. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood, 2010, 115(19), 3869-3878.
[http://dx.doi.org/10.1182/blood-2009-10-248997] [PMID: 20071660]
[40]
Gottschalk, S.; Ng, C.Y.; Perez, M.; Smith, C.A.; Sample, C.; Brenner, M.K.; Heslop, H.E.; Rooney, C.M. An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 2001, 97(4), 835-843.
[http://dx.doi.org/10.1182/blood.V97.4.835] [PMID: 11159505]
[41]
Morgan, R.A. Risky business: Target choice in adoptive cell therapy. Blood, 2013, 122(20), 3392-3394.
[http://dx.doi.org/10.1182/blood-2013-09-527622] [PMID: 24235126]
[42]
Marijt, E.; Wafelman, A.; van der Hoorn, M.; van Bergen, C.; Bongaerts, R.; van Luxemburg-Heijs, S.; van den Muijsenberg, J.; Wolbers, J.O.; van der Werff, N.; Willemze, R.; Falkenburg, F. Phase I/II feasibility study evaluating the generation of leukemia reactive cytotoxic T lymphocyte lines for treatment of patients with relapsed leukemia after allogeneic stem cell transplantation. Haematologica, 2007, 92(1), 72-80.
[http://dx.doi.org/10.3324/haematol.10433] [PMID: 17229638]
[43]
Weber, G.; Gerdemann, U.; Caruana, I.; Savoldo, B.; Hensel, N.F.; Rabin, K.R.; Shpall, E.J.; Melenhorst, J.J.; Leen, A.M.; Barrett, A.J.; Bollard, C.M. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia, 2013, 27(7), 1538-1547.
[http://dx.doi.org/10.1038/leu.2013.66] [PMID: 23528871]
[44]
Sweeney, C.; Vyas, P. The graft-versus-leukemia effect in AML. Front. Oncol., 2019, 9, 1217.
[http://dx.doi.org/10.3389/fonc.2019.01217] [PMID: 31803612]
[45]
Koreth, J.; Schlenk, R.; Kopecky, K.J.; Honda, S.; Sierra, J.; Djulbegovic, B.J.; Wadleigh, M.; DeAngelo, D.J.; Stone, R.M.; Sakamaki, H.; Appelbaum, F.R.; Döhner, H.; Antin, J.H.; Soiffer, R.J.; Cutler, C. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: Systematic review and meta-analysis of prospective clinical trials. JAMA, 2009, 301(22), 2349-2361.
[http://dx.doi.org/10.1001/jama.2009.813] [PMID: 19509382]
[46]
Reiffers, J.; Stoppa, A.M.; Attal, M.; Michallet, M.; Marit, G.; Blaise, D.; Huguet, F.; Corront, B.; Cony-Makhoul, P.; Gastaut, J.A.; Laurent, G.; Molina, L.; Broustet, A.; Maraninchi, D.; Pris, J.; Hollard, D.; Faberes, C. Allogeneic vs. autologous stem cell transplantation vs. chemotherapy in patients with acute myeloid leukemia in first remission: The BGMT 87 study. Leukemia, 1996, 10(12), 1874-1882.
[PMID: 8946925]
[47]
Willemze, R.; Suciu, S.; Mandelli, F.; de Witte, T.; Amador, S. EORTC and GIMEMA Leukemia Groups. Autologous versus allogeneic stem cell transplantation in acute myeloid leukemia. Ann. Hematol., 2004, 83(Suppl. 1), S134.
[PMID: 15124706]
[48]
Gale, R.P.; Horowitz, M.M.; Ash, R.C.; Champlin, R.E.; Goldman, J.M.; Rimm, A.A.; Ringdén, O.; Stone, J.A.; Bortin, M.M. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med., 1994, 120(8), 646-652.
[http://dx.doi.org/10.7326/0003-4819-120-8-199404150-00004] [PMID: 8135448]
[49]
Horowitz, M.M.; Gale, R.P.; Sondel, P.M.; Goldman, J.M.; Kersey, J.; Kolb, H.J.; Rimm, A.A.; Ringdén, O.; Rozman, C.; Speck, B. Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 1990, 75(3), 555-562.
[http://dx.doi.org/10.1182/blood.V75.3.555.555] [PMID: 2297567]
[50]
Goldman, J.M.; Gale, R.P.; Horowitz, M.M.; Biggs, J.C.; Champlin, R.E.; Gluckman, E.; Hoffmann, R.G.; Jacobsen, S.J.; Marmont, A.M.; McGlave, P.B. Bone marrow transplantation for chronic myelogenous leukemia in chronic phase. Increased risk for relapse associated with T-cell depletion. Ann. Intern. Med., 1988, 108(6), 806-814.
[http://dx.doi.org/10.7326/0003-4819-108-6-806] [PMID: 3285744]
[51]
Bayraktar, U.D.; de Lima, M.; Saliba, R.M.; Maloy, M.; Castro-Malaspina, H.R.; Chen, J.; Rondon, G.; Chiattone, A.; Jakubowski, A.A.; Boulad, F.; Kernan, N.A.; O’Reilly, R.J.; Champlin, R.E.; Giralt, S.; Andersson, B.S.; Papadopoulos, E.B. Ex vivo T cell-depleted versus unmodified allografts in patients with acute myeloid leukemia in first complete remission. Biol. Blood Marrow Transplant., 2013, 19(6), 898-903.
[http://dx.doi.org/10.1016/j.bbmt.2013.02.018] [PMID: 23467126]
[52]
Schmid, C.; Labopin, M.; Nagler, A.; Bornhäuser, M.; Finke, J.; Fassas, A.; Volin, L.; Gürman, G.; Maertens, J.; Bordigoni, P.; Holler, E.; Ehninger, G.; Polge, E.; Gorin, N.C.; Kolb, H.J.; Rocha, V.; Party, E.A.L.W. EBMT acute leukemia working party. donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: A retrospective risk factors analysis and comparison with other strategies by the ebmt acute leukemia working party. J. Clin. Oncol., 2007, 25(31), 4938-4945.
[http://dx.doi.org/10.1200/JCO.2007.11.6053] [PMID: 17909197]
[53]
Dudley, M.E.; Rosenberg, S.A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat. Rev. Cancer, 2003, 3(9), 666-675.
[http://dx.doi.org/10.1038/nrc1167] [PMID: 12951585]
[54]
Barrett, A.J. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br. J. Haemotol, 2019, 1-12.
[55]
Christopher, M.J.; Petti, A.A.; Rettig, M.P.; Miller, C.A.; Chendamarai, E.; Duncavage, E.J.; Klco, J.M.; Helton, N.M.; O’Laughlin, M.; Fronick, C.C.; Fulton, R.S.; Wilson, R.K.; Wartman, L.D.; Welch, J.S.; Heath, S.E.; Baty, J.D.; Payton, J.E.; Graubert, T.A.; Link, D.C.; Walter, M.J.; Westervelt, P.; Ley, T.J.; DiPersio, J.F. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med., 2018, 379(24), 2330-2341.
[http://dx.doi.org/10.1056/NEJMoa1808777] [PMID: 30380364]
[56]
Singh, R.; Paterson, Y. Immunoediting sculpts tumor epitopes during immunotherapy. Cancer Res., 2007, 67(5), 1887-1892.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3960] [PMID: 17332314]
[57]
Zhou, G.; Levitsky, H. Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin. Dev. Immunol., 2012, 2012, 124187.
[http://dx.doi.org/10.1155/2012/124187] [PMID: 22778760]
[58]
Hombach, A.; Heuser, C.; Sircar, R.; Tillmann, T.; Diehl, V.; Kruis, W.; Pohl, C.; Abken, H. T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology, 1997, 113(4), 1163-1170.
[http://dx.doi.org/10.1053/gast.1997.v113.pm9322511] [PMID: 9322511]
[59]
Rossig, C.; Bollard, C.M.; Nuchtern, J.G.; Merchant, D.A.; Brenner, M.K. Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer, 2001, 94(2), 228-236.
[http://dx.doi.org/10.1002/ijc.1457] [PMID: 11668503]
[60]
Abken, H.; Hombach, A.; Heuser, C.; Reinhold, U. A novel strategy in the elimination of disseminated melanoma cells: chimeric receptors endow T cells with tumor specificity. Recent Results Cancer Res., 2001, 158, 249-264.
[http://dx.doi.org/10.1007/978-3-642-59537-0_25] [PMID: 11092052]
[61]
Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; Borquez-Ojeda, O.; Qu, J.; Wasielewska, T.; He, Q.; Bernal, Y.; Rijo, I.V.; Hedvat, C.; Kobos, R.; Curran, K.; Steinherz, P.; Jurcic, J.; Rosenblat, T.; Maslak, P.; Frattini, M.; Sadelain, M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med., 2013, 5(177) 177ra38
[http://dx.doi.org/10.1126/scitranslmed.3005930] [PMID: 23515080]
[62]
Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; Milone, M.C.; Levine, B.L.; June, C.H. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med., 2013, 368(16), 1509-1518.
[http://dx.doi.org/10.1056/NEJMoa1215134] [PMID: 23527958]
[63]
Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med., 2011, 3(95) 95ra73
[http://dx.doi.org/10.1126/scitranslmed.3002842] [PMID: 21832238]
[64]
Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Rheingold, S.R.; Shen, A.; Teachey, D.T.; Levine, B.L.; June, C.H.; Porter, D.L.; Grupp, S.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med., 2014, 371(16), 1507-1517.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[65]
Porter, D.L.; Hwang, W.T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; Ambrose, D.; Grupp, S.A.; Chew, A.; Zheng, Z.; Milone, M.C.; Levine, B.L.; Melenhorst, J.J.; June, C.H. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med., 2015, 7(303) 303ra139
[http://dx.doi.org/10.1126/scitranslmed.aac5415] [PMID: 26333935]
[66]
Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med., 2011, 365(8), 725-733.
[http://dx.doi.org/10.1056/NEJMoa1103849] [PMID: 21830940]
[67]
Sidana, S.; Shah, N. CAR T-cell therapy: is it prime time in myeloma? Blood Adv., 2019, 3(21), 3473-3480.
[PMID: 31714964]
[68]
Wang, Q.S.; Wang, Y.; Lv, H.Y.; Han, Q.W.; Fan, H.; Guo, B.; Wang, L.L.; Han, W.D. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol. Ther., 2015, 23(1), 184-191.
[http://dx.doi.org/10.1038/mt.2014.164] [PMID: 25174587]
[69]
Testa, U.; Riccioni, R.; Diverio, D.; Rossini, A.; Lo Coco, F.; Peschle, C. Interleukin-3 receptor in acute leukemia. Leukemia, 2004, 18(2), 219-226.
[http://dx.doi.org/10.1038/sj.leu.2403224] [PMID: 14671644]
[70]
Liu, F.; Cao, Y.; Pinz, K.; Ma, Y.; Wada, M.; Chen, K.; Ma, G.; Shen, J.; Tse, C.O.; Su, Y.; Xiong, Y.; He, G.; Li, Y.; Ma, Y. first-in-human cll1-cd33 compound Car T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: Update on phase 1 Clinical trial. Blood, 2018, 132(Suppl. 1), 901-901.
[http://dx.doi.org/10.1182/blood-2018-99-110579]
[71]
Ritchie, D.S.; Neeson, P.J.; Khot, A.; Peinert, S.; Tai, T.; Tainton, K.; Chen, K.; Shin, M.; Wall, D.M.; Hönemann, D.; Gambell, P.; Westerman, D.A.; Haurat, J.; Westwood, J.A.; Scott, A.M.; Kravets, L.; Dickinson, M.; Trapani, J.A.; Smyth, M.J.; Darcy, P.K.; Kershaw, M.H.; Prince, H.M. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther., 2013, 21(11), 2122-2129.
[http://dx.doi.org/10.1038/mt.2013.154] [PMID: 23831595]
[72]
Nikiforow, S.; Werner, L.; Murad, J.; Jacobs, M.; Johnston, L.; Patches, S.; White, R.; Daley, H.; Negre, H.; Reder, J.; Sentman, C.; Wade, T.; Schmucker, A.; Lehmann, F.; Snykers, S.; Allen, R.; Dipietro, H.; Cummings, K.; Galinsky, I.; Baumeister, S. Safety data from a first-in-human phase 1 trial of NKG2D chimeric antigen receptor-T cells in AML/MDS and multiple myeloma. Blood, 2016, 128, 4052-4052.
[http://dx.doi.org/10.1182/blood.V128.22.4052.4052]
[73]
Uy, G.L.J.E.G.; Michael, P. Rettig, Norbert Vey, Matthew C Foster, Martha Arellano, David Alan Rizzieri, Max S. Topp, Gerwin A. Huls, Bob Löwenberg, Giovanni Martinelli, Stefania Paolini, Fabio Ciceri, Matteo Giovanni Carrabba, Carmen Ballesteros-Merino, Carlo Bifulco, Hélène Lelièvre, Ross La Motte-Mohs, Daner Li, Jichao Sun, Kenneth Jacobs, Karen Spohn, Nadia Lonsdale, Kathy May Tran, J. Baughman, Michele Shannon, Bernard A Fox, Ezio Bonvini, Jon M. Wigginton, Jan K. Davidson-Moncada, John F. DiPersio. Preliminary Results of a Phase 1 Study of flotetuzumab, a CD123 x CD3 bispecific dart® Protein, in patients with relapsed/Refractory acute myeloid leukemia and myelodysplastic syndrome. Blood, 2017, 130(Suppl. 1), 637.
[74]
Leong, S.R.; Sukumaran, S.; Hristopoulos, M.; Totpal, K.; Stainton, S.; Lu, E.; Wong, A.; Tam, L.; Newman, R.; Vuillemenot, B.R.; Ellerman, D.; Gu, C.; Mathieu, M.; Dennis, M.S.; Nguyen, A.; Zheng, B.; Zhang, C.; Lee, G.; Chu, Y.W.; Prell, R.A.; Lin, K.; Laing, S.T.; Polson, A.G. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia. Blood, 2017, 129(5), 609-618.
[http://dx.doi.org/10.1182/blood-2016-08-735365] [PMID: 27908880]
[75]
Kenderian, S.S.; Ruella, M.; Shestova, O.; Klichinsky, M.; Kim, M.; Porter, D.L.; June, C.H.; Gill, S. Identification of PD1 and TIM3 as checkpoints that limit chimeric antigen receptor T Cell efficacy in leukemia. Biol. Blood Marrow Transplant., 2016, 22(3), S19-S21.
[http://dx.doi.org/10.1016/j.bbmt.2015.11.291]
[76]
Morris, E.; Hart, D.; Gao, L.; Tsallios, A.; Xue, S.A.; Stauss, H. Generation of tumor-specific T-cell therapies. Blood Rev., 2006, 20(2), 61-69.
[http://dx.doi.org/10.1016/j.blre.2005.05.001] [PMID: 15978709]
[77]
Spranger, S.; Jeremias, I.; Wilde, S.; Leisegang, M.; Stärck, L.; Mosetter, B.; Uckert, W.; Heemskerk, M.H.; Schendel, D.J.; Frankenberger, B. TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood, 2012, 119(15), 3440-3449.
[http://dx.doi.org/10.1182/blood-2011-06-357939] [PMID: 22371883]
[78]
Hacein-Bey-Abina, S.; von Kalle, C.; Schmidt, M.; Le Deist, F.; Wulffraat, N.; McIntyre, E.; Radford, I.; Villeval, J.L.; Fraser, C.C.; Cavazzana-Calvo, M.; Fischer, A. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med., 2003, 348(3), 255-256.
[http://dx.doi.org/10.1056/NEJM200301163480314] [PMID: 12529469]
[79]
Ochi, T.; Fujiwara, H.; Okamoto, S.; An, J.; Nagai, K.; Shirakata, T.; Mineno, J.; Kuzushima, K.; Shiku, H.; Yasukawa, M. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood, 2011, 118(6), 1495-1503.
[http://dx.doi.org/10.1182/blood-2011-02-337089] [PMID: 21673345]
[80]
Osborn, M.J.; Webber, B.R.; Knipping, F.; Lonetree, C.L.; Tennis, N.; DeFeo, A.P.; McElroy, A.N.; Starker, C.G.; Lee, C.; Merkel, S.; Lund, T.C.; Kelly-Spratt, K.S.; Jensen, M.C.; Voytas, D.F.; von Kalle, C.; Schmidt, M.; Gabriel, R.; Hippen, K.L.; Miller, J.S.; Scharenberg, A.M.; Tolar, J.; Blazar, B.R. Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL Nucleases. Mol. Ther., 2016, 24(3), 570-581.
[http://dx.doi.org/10.1038/mt.2015.197] [PMID: 26502778]
[81]
Caligiuri, M.A. Human natural killer cells. Blood, 2008, 112(3), 461-469.
[http://dx.doi.org/10.1182/blood-2007-09-077438] [PMID: 18650461]
[82]
Campbell, K.S.; Hasegawa, J. Natural killer cell biology: An update and future directions. J. Allergy Clin. Immunol., 2013, 132(3), 536-544.
[http://dx.doi.org/10.1016/j.jaci.2013.07.006] [PMID: 23906377]
[83]
Farag, S.S.; Fehniger, T.A.; Ruggeri, L.; Velardi, A.; Caligiuri, M.A. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood, 2002, 100(6), 1935-1947.
[http://dx.doi.org/10.1182/blood-2002-02-0350] [PMID: 12200350]
[84]
Aversa, F.; Terenzi, A.; Tabilio, A.; Falzetti, F.; Carotti, A.; Ballanti, S.; Felicini, R.; Falcinelli, F.; Velardi, A.; Ruggeri, L.; Aloisi, T.; Saab, J.P.; Santucci, A.; Perruccio, K.; Martelli, M.P.; Mecucci, C.; Reisner, Y.; Martelli, M.F. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J. Clin. Oncol., 2005, 23(15), 3447-3454.
[http://dx.doi.org/10.1200/JCO.2005.09.117] [PMID: 15753458]
[85]
Hsu, K.C.; Liu, X.R.; Selvakumar, A.; Mickelson, E.; O’Reilly, R.J.; Dupont, B. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J. Immunol., 2002, 169(9), 5118-5129.
[http://dx.doi.org/10.4049/jimmunol.169.9.5118] [PMID: 12391228]
[86]
Velardi, A. Natural killer cell alloreactivity 10 years later. Curr. Opin. Hematol., 2012, 19(6), 421-426.
[http://dx.doi.org/10.1097/MOH.0b013e3283590395] [PMID: 22954728]
[87]
Farag, S.S. Killer cell immunoglobulin-like receptor ligand Mismatching: To match or mismatch? Biol. Blood Marrow Transplant., 2016, 22(2), 192-194.
[http://dx.doi.org/10.1016/j.bbmt.2015.11.1101] [PMID: 26688193]
[88]
Dupont, B.; Hsu, K.C. Inhibitory killer Ig-like receptor genes and human leukocyte antigen class I ligands in haematopoietic stem cell transplantation. Curr. Opin. Immunol., 2004, 16(5), 634-643.
[http://dx.doi.org/10.1016/j.coi.2004.07.013] [PMID: 15342011]
[89]
Björklund, A.T.; Schaffer, M.; Fauriat, C.; Ringdén, O.; Remberger, M.; Hammarstedt, C.; Barrett, A.J.; Ljungman, P.; Ljunggren, H.G.; Malmberg, K.J. NK cells expressing inhibitory KIR for non-self-ligands remain tolerant in HLA-matched sibling stem cell transplantation. Blood, 2010, 115(13), 2686-2694.
[http://dx.doi.org/10.1182/blood-2009-07-229740] [PMID: 20097883]
[90]
Hsu, K.C.; Keever-Taylor, C.A.; Wilton, A.; Pinto, C.; Heller, G.; Arkun, K.; O’Reilly, R.J.; Horowitz, M.M.; Dupont, B. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood, 2005, 105(12), 4878-4884.
[http://dx.doi.org/10.1182/blood-2004-12-4825] [PMID: 15731175]
[91]
Hsu, K.C.; Gooley, T.; Malkki, M.; Pinto-Agnello, C.; Dupont, B.; Bignon, J.D.; Bornhäuser, M.; Christiansen, F.; Gratwohl, A.; Mo-rishima, Y.; Oudshoorn, M.; Ringden, O.; van Rood, J.J.; Petersdorf, E. International Histocompatibility Working Group. KIR ligands and prediction of relapse after unrelated donor hematopoietic cell transplantation for hematologic malignancy. Biol. Blood Marrow Transplant., 2006, 12(8), 828-836.
[http://dx.doi.org/10.1016/j.bbmt.2006.04.008] [PMID: 16864053]
[92]
Pende, D.; Marcenaro, S.; Falco, M.; Martini, S.; Bernardo, M.E.; Montagna, D.; Romeo, E.; Cognet, C.; Martinetti, M.; Maccario, R.; Mingari, M.C.; Vivier, E.; Moretta, L.; Locatelli, F.; Moretta, A. Anti-leukemia activity of alloreactive NK cells in KIR ligand mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood, 2009, 113(13), 3119-3129.
[http://dx.doi.org/10.1182/blood-2008-06-164103] [PMID: 18945967]
[93]
Venstrom, J.M.; Pittari, G.; Gooley, T.A.; Chewning, J.H.; Spellman, S.; Haagenson, M.; Gallagher, M.M.; Malkki, M.; Petersdorf, E.; Dupont, B.; Hsu, K.C. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med., 2012, 367(9), 805-816.
[http://dx.doi.org/10.1056/NEJMoa1200503] [PMID: 22931314]
[94]
Cooley, S.; Weisdorf, D.J.; Guethlein, L.A.; Klein, J.P.; Wang, T.; Le, C.T.; Marsh, S.G.; Geraghty, D.; Spellman, S.; Haagenson, M.D.; Ladner, M.; Trachtenberg, E.; Parham, P.; Miller, J.S. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood, 2010, 116(14), 2411-2419.
[http://dx.doi.org/10.1182/blood-2010-05-283051] [PMID: 20581313]
[95]
Cooley, S.; Weisdorf, D.J.; Guethlein, L.A.; Klein, J.P.; Wang, T.; Marsh, S.G.; Spellman, S.; Haagenson, M.D.; Saeturn, K.; Ladner, M.; Trachtenberg, E.; Parham, P.; Miller, J.S. Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia. J. Immunol., 2014, 192(10), 4592-4600.
[http://dx.doi.org/10.4049/jimmunol.1302517] [PMID: 24748496]
[96]
Oevermann, L.; Michaelis, S.U.; Mezger, M.; Lang, P.; Toporski, J.; Bertaina, A.; Zecca, M.; Moretta, L.; Locatelli, F.; Handgretinger, R. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood, 2014, 124(17), 2744-2747.
[http://dx.doi.org/10.1182/blood-2014-03-565069] [PMID: 25115891]
[97]
Miller, J.S.; Soignier, Y.; Panoskaltsis-Mortari, A.; McNearney, S.A.; Yun, G.H.; Fautsch, S.K.; McKenna, D.; Le, C.; Defor, T.E.; Burns, L.J.; Orchard, P.J.; Blazar, B.R.; Wagner, J.E.; Slungaard, A.; Weisdorf, D.J.; Okazaki, I.J.; McGlave, P.B. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood, 2005, 105(8), 3051-3057.
[http://dx.doi.org/10.1182/blood-2004-07-2974] [PMID: 15632206]
[98]
Rubnitz, J.E.; Inaba, H.; Ribeiro, R.C.; Pounds, S.; Rooney, B.; Bell, T.; Pui, C.H.; Leung, W. NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol., 2010, 28(6), 955-959.
[http://dx.doi.org/10.1200/JCO.2009.24.4590] [PMID: 20085940]
[99]
Ghiringhelli, F.; Ménard, C.; Terme, M.; Flament, C.; Taieb, J.; Chaput, N.; Puig, P.E.; Novault, S.; Escudier, B.; Vivier, E.; Lecesne, A.; Robert, C.; Blay, J.Y.; Bernard, J.; Caillat-Zucman, S.; Freitas, A.; Tursz, T.; Wagner-Ballon, O.; Capron, C.; Vainchencker, W.; Martin, F.; Zitvogel, L. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med., 2005, 202(8), 1075-1085.
[http://dx.doi.org/10.1084/jem.20051511] [PMID: 16230475]
[100]
Bachanova, V.; Cooley, S.; Defor, T.E.; Verneris, M.R.; Zhang, B.; McKenna, D.H.; Curtsinger, J.; Panoskaltsis-Mortari, A.; Lewis, D.; Hippen, K.; McGlave, P.; Weisdorf, D.J.; Blazar, B.R.; Miller, J.S. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood, 2014, 123(25), 3855-3863.
[http://dx.doi.org/10.1182/blood-2013-10-532531] [PMID: 24719405]
[101]
Ayello, J.; Hochberg, J.; Flower, A.; Chu, Y.; Baxi, L.V.; Quish, W.; van de Ven, C.; Cairo, M.S. Genetically re-engineered K562 cells significantly expand and functionally activate cord blood natural killer cells: Potential for adoptive cellular immunotherapy. Exp. Hematol., 2017, 46, 38-47.
[http://dx.doi.org/10.1016/j.exphem.2016.10.003] [PMID: 27765614]
[102]
Berg, M.; Lundqvist, A.; McCoy, P., Jr; Samsel, L.; Fan, Y.; Tawab, A.; Childs, R. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy, 2009, 11(3), 341-355.
[http://dx.doi.org/10.1080/14653240902807034] [PMID: 19308771]
[103]
Fujisaki, H.; Kakuda, H.; Shimasaki, N.; Imai, C.; Ma, J.; Lockey, T.; Eldridge, P.; Leung, W.H.; Campana, D. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res., 2009, 69(9), 4010-4017.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3712] [PMID: 19383914]
[104]
Miller, J.S.; Rooney, C.M.; Curtsinger, J.; McElmurry, R.; McCullar, V.; Verneris, M.R.; Lapteva, N.; McKenna, D.; Wagner, J.E.; Blazar, B.R.; Tolar, J. Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy. Biol. Blood Marrow Transplant., 2014, 20(8), 1252-1257.
[http://dx.doi.org/10.1016/j.bbmt.2014.05.004] [PMID: 24816582]
[105]
Shah, N.N.; Baird, K.; Delbrook, C.P.; Fleisher, T.A.; Kohler, M.E.; Rampertaap, S.; Lemberg, K.; Hurley, C.K.; Kleiner, D.E.; Merchant, M.S.; Pittaluga, S.; Sabatino, M.; Stroncek, D.F.; Wayne, A.S.; Zhang, H.; Fry, T.J.; Mackall, C.L. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell depleted stem cell transplantation. Blood, 2015, 125(5), 784-792.
[http://dx.doi.org/10.1182/blood-2014-07-592881] [PMID: 25452614]
[106]
Shah, N.; Martin-Antonio, B.; Yang, H.; Ku, S.; Lee, D.A.; Cooper, L.J.; Decker, W.K.; Li, S.; Robinson, S.N.; Sekine, T.; Parmar, S.; Gribben, J.; Wang, M.; Rezvani, K.; Yvon, E.; Najjar, A.; Burks, J.; Kaur, I.; Champlin, R.E.; Bollard, C.M.; Shpall, E.J. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One, 2013, 8(10) e76781
[http://dx.doi.org/10.1371/journal.pone.0076781] [PMID: 24204673]
[107]
Shaim, H.; Yvon, E. Cord blood: A promising source of allogeneic natural killer cells for immunotherapy. Cytotherapy, 2015, 17(1), 1-2.
[http://dx.doi.org/10.1016/j.jcyt.2014.12.001] [PMID: 25527863]
[108]
Handgretinger, R.; Lang, P.; André, M.C. Exploitation of natural killer cells for the treatment of acute leukemia. Blood, 2016, 127(26), 3341-3349.
[http://dx.doi.org/10.1182/blood-2015-12-629055] [PMID: 27207791]
[109]
Klingemann, H. Are natural killer cells superior CAR drivers? OncoImmunology, 2014, 3, e28147
[http://dx.doi.org/10.4161/onci.28147] [PMID: 25340009]
[110]
Michen, S.; Temme, A. Genetically engineered natural killer cells as a means for adoptive tumor immunotherapy. Crit. Rev. Immunol., 2016, 36(4), 329-347.
[http://dx.doi.org/10.1615/CritRevImmunol.2017019376] [PMID: 28322137]
[111]
Mehta, R.S.; Rezvani, K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front. Immunol., 2018, 9, 283.
[http://dx.doi.org/10.3389/fimmu.2018.00283] [PMID: 29497427]
[112]
Glienke, W.; Esser, R.; Priesner, C.; Suerth, J.D.; Schambach, A.; Wels, W.S.; Grez, M.; Kloess, S.; Arseniev, L.; Koehl, U. Advantages and applications of CAR-expressing natural killer cells. Front. Pharmacol., 2015, 6, 21.
[http://dx.doi.org/10.3389/fphar.2015.00021] [PMID: 25729364]
[113]
Rafiq, S.; Purdon, T.J.; Schultz, L.; Klingemann, H.; Brentjens, R.J. NK-92 cells engineered with anti-CD33 chimeric antigen receptors (CAR) for the treatment of acute myeloid leukemia (AML). Cytotherapy, 2015, 17(6), S23.
[http://dx.doi.org/10.1016/j.jcyt.2015.03.384]
[114]
Tang, X.; Yang, L.; Li, Z.; Nalin, A.P.; Dai, H.; Xu, T.; Yin, J.; You, F.; Zhu, M.; Shen, W.; Chen, G.; Zhu, X.; Wu, D.; Yu, J. First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am. J. Cancer Res., 2018, 8(6), 1083-1089.
[PMID: 30034945]
[115]
Crucitti, L.; Crocchiolo, R.; Toffalori, C.; Mazzi, B.; Greco, R.; Signori, A.; Sizzano, F.; Chiesa, L.; Zino, E.; Lupo Stanghellini, M.T.; Assanelli, A.; Carrabba, M.G.; Marktel, S.; Marcatti, M.; Bordignon, C.; Corti, C.; Bernardi, M.; Peccatori, J.; Bonini, C.; Fleischhauer, K.; Ciceri, F.; Vago, L. Incidence, risk factors and clinical outcome of leukemia relapses with loss of the mismatched HLA after partially incompatible hematopoietic stem cell transplantation. Leukemia, 2015, 29(5), 1143-1152.
[http://dx.doi.org/10.1038/leu.2014.314] [PMID: 25371177]
[116]
Vago, L.; Perna, S.K.; Zanussi, M.; Mazzi, B.; Barlassina, C.; Stanghellini, M.T.; Perrelli, N.F.; Cosentino, C.; Torri, F.; Angius, A.; Forno, B.; Casucci, M.; Bernardi, M.; Peccatori, J.; Corti, C.; Bondanza, A.; Ferrari, M.; Rossini, S.; Roncarolo, M.G.; Bordignon, C.; Bonini, C.; Ciceri, F.; Fleischhauer, K. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl. J. Med., 2009, 361(5), 478-488.
[http://dx.doi.org/10.1056/NEJMoa0811036] [PMID: 19641204]
[117]
Kandoth, C.; McLellan, M.D.; Vandin, F.; Ye, K.; Niu, B.; Lu, C.; Xie, M.; Zhang, Q.; McMichael, J.F.; Wyczalkowski, M.A.; Leiserson, M.D.M.; Miller, C.A.; Welch, J.S.; Walter, M.J.; Wendl, M.C.; Ley, T.J.; Wilson, R.K.; Raphael, B.J.; Ding, L. Mutational landscape and significance across 12 major cancer types. Nature, 2013, 502(7471), 333-339.
[http://dx.doi.org/10.1038/nature12634] [PMID: 24132290]
[118]
Li, C.; Chen, X.; Yu, X.; Zhu, Y.; Ma, C.; Xia, R.; Ma, J.; Gu, C.; Ye, L.; Wu, D. Tim-3 is highly expressed in T cells in acute myeloid leukemia and associated with clinicopathological prognostic stratification. Int. J. Clin. Exp. Pathol., 2014, 7(10), 6880-6888.
[PMID: 25400771]
[119]
Zhou, Q.; Munger, M.E.; Veenstra, R.G.; Weigel, B.J.; Hirashima, M.; Munn, D.H.; Murphy, W.J.; Azuma, M.; Anderson, A.C.; Kuchroo, V.K.; Blazar, B.R. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011, 117(17), 4501-4510.
[http://dx.doi.org/10.1182/blood-2010-10-310425] [PMID: 21385853]
[120]
Coles, S.J.; Gilmour, M.N.; Reid, R.; Knapper, S.; Burnett, A.K.; Man, S.; Tonks, A.; Darley, R.L. The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse. Leukemia, 2015, 29(9), 1952-1954.
[http://dx.doi.org/10.1038/leu.2015.62] [PMID: 25748687]
[121]
Shenghui, Z.; Yixiang, H.; Jianbo, W.; Kang, Y.; Laixi, B.; Yan, Z.; Xi, X. Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int. J. Cancer, 2011, 129(6), 1373-1381.
[http://dx.doi.org/10.1002/ijc.25791] [PMID: 21105040]
[122]
Pyzer, A.; Stroopinsky, D.; Rajabi, H.; Washington, A.; Tagde, A.; Coll, M.; Fung, J.; Bryant, M.; Cole, L.; Palmer, K.; Somaiya, P.; Leaf, R.; Nahas, M.; Apel, A.; Jain, S.; McMasters, M.; Mendez, L.; Levine, J.; Joyce, R.; Avigan, D. MUC1 mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood, 2017, 129 blood-2016.
[http://dx.doi.org/10.1182/blood-2016-07-730614]
[123]
Stringaris, K.; Sekine, T.; Khoder, A.; Alsuliman, A.; Razzaghi, B.; Sargeant, R.; Pavlu, J.; Brisley, G.; de Lavallade, H.; Sarvaria, A.; Marin, D.; Mielke, S.; Apperley, J.F.; Shpall, E.J.; Barrett, A.J.; Rezvani, K. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica, 2014, 99(5), 836-847.
[http://dx.doi.org/10.3324/haematol.2013.087536] [PMID: 24488563]
[124]
Davidson-Moncada, J.; Viboch, E.; Church, S.E.; Warren, S.E.; Rutella, S. Dissecting the immune landscape of acute myeloid Leukemia. Biomedicines, 2018, 6(4) E110
[http://dx.doi.org/10.3390/biomedicines6040110] [PMID: 30477280]
[125]
Kenderian, S.S.; Ruella, M.; Shestova, O.; Klichinsky, M.; Aikawa, V.; Morrissette, J.J.; Scholler, J.; Song, D.; Porter, D.L.; Carroll, M.; June, C.H.; Gill, S. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia, 2015, 29(8), 1637-1647.
[http://dx.doi.org/10.1038/leu.2015.52] [PMID: 25721896]
[126]
Gill, S. Chimeric antigen receptor T cell therapy in AML: How close are we? Best Pract. Res. Clin. Haematol., 2016, 29(4), 329-333.
[http://dx.doi.org/10.1016/j.beha.2016.10.004] [PMID: 27890255]
[127]
Casucci, M.; Nicolis di Robilant, B.; Falcone, L.; Camisa, B.; Norelli, M.; Genovese, P.; Gentner, B.; Gullotta, F.; Ponzoni, M.; Bernardi, M.; Marcatti, M.; Saudemont, A.; Bordignon, C.; Savoldo, B.; Ciceri, F.; Naldini, L.; Dotti, G.; Bonini, C.; Bondanza, A. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, 2013, 122(20), 3461-3472.
[http://dx.doi.org/10.1182/blood-2013-04-493361] [PMID: 24016461]
[128]
Gargett, T.; Brown, M.P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol., 2014, 5, 235.
[http://dx.doi.org/10.3389/fphar.2014.00235] [PMID: 25389405]
[129]
Resetca, D.; Neschadim, A.; Medin, J.A. Engineering hematopoietic cells for cancer immunotherapy: Strategies to address safety and toxicity concerns. J. Immunother., 2016, 39(7), 249-259.
[http://dx.doi.org/10.1097/CJI.0000000000000134] [PMID: 27488725]
[130]
Sakemura, R.; Terakura, S.; Watanabe, K.; Julamanee, J.; Takagi, E.; Miyao, K.; Koyama, D.; Goto, T.; Hanajiri, R.; Nishida, T.; Murata, M.; Kiyoi, H. A Tet-on inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol. Res., 2016, 4(8), 658-668.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0043] [PMID: 27329987]
[131]
Testa, U.; Pelosi, E.; Frankel, A. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark. Res., 2014, 2(1), 4.
[http://dx.doi.org/10.1186/2050-7771-2-4] [PMID: 24513123]
[132]
Chang, Y.H.; Connolly, J.; Shimasaki, N.; Mimura, K.; Kono, K.; Campana, D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res., 2013, 73(6), 1777-1786.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3558] [PMID: 23302231]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy