Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer’s Disease

Author(s): Agnieszka Jankowska, Grzegorz Satała, Andrzej J. Bojarski, Maciej Pawłowski and GraŻyna Chłoń-Rzepa*

Volume 28, Issue 9, 2021

Published on: 27 April, 2020

Page: [1731 - 1745] Pages: 15

DOI: 10.2174/0929867327666200427100453

Price: $65

conference banner
Abstract

Alzheimer’s disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.

Keywords: Alzheimer's disease, GSK3β, GSK3β inhibitors, memory impairment, multifunctional ligands, neuroinflammation, procognitive activity.

[1]
Ferris, S.H.; Farlow, M. Language impairment in Alzheimer’s disease and benefits of acetylcholinesterase inhibitors. Clin. Interv. Aging, 2013, 8, 1007-1014.
[http://dx.doi.org/10.2147/CIA.S39959] [PMID: 23946647]
[2]
Prince, M.; Ali, G-C.; Guerchet, M.; Prina, A.M.; Albanese, E.; Wu, Y-T. Recent global trends in the prevalence and incidence of dementia and survival with dementia. Alzheimers Res. Ther., 2016, 8(1), 23.
[http://dx.doi.org/10.1186/s13195-016-0188-8] [PMID: 27473681]
[3]
Mukherjee, A.; Biswas, A.; Roy, A.; Biswas, S.; Gangopadhyay, G.; Das, S.K. Behavioural and psychological symptoms of dementia: correlates and impact on caregiver distress. Dement. Geriatr. Cogn. Disord. Extra, 2017, 7(3), 354-365.
[http://dx.doi.org/10.1159/000481568] [PMID: 29282408]
[4]
Dementia, World Health Organization https://www.who.int/health-topics/dementia#tab=tab_1 Accessed on: March 19, 2020
[5]
Flemmig, J.; Zámocký, M.; Alia, A. Amyloid β and free heme: bloody new insights into the pathogenesis of Alzheimer’s disease. Neural Regen. Res., 2018, 13(7), 1170-1174.
[http://dx.doi.org/10.4103/1673-5374.235021] [PMID: 30028317]
[6]
Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol., 2019, 174, 53-89.
[http://dx.doi.org/10.1016/j.pneurobio.2018.12.006] [PMID: 30599179]
[7]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multi-target-directed ligands affecting serotonergic neurotransmission for alzheimer’s disease therapy: advances in chemical and biological research. Curr. Med. Chem., 2018, 25(17), 2045-2067.
[http://dx.doi.org/10.2174/0929867324666170529122802] [PMID: 28554324]
[8]
Nobili, A.; Latagliata, E.C.; Viscomi, M.T.; Cavallucci, V.; Cutuli, D.; Giacovazzo, G.; Krashia, P.; Rizzo, F.R.; Marino, R.; Federici, M.; De Bartolo, P.; Aversa, D.; Dell’Acqua, M.C.; Cordella, A.; Sancandi, M.; Keller, F.; Petrosini, L.; Puglisi-Allegra, S.; Mercuri, N.B.; Coccurello, R.; Berretta, N.; D’Amelio, M. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s disease. Nat. Commun., 2017, 8(1), 14727.
[http://dx.doi.org/10.1038/ncomms14727] [PMID: 28367951]
[9]
Li, Y.; Sun, H.; Chen, Z.; Xu, H.; Bu, G.; Zheng, H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci., 2016, 8, 31.
[http://dx.doi.org/10.3389/fnagi.2016.00031] [PMID: 26941642]
[10]
Zlomuzica, A.; Dere, D.; Binder, S.; De Souza Silva, M.A.; Huston, J.P.; Dere, E. Neuronal histamine and cognitive symptoms in Alzheimer’s disease. Neuropharmacology, 2016, 106, 135-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.05.007] [PMID: 26025658]
[11]
Jankowska, A.; Satała, G.; Partyka, A.; Wesołowska, A.; Bojarski, A.J.; Pawłowski, M.; Chłoń-Rzepa, G. Discovery and development of non-dopaminergic agents for the treatment of schizophrenia: overview of the preclinical and early clinical studies. Curr. Med. Chem., 2019, 26(25), 4885-4913.
[http://dx.doi.org/10.2174/0929867326666190710172002] [PMID: 31291870]
[12]
Atri, A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med. Clin. North Am., 2019, 103(2), 263-293.
[http://dx.doi.org/10.1016/j.mcna.2018.10.009] [PMID: 30704681]
[13]
Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of acetylcholinesterase activity: from Alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem., 2017, 24(30), 3283-3309.
[http://dx.doi.org/10.2174/0929867324666170705123509] [PMID: 28685687]
[14]
Reddy, P.H. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochim. Biophys. Acta, 2013, 1832(12), 1913-1921.
[http://dx.doi.org/10.1016/j.bbadis.2013.06.012] [PMID: 23816568]
[15]
Serenó, L.; Coma, M.; Rodríguez, M.; Sánchez-Ferrer, P.; Sánchez, M.B.; Gich, I.; Agulló, J.M.; Pérez, M.; Avila, J.; Guardia-Laguarta, C.; Clarimón, J.; Lleó, A.; Gómez-Isla, T. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol. Dis., 2009, 35(3), 359-367.
[http://dx.doi.org/10.1016/j.nbd.2009.05.025] [PMID: 19523516]
[16]
Crofton, E.J.; Nenov, M.N.; Zhang, Y.; Scala, F.; Page, S.A.; McCue, D.L.; Li, D.; Hommel, J.D.; Laezza, F.; Green, T.A. Glycogen synthase kinase 3 beta alters anxiety-, depression- and addiction-related behaviors and neuronal activity in the nucleus accumbens shell. Neuropharmacology, 2017, 117, 49-60.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.020] [PMID: 28126496]
[17]
Venna, V.R.; Benashski, S.E.; Chauhan, A.; McCullough, L.D. Inhibition of glycogen synthase kinase-3β enhances cognitive recovery after stroke: the role of TAK1. Learn. Mem., 2015, 22(7), 336-343.
[http://dx.doi.org/10.1101/lm.038083.115] [PMID: 26077686]
[18]
Nguyen, T.; Fan, T.; George, S.R.; Perreault, M.L. Disparate effects of lithium and a gsk-3 inhibitor on neuronal oscillatory activity in prefrontal cortex and hippocampus. Front. Aging Neurosci., 2018, 9, 434.
[http://dx.doi.org/10.3389/fnagi.2017.00434] [PMID: 29375364]
[19]
Gould, T.D.; Einat, H.; Bhat, R.; Manji, H.K. AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int. J. Neuropsychopharmacol., 2004, 7(4), 387-390.
[http://dx.doi.org/10.1017/S1461145704004535] [PMID: 15315719]
[20]
Wang, L.; Wang, Y.; Zhang, C.; Li, J.; Meng, Y.; Dou, M.; Noguchi, C.T.; Di, L. Inhibiting glycogen synthase kinase 3 reverses obesity-induced white adipose tissue inflammation by regulating apoptosis inhibitor of macrophage/CD5L-mediated macrophage migration. Arterioscler. Thromb. Vasc. Biol., 2018, 38(9), 2103-2116.
[http://dx.doi.org/10.1161/ATVBAHA.118.311363] [PMID: 30026270]
[21]
Kramer, T.; Schmidt, B.; Lo Monte, F. Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models. Int. J. Alzheimers Dis., 2012, 2012, 381029.
[http://dx.doi.org/10.1155/2012/381029] [PMID: 22888461]
[22]
Doble, B.W.; Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(Pt 7), 1175-1186.
[http://dx.doi.org/10.1242/jcs.00384] [PMID: 12615961]
[23]
Walz, A.; Ugolkov, A.; Chandra, S.; Kozikowski, A.; Carneiro, B.A.; O’Halloran, T.V.; Giles, F.J.; Billadeau, D.D.; Mazar, A.P. Molecular pathways: revisiting glycogen synthase kinase-3β as a target for the treatment of cancer. Clin. Cancer Res., 2017, 23(8), 1891-1897.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2240] [PMID: 28053024]
[24]
Saraswati, A.P.; Ali Hussaini, S.M.; Krishna, N.H.; Babu, B.N.; Kamal, A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur. J. Med. Chem., 2018, 144, 843-858.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.103] [PMID: 29306837]
[25]
Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): regulation, actions and diseases. Pharmacol. Ther., 2015, 148, 114-131.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[26]
Jiang, Y.; Liu, F.; Zou, F.; Zhang, Y.; Wang, B.; Zhang, Y.; Lian, A.; Han, X.; Liu, Z.; Liu, X.; Jin, M.; Wang, D.; Li, G.; Liu, J. PBX homeobox 1 enhances hair follicle mesenchymal stem cell proliferation and reprogramming through activation of the AKT/glycogen synthase kinase signaling pathway and suppression of apoptosis. Stem Cell Res. Ther., 2019, 10(1), 268.
[http://dx.doi.org/10.1186/s13287-019-1382-y] [PMID: 31443676]
[27]
Martin, S.A.; Souder, D.C.; Miller, K.N.; Clark, J.P.; Sagar, A.K.; Eliceiri, K.W.; Puglielli, L.; Beasley, T.M.; Anderson, R.M. GSK3β regulates brain energy metabolism. Cell Rep., 2018, 23(7), 1922-1931.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.04.045] [PMID: 29768193]
[28]
Chang, Y-T.; Chen, C-L.; Lin, C-F.; Lu, S-L.; Cheng, M-H.; Kuo, C-F.; Lin, Y-S. Regulatory role of GSK-3 β on NF- κB, nitric oxide and TNF- α in group A streptococcal infection. Mediators Inflamm., 2013, 2013, 720689.
[http://dx.doi.org/10.1155/2013/720689] [PMID: 23533310]
[29]
Li, X.; Jia, Z.; Wang, W.; Wang, L.; Liu, Z.; Yang, B.; Jia, Y.; Song, X.; Yi, Q.; Qiu, L.; Song, L. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis. Dev. Comp. Immunol., 2017, 73, 144-155.
[http://dx.doi.org/10.1016/j.dci.2017.03.022] [PMID: 28363635]
[30]
Kadry, M.O.; Abdel-Megeed, R.M.; El-Meliegy, E.; Abdel-Hamid, A.Z. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α signaling pathways play an ambitious role in chitosan nanoparticles cancer therapy. Toxicol. Rep., 2018, 5, 723-727.
[http://dx.doi.org/10.1016/j.toxrep.2018.06.002] [PMID: 30013938]
[31]
Singh, A.V.; Gemmati, D.; Vats, T.; Singh, A.; Zamboni, P. High throughput array technologies: expanding applications from clinics to applied research. Front. Nanosci. Nanotechnol., 2019, 5(1), 1-2.
[http://dx.doi.org/10.15761/FNN.1000S2006]
[32]
Singh, A.V.; Dad Ansari, M.H.; Dayan, C.B.; Giltinan, J.; Wang, S.; Yu, Y.; Kishore, V.; Laux, P.; Luch, A.; Sitti, M. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery. Biomaterials, 2019, 219, 119394.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119394] [PMID: 31382208]
[33]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[34]
Salcedo-Tello, P.; Ortiz-Matamoros, A.; Arias, C. GSK3 Function in the brain during development, neuronal plasticity and neurodegeneration. Int. J. Alzheimers Dis., 2011, 2011, 189728.
[http://dx.doi.org/10.4061/2011/189728] [PMID: 21660241]
[35]
Freland, L.; Beaulieu, J-M. Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front. Mol. Neurosci., 2012, 5, 14.
[http://dx.doi.org/10.3389/fnmol.2012.00014] [PMID: 22363263]
[36]
Eldar-Finkelman, H.; Martinez, A. GSK-3 inhibitors: preclinical and clinical focus on CNS. Front. Mol. Neurosci., 2011, 4, 32.
[http://dx.doi.org/10.3389/fnmol.2011.00032] [PMID: 22065134]
[37]
Coghlan, M.P.; Culbert, A.A.; Cross, D.A.; Corcoran, S.L.; Yates, J.W.; Pearce, N.J.; Rausch, O.L.; Murphy, G.J.; Carter, P.S.; Roxbee Cox, L.; Mills, D.; Brown, M.J.; Haigh, D.; Ward, R.W.; Smith, D.G.; Murray, K.J.; Reith, A.D.; Holder, J.C. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem. Biol., 2000, 7(10), 793-803.
[http://dx.doi.org/10.1016/S1074-5521(00)00025-9] [PMID: 11033082]
[38]
Stukenbrock, H.; Mussmann, R.; Geese, M.; Ferandin, Y.; Lozach, O.; Lemcke, T.; Kegel, S.; Lomow, A.; Burk, U.; Dohrmann, C.; Meijer, L.; Austen, M.; Kunick, C. 9-cyano-1-azapaullone (cazpaullone), a glycogen synthase kinase-3 (GSK-3) inhibitor activating pancreatic β cell protection and replication. J. Med. Chem., 2008, 51(7), 2196-2207.
[http://dx.doi.org/10.1021/jm701582f] [PMID: 18345612]
[39]
Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Biernat, J.; Wu, Y-Z.; Mandelkow, E-M.; Eisenbrand, G.; Meijer, L. Indirubins inhibit glycogen synthase kinase-3 β and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem., 2001, 276(1), 251-260.
[http://dx.doi.org/10.1074/jbc.M002466200] [PMID: 11013232]
[40]
Olesen, P.H.; Sørensen, A.R.; Ursø, B.; Kurtzhals, P.; Bowler, A.N.; Ehrbar, U.; Hansen, B.F. Synthesis and in vitro characterization of 1-(4-aminofurazan-3-yl)-5-dialkylaminomethyl-1H-[1,2,3]triazole-4-carboxylic acid derivatives. A new class of selective GSK-3 inhibitors. J. Med. Chem., 2003, 46(15), 3333-3341.
[http://dx.doi.org/10.1021/jm021095d] [PMID: 12852764]
[41]
Arnost, M.; Pierce, A.; ter Haar, E.; Lauffer, D.; Madden, J.; Tanner, K.; Green, J. 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3beta. Bioorg. Med. Chem. Lett., 2010, 20(5), 1661-1664.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.072] [PMID: 20138514]
[42]
Shin, D.; Lee, S-C.; Heo, Y-S.; Lee, W-Y.; Cho, Y-S.; Kim, Y.E.; Hyun, Y-L.; Cho, J.M.; Lee, Y.S.; Ro, S. Design and synthesis of 7-hydroxy-1H-benzoimidazole derivatives as novel inhibitors of glycogen synthase kinase-3beta. Bioorg. Med. Chem. Lett., 2007, 17(20), 5686-5689.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.056] [PMID: 17764934]
[43]
Coffman, K.; Brodney, M.; Cook, J.; Lanyon, L.; Pandit, J.; Sakya, S.; Schachter, J.; Tseng-Lovering, E.; Wessel, M. 6-amino-4-(pyrimidin-4-yl)pyridones: novel glycogen synthase kinase-3β inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(5), 1429-1433.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.017] [PMID: 21295469]
[44]
Pandey, M.K.; DeGrado, T.R. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics, 2016, 6(4), 571-593.
[http://dx.doi.org/10.7150/thno.14334] [PMID: 26941849]
[45]
Perez, D.I.; Conde, S.; Pérez, C.; Gil, C.; Simon, D.; Wandosell, F.; Moreno, F.J.; Gelpí, J.L.; Luque, F.J.; Martínez, A. Thienylhalomethylketones: Irreversible glycogen synthase kinase 3 inhibitors as useful pharmacological tools. Bioorg. Med. Chem., 2009, 17(19), 6914-6925.
[http://dx.doi.org/10.1016/j.bmc.2009.08.042] [PMID: 19747834]
[46]
Zhang, P.; Hu, H-R.; Bian, S-H.; Huang, Z-H.; Chu, Y.; Ye, D-Y. Design, synthesis and biological evaluation of benzothiazepinones (BTZs) as novel non-ATP competitive inhibitors of glycogen synthase kinase-3β (GSK-3β). Eur. J. Med. Chem., 2013, 61, 95-103.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.021] [PMID: 23047001]
[47]
Zhu, Q.; Yang, J.; Han, S.; Liu, J.; Holzbeierlein, J.; Thrasher, J.B.; Li, B. Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate, 2011, 71(8), 835-845.
[http://dx.doi.org/10.1002/pros.21300] [PMID: 21456066]
[48]
Farr, S.A.; Niehoff, M.L.; Kumar, V.B.; Roby, D.A.; Morley, J.E. Inhibition of glycogen synthase kinase 3β as a treatment for the prevention of cognitive deficits after a traumatic brain injury. J. Neurotrauma, 2019, 36(11), 1869-1875.
[http://dx.doi.org/10.1089/neu.2018.5999] [PMID: 30704365]
[49]
Pérez-Domper, P.; Palomo, V.; Gradari, S.; Gil, C.; de Ceballos, M.L.; Martínez, A.; Trejo, J.L. The GSK-3-inhibitor VP2.51 produces antidepressant effects associated with adult hippocampal neurogenesis. Neuropharmacology, 2017, 116, 174-187.
[http://dx.doi.org/10.1016/j.neuropharm.2016.12.019] [PMID: 28012947]
[50]
Liu, R-J.; Fuchikami, M.; Dwyer, J.M.; Lepack, A.E.; Duman, R.S.; Aghajanian, G.K. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology, 2013, 38(11), 2268-2277.
[http://dx.doi.org/10.1038/npp.2013.128] [PMID: 23680942]
[51]
Lipina, T.V.; Kaidanovich-Beilin, O.; Patel, S.; Wang, M.; Clapcote, S.J.; Liu, F.; Woodgett, J.R.; Roder, J.C. Genetic and pharmacological evidence for schizophrenia-related Disc1 interaction with GSK-3. Synapse, 2011, 65(3), 234-248.
[http://dx.doi.org/10.1002/syn.20839] [PMID: 20687111]
[52]
Martinez, A.; Castro, A.; Dorronsoro, I.; Alonso, M. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer and inflammation. Med. Res. Rev., 2002, 22(4), 373-384.
[http://dx.doi.org/10.1002/med.10011] [PMID: 12111750]
[53]
Phiel, C.J.; Wilson, C.A.; Lee, V.M.; Klein, P.S. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature, 2003, 423(6938), 435-439.
[http://dx.doi.org/10.1038/nature01640] [PMID: 12761548]
[54]
Rockenstein, E.; Torrance, M.; Adame, A.; Mante, M.; Bar-on, P.; Rose, J.B.; Crews, L.; Masliah, E. Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J. Neurosci., 2007, 27(8), 1981-1991.
[http://dx.doi.org/10.1523/JNEUROSCI.4321-06.2007] [PMID: 17314294]
[55]
Koh, S.H.; Noh, M.Y.; Kim, S.H. Amyloid-beta-induced neurotoxicity is reduced by inhibition of glycogen synthase kinase-3. Brain Res., 2008, 1188, 254-262.
[http://dx.doi.org/10.1016/j.brainres.2007.10.064] [PMID: 18031715]
[56]
Won, E.; Kim, Y-K. An oldie but goodie: lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2679.
[http://dx.doi.org/10.3390/ijms18122679] [PMID: 29232923]
[57]
U.S. National Library of Medicine, Clinical trials.gov. Available at: https://clinicaltrials.gov/Access date March 19, 2020.
[58]
Armagan, G.; Sevgili, E.; Gürkan, F.T.; Köse, F.A.; Bilgiç, T.; Dagcı, T.; Saso, L. Regulation of the Nrf2 pathway by glycogen synthase kinase-3β in MPP+-induced cell damage. Molecules, 2019, 24(7), 1377.
[http://dx.doi.org/10.3390/molecules24071377] [PMID: 30965670]
[59]
Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; del Ser, T. ARGO investigators. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis., 2015, 45(1), 75-88.
[http://dx.doi.org/10.3233/JAD-141959] [PMID: 25537011]
[60]
Fuchs, C.; Fustini, N.; Trazzi, S.; Gennaccaro, L.; Rimondini, R.; Ciani, E. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice. Eur. J. Neurosci., 2018, 47(9), 1054-1066.
[http://dx.doi.org/10.1111/ejn.13923] [PMID: 29603837]
[61]
Lipina, T.V.; Palomo, V.; Gil, C.; Martinez, A.; Roder, J.C. Dual inhibitor of PDE7 and GSK-3-VP1.15 acts as antipsychotic and cognitive enhancer in C57BL/6J mice. Neuropharmacology, 2013, 64, 205-214.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.032] [PMID: 22749842]
[62]
Susín, C.; Morales-Garcia, J.A.; Aguilar-Morante, D.; Palomo, V.; Sanz-Sancristobal, M.; Alonso-Gil, S.; Gil, C.; Santos, A.; Martinez, A.; Perez-Castillo, A. The new iminothiadiazole derivative VP1.14 ameliorates hippocampal damage after an excitotoxic injury. J. Neurochem., 2012, 122(6), 1193-1202.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07866.x] [PMID: 22774807]
[63]
Murthy, V.S.; Mangot, A.G. Psychiatric aspects of phosphodiesterases: An overview. Indian J. Pharmacol., 2015, 47(6), 594-599.
[http://dx.doi.org/10.4103/0253-7613.169593] [PMID: 26729948]
[64]
Jankowska, A.; Świerczek, A.; Chłoń-Rzepa, G.; Pawłowski, M.; Wyska, E. PDE7-selective and dual inhibitors: advances in chemical and biological research. Curr. Med. Chem., 2017, 24(7), 673-700.
[http://dx.doi.org/10.2174/0929867324666170116125159] [PMID: 28093982]
[65]
Jankowska, A.; Wesołowska, A.; Pawłowski, M.; Chłoń-Rzepa, G. Multifunctional ligands targeting phosphodiesterase as the future strategy for the symptomatic and disease-modifying treatment of alzheimer’s disease. Curr. Med. Chem., 2019, 27(32), 5351-5373.
[http://dx.doi.org/10.2174/0929867326666190620095623] [PMID: 31250747]
[66]
Chłoń-Rzepa, G.; Ślusarczyk, M.; Jankowska, A.; Gawalska, A.; Bucki, A.; Kołaczkowski, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Zygmunt, M.; Kazek, G.; Sałat, K.; Pawłowski, M. Novel amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 antagonists and PDE4/7 inhibitors: A new approach for the treatment of pain. Eur. J. Med. Chem., 2018, 158, 517-533.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.021] [PMID: 30245393]
[67]
Chłoń-Rzepa, G.; Jankowska, A.; Ślusarczyk, M.; Świerczek, A.; Pociecha, K.; Wyska, E.; Bucki, A.; Gawalska, A.; Kołaczkowski, M.; Pawłowski, M. Novel butanehydrazide derivatives of purine-2,6-dione as dual PDE4/7 inhibitors with potential anti-inflammatory activity: design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 146, 381-394.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.068] [PMID: 29407965]
[68]
Wójcik-Pszczoła, K.; Chłoń-Rzepa, G.; Jankowska, A.; Ellen, E.; Świerczek, A.; Pociecha, K.; Koczurkiewicz, P.; Piska, K.; Gawędzka, A.; Wyska, E.; Knapik-Czajka, M.; Pękala, E.; Gosens, R. Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur. J. Pharmacol., 2019, 865, 172779.
[http://dx.doi.org/10.1016/j.ejphar.2019.172779] [PMID: 31705904]
[69]
Gameiro, I.; Michalska, P.; Tenti, G.; Cores, Á.; Buendia, I.; Rojo, A.I.; Georgakopoulos, N.D.; Hernández-Guijo, J.M.; Teresa Ramos, M.; Wells, G.; López, M.G.; Cuadrado, A.; Menéndez, J.C.; León, R. Discovery of the first dual GSK3β inhibitor/Nrf2 inducer. A new multitarget therapeutic strategy for Alzheimer’s disease. Sci. Rep., 2017, 7, 45701.
[http://dx.doi.org/10.1038/srep45701] [PMID: 28361919]
[70]
Oukoloff, K.; Coquelle, N.; Bartolini, M.; Naldi, M.; Le Guevel, R.; Bach, S.; Josselin, B.; Ruchaud, S.; Catto, M.; Pisani, L.; Denora, N.; Iacobazzi, R.M.; Silman, I.; Sussman, J.L.; Buron, F.; Colletier, J-P.; Jean, L.; Routier, S.; Renard, P-Y. Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. Eur. J. Med. Chem., 2019, 168, 58-77.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.063] [PMID: 30798053]
[71]
Jiang, X-Y.; Chen, T-K.; Zhou, J-T.; He, S-Y.; Yang, H-Y.; Chen, Y.; Qu, W.; Feng, F.; Sun, H-P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-alzheimer’s disease drug discovery. ACS Med. Chem. Lett., 2018, 9(3), 171-176.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00463] [PMID: 29541355]
[72]
Prati, F.; De Simone, A.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Bertozzi, S.M.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Sabatino, P.; Bottegoni, G.; Martinez, A.; Cavalli, A.; Bolognesi, M.L. 3,4-dihydro-1,3,5-triazin-2(1H)-ones as the first dual BACE-1/GSK-3β fragment hits against alzheimer’s disease. ACS Chem. Neurosci., 2015, 6(10), 1665-1682.
[http://dx.doi.org/10.1021/acschemneuro.5b00121] [PMID: 26171616]
[73]
Ding, Y.; Qiao, A.; Fan, G-H. Indirubin-3′-monoxime rescues spatial memory deficits and attenuates β-amyloid-associated neuropathology in a mouse model of Alzheimer’s disease. Neurobiol. Dis., 2010, 39(2), 156-168.
[http://dx.doi.org/10.1016/j.nbd.2010.03.022] [PMID: 20381617]
[74]
Brogi, S.; Ramunno, A.; Savi, L.; Chemi, G.; Alfano, G.; Pecorelli, A.; Pambianchi, E.; Galatello, P.; Compagnoni, G.; Focher, F.; Biamonti, G.; Valacchi, G.; Butini, S.; Gemma, S.; Campiani, G.; Brindisi, M. First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur. J. Med. Chem., 2017, 138, 438-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.017] [PMID: 28689095]
[75]
Gandini, A.; Bartolini, M.; Tedesco, D.; Martinez-Gonzalez, L.; Roca, C.; Campillo, N.E.; Zaldivar-Diez, J.; Perez, C.; Zuccheri, G.; Miti, A.; Feoli, A.; Castellano, S.; Petralla, S.; Monti, B.; Rossi, M.; Moda, F.; Legname, G.; Martinez, A.; Bolognesi, M.L. Tau-centric multitarget approach for alzheimer’s disease: development of first-in-class dual glycogen synthase kinase 3β and tau-aggregation inhibitors. J. Med. Chem., 2018, 61(17), 7640-7656.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00610] [PMID: 30078314]
[76]
De Simone, A.; La Pietra, V.; Betari, N.; Petragnani, N.; Conte, M.; Daniele, S.; Pietrobono, D.; Martini, C.; Petralla, S.; Casadei, R.; Davani, L.; Frabetti, F.; Russomanno, P.; Novellino, E.; Montanari, S.; Tumiatti, V.; Ballerini, P.; Sarno, F.; Nebbioso, A.; Altucci, L.; Monti, B.; Andrisano, V.; Milelli, A. Discovery of the first-in-class GSK-3β/HDAC dual inhibitor as disease-modifying agent to combat alzheimer’s disease. ACS Med. Chem. Lett., 2019, 10(4), 469-474.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00507] [PMID: 30996781]
[77]
Bisi, A.; Arribas, R.L.; Micucci, M.; Budriesi, R.; Feoli, A.; Castellano, S.; Belluti, F.; Gobbi, S.; de Los Rios, C.; Rampa, A. Polycyclic maleimide-based derivatives as first dual modulators of neuronal calcium channels and GSK-3β for Alzheimer’s disease treatment. Eur. J. Med. Chem., 2019, 163, 394-402.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.003] [PMID: 30530190]
[78]
Bahn, G.; Jo, D-G. Therapeutic approaches to alzheimer’s disease through modulation of NRF2. Neuromolecular Med., 2019, 21(1), 1-11.
[http://dx.doi.org/10.1007/s12017-018-08523-5] [PMID: 30617737]
[79]
Tian, Y.; Wang, W.; Xu, L.; Li, H.; Wei, Y.; Wu, Q.; Jia, J. Activation of Nrf2/ARE pathway alleviates the cognitive deficits in PS1V97L-Tg mouse model of Alzheimer’s disease through modulation of oxidative stress. J. Neurosci. Res., 2019, 97(4), 492-505.
[http://dx.doi.org/10.1002/jnr.24357] [PMID: 30461032]
[80]
Kim, H.V.; Kim, H.Y.; Ehrlich, H.Y.; Choi, S.Y.; Kim, D.J.; Kim, Y. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid, 2013, 20(1), 7-12.
[http://dx.doi.org/10.3109/13506129.2012.751367] [PMID: 23253046]
[81]
Fischer, W.; Currais, A.; Liang, Z.; Pinto, A.; Maher, P. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol., 2019, 21, 101089.
[http://dx.doi.org/10.1016/j.redox.2018.101089] [PMID: 30594901]
[82]
Ranea-Robles, P.; Launay, N.; Ruiz, M.; Calingasan, N.Y.; Dumont, M.; Naudí, A.; Portero-Otín, M.; Pamplona, R.; Ferrer, I.; Beal, M.F.; Fourcade, S.; Pujol, A. Aberrant regulation of the GSK-3β/NRF2 axis unveils a novel therapy for adrenoleukodystrophy. EMBO Mol. Med., 2018, 10(8), e8604.
[http://dx.doi.org/10.15252/emmm.201708604] [PMID: 29997171]
[83]
Cuadrado, A.; Kügler, S.; Lastres-Becker, I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol., 2018, 14, 522-534.
[http://dx.doi.org/10.1016/j.redox.2017.10.010] [PMID: 29121589]
[84]
Chen, X.; Liu, Y.; Zhu, J.; Lei, S.; Dong, Y.; Li, L.; Jiang, B.; Tan, L.; Wu, J.; Yu, S.; Zhao, Y. GSK-3β downregulates Nrf2 in cultured cortical neurons and in a rat model of cerebral ischemia-reperfusion. Sci. Rep., 2016, 6, 20196.
[http://dx.doi.org/10.1038/srep20196] [PMID: 26838164]
[85]
Panza, F.; Lozupone, M.; Solfrizzi, V.; Sardone, R.; Piccininni, C.; Dibello, V.; Stallone, R.; Giannelli, G.; Bellomo, A.; Greco, A.; Daniele, A.; Seripa, D.; Logroscino, G.; Imbimbo, B.P. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev. Neurother., 2018, 18(11), 847-857.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[86]
Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Favia, A.D.; Bottegoni, G.; Martinez, A.; Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery for Alzheimer’s disease: triazinones as BACE-1 and GSK-3β inhibitors. Angew. Chem. Int. Ed. Engl., 2015, 54(5), 1578-1582.
[http://dx.doi.org/10.1002/anie.201410456] [PMID: 25504761]
[87]
Czeleń, P. Molecular dynamics study on inhibition mechanism of CDK-2 and GSK-3β by CHEMBL272026 molecule. Struct. Chem., 2016, 27(6), 1807-1818.
[http://dx.doi.org/10.1007/s11224-016-0803-0]
[88]
Boulahjar, R.; Ouach, A.; Matteo, C.; Bourg, S.; Ravache, M.; le Guével, R.; Marionneau, S.; Oullier, T.; Lozach, O.; Meijer, L.; Guguen-Guillouzo, C.; Lazar, S.; Akssira, M.; Troin, Y.; Guillaumet, G.; Routier, S. Novel tetrahydropyrido[1,2-a]isoindolone derivatives (valmerins): potent cyclin-dependent kinase/glycogen synthase kinase 3 inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts. J. Med. Chem., 2012, 55(22), 9589-9606.
[http://dx.doi.org/10.1021/jm3008536] [PMID: 23083119]
[89]
Zhao, P.; Li, Y.; Gao, G.; Wang, S.; Yan, Y.; Zhan, X.; Liu, Z.; Mao, Z.; Chen, S.; Wang, L. Design, synthesis and biological evaluation of N-alkyl or aryl substituted isoindigo derivatives as potential dual cyclin-dependent kinase 2 (CDK2)/glycogen synthase kinase 3β (GSK-3β) phosphorylation inhibitors. Eur. J. Med. Chem., 2014, 86, 165-174.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.049] [PMID: 25151579]
[90]
Ouach, A.; Boulahjar, R.; Vala, C.; Bourg, S.; Bonnet, P.; Guguen-Guillouzo, C.; Ravache, M.; Le Guevel, R.; Lozach, O.; Lazar, S.; Troin, Y.; Meijer, L.; Ruchaud, S.; Akssira, M.; Guillaumet, G.; Routier, S. Novel optimization of valmerins (tetrahydropyrido[1,2-a]isoindolones) as potent dual CDK5/GSK3 inhibitors. Eur. J. Med. Chem., 2016, 115, 311-325.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.072] [PMID: 27019296]
[91]
Reinhardt, L.; Kordes, S.; Reinhardt, P.; Glatza, M.; Baumann, M.; Drexler, H.C.A.; Menninger, S.; Zischinsky, G.; Eickhoff, J.; Fröb, C.; Bhattarai, P.; Arulmozhivarman, G.; Marrone, L.; Janosch, A.; Adachi, K.; Stehling, M.; Anderson, E.N.; Abo-Rady, M.; Bickle, M.; Pandey, U.B.; Reimer, M.M.; Kizil, C.; Schöler, H.R.; Nussbaumer, P.; Klebl, B.; Sterneckert, J.L. Dual inhibition of GSK3β and CDK5 protects the cytoskeleton of neurons from neuroinflammatory-mediated degeneration in vitro and in vivo. Stem Cell Reports, 2019, 12(3), 502-517.
[http://dx.doi.org/10.1016/j.stemcr.2019.01.015] [PMID: 30773488]
[92]
Studer, F.E.; Fedele, D.E.; Marowsky, A.; Schwerdel, C.; Wernli, K.; Vogt, K.; Fritschy, J.M.; Boison, D. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience, 2006, 142(1), 125-137.
[http://dx.doi.org/10.1016/j.neuroscience.2006.06.016] [PMID: 16859834]
[93]
Ning, C.; Wang, H.D.; Gao, R.; Chang, Y-C.; Hu, F.; Meng, X.; Huang, S-Y. Marine-derived protein kinase inhibitors for neuroinflammatory diseases. Biomed. Eng. Online, 2018, 17(1), 46.
[http://dx.doi.org/10.1186/s12938-018-0477-5] [PMID: 29690896]
[94]
Yang, S.S.; Zhang, R.; Wang, G.; Zhang, Y.F. The development prospection of HDAC inhibitors as a potential therapeutic direction in Alzheimer’s disease. Transl. Neurodegener., 2017, 6(1), 19.
[http://dx.doi.org/10.1186/s40035-017-0089-1] [PMID: 28702178]
[95]
Rabal, O.; Sánchez-Arias, J.A.; Cuadrado-Tejedor, M.; de Miguel, I.; Pérez-González, M.; García-Barroso, C.; Ugarte, A.; Estella-Hermoso de Mendoza, A.; Sáez, E.; Espelosin, M.; Ursua, S.; Haizhong, T.; Wei, W.; Musheng, X.; Garcia-Osta, A.; Oyarzabal, J. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 506-524.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.005] [PMID: 29549837]
[96]
Rabal, O.; Sánchez-Arias, J.A.; Cuadrado-Tejedor, M.; de Miguel, I.; Pérez-González, M.; García-Barroso, C.; Ugarte, A.; Estella-Hermoso de Mendoza, A.; Sáez, E.; Espelosin, M.; Ursua, S.; Tan, H.; Wu, W.; Xu, M.; Pineda-Lucena, A.; Garcia-Osta, A.; Oyarzabal, J. Multitarget Approach for the treatment of alzheimer’s disease: inhibition of phosphodiesterase 9 (PDE9) and histone deacetylases (hdacs) covering diverse selectivity profiles. ACS Chem. Neurosci., 2019, 10(9), 4076-4101.
[http://dx.doi.org/10.1021/acschemneuro.9b00303] [PMID: 31441641]
[97]
Lovell, M.A.; Abner, E.; Kryscio, R.; Xu, L.; Fister, S.X.; Lynn, B.C. Calcium channel blockers, progression to dementia and effects on amyloid beta peptide production. Oxid. Med. Cell. Longev., 2015, 2015, 787805.
[http://dx.doi.org/10.1155/2015/787805] [PMID: 26221415]
[98]
Sekhar, D.; Shwetha, B.; Haimavathi, B.; Vikram, P. The effect of calcium channel blockers against scopolamine induced cognitive impairment and oxidative stress. Int. J. Basic Clin. Pharmacol., 2016, 5(5), 2199-2211.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20163262]
[99]
SwissADME was used for property prediction 2018. www.swissadme.ch/ Access date March 19, 2020
[100]
Medunjanin, S.; Schleithoff, L.; Fiegehenn, C.; Weinert, S.; Zuschratter, W.; Braun-Dullaeus, R.C. GSK-3β controls NF-kappaB activity via IKKγ/NEMO. Sci. Rep., 2016, 6(1), 38553.
[http://dx.doi.org/10.1038/srep38553] [PMID: 27929056]
[101]
Sotolongo, K.; Ghiso, J.; Rostagno, A. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. Alzheimers Res. Ther., 2020, 12(1), 13.
[http://dx.doi.org/10.1186/s13195-019-0578-9] [PMID: 31931869]
[102]
Gao, J.; Long, L.; Xu, F.; Feng, L.; Liu, Y.; Shi, J.; Gong, Q. Icariside II, a phosphodiesterase 5 inhibitor, attenuates cerebral ischaemia/reperfusion injury by inhibiting glycogen synthase kinase-3β-mediated activation of autophagy. Br. J. Pharmacol., 2020, 177(6), 1434-1452.
[http://dx.doi.org/10.1111/bph.14912] [PMID: 31658364]
[103]
Chang, P-K.; Chu, J.; Tsai, Y-T.; Lai, Y-H.; Chen, J-C. Dopamine D3 receptor and GSK3β signaling mediate deficits in novel object recognition memory within dopamine transporter knockdown mice. J. Biomed. Sci., 2020, 27(1), 16.
[http://dx.doi.org/10.1186/s12929-019-0613-y] [PMID: 31900153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy