Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Interleukin-18 in the Development and Progression of Atherosclerosis

Author(s): Afsane Bahrami, Thozhukat Sathyapalan and Amirhossein Sahebkar*

Volume 28, Issue 9, 2021

Published on: 27 April, 2020

Page: [1757 - 1774] Pages: 18

DOI: 10.2174/0929867327666200427095830

Price: $65

conference banner
Abstract

Atherosclerosis (AS), as a chronic inflammatory disorder of the cardiovascular system, is one of the leading causes of ischemic heart disease, stroke and peripheral vascular disease. There is growing evidence on the role of innate and adaptive immunity in the pathogenesis of atherosclerosis. Interleukin-18 is one of the novel proinflammatory cytokines involved in atherogenesis, atherosclerotic plaque instability and plaque rupture. In this review, we overview the findings of preclinical and clinical studies about the role and mechanism of action of IL-18 in the pathogenesis of AS, which could offer novel prognostic and therapeutic approaches.

Keywords: Matrix metalloproteases, acute coronary syndromes, vascular smooth muscle cells, polymorphism, atherosclerosis, Interlukin-18, therapeutic.

[1]
Libby, P. Inflammatory and immune mechanisms in atherogenesis. Atheroscler Rev, 1990, 21, 79-89.
[2]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[3]
Okamura, H.; Tsutsi, H.; Komatsu, T.; Yutsudo, M.; Hakura, A.; Tanimoto, T.; Torigoe, K.; Okura, T.; Nukada, Y.; Hattori, K. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature, 1995, 378(6552), 88-91.
[http://dx.doi.org/10.1038/378088a0] [PMID: 7477296]
[4]
Gerdes, N.; Sukhova, G.K.; Libby, P.; Reynolds, R.S.; Young, J.L.; Schönbeck, U. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells and macrophages: implications for atherogenesis. J. Exp. Med., 2002, 195(2), 245-257.
[http://dx.doi.org/10.1084/jem.20011022] [PMID: 11805151]
[5]
Ishida, Y.; Migita, K.; Izumi, Y.; Nakao, K.; Ida, H.; Kawakami, A.; Abiru, S.; Ishibashi, H.; Eguchi, K.; Ishii, N. The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett., 2004, 569(1-3), 156-160.
[http://dx.doi.org/10.1016/j.febslet.2004.05.039] [PMID: 15225625]
[6]
Skålén, K.; Gustafsson, M.; Rydberg, E.K.; Hultén, L.M.; Wiklund, O.; Innerarity, T.L.; Borén, J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature, 2002, 417(6890), 750-754.
[http://dx.doi.org/10.1038/nature00804] [PMID: 12066187]
[7]
Shih, P.T.; Elices, M.J.; Fang, Z.T.; Ugarova, T.P.; Strahl, D.; Territo, M.C.; Frank, J.S.; Kovach, N.L.; Cabanas, C.; Berliner, J.A.; Vora, D.K. Minimally modified low-density lipoprotein induces monocyte adhesion to endothelial connecting segment-1 by activating β1 integrin. J. Clin. Invest., 1999, 103(5), 613-625.
[http://dx.doi.org/10.1172/JCI5710] [PMID: 10074478]
[8]
Daugherty, A.; Rateri, D.L. T lymphocytes in atherosclerosis: the yin-yang of Th1 and Th2 influence on lesion formation. Circ. Res., 2002, 90(10), 1039-1040.
[http://dx.doi.org/10.1161/01.RES.0000021397.28936.F9] [PMID: 12039791]
[9]
Hansson, G.K.; Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol., 2006, 6(7), 508-519.
[http://dx.doi.org/10.1038/nri1882] [PMID: 16778830]
[10]
Zernecke, A.; Shagdarsuren, E.; Weber, C. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol., 2008, 28(11), 1897-1908.
[http://dx.doi.org/10.1161/ATVBAHA.107.161174] [PMID: 18566299]
[11]
Yan, Z.Q.; Hansson, G.K. Innate immunity, macrophage activation and atherosclerosis. Immunol. Rev., 2007, 219, 187-203.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00554.x] [PMID: 17850490]
[12]
Otsuka, F.; Yasuda, S.; Noguchi, T.; Ishibashi-Ueda, H. Pathology of coronary atherosclerosis and thrombosis. Cardiovasc. Diagn. Ther., 2016, 6(4), 396-408.
[http://dx.doi.org/10.21037/cdt.2016.06.01] [PMID: 27500096]
[13]
Davies, M.J. The pathophysiology of acute coronary syndromes. Heart, 2000, 83(3), 361-366.
[http://dx.doi.org/10.1136/heart.83.3.361] [PMID: 10677422]
[14]
Sedimbi, S.K.; Hägglöf, T.; Karlsson, M.C. IL-18 in inflammatory and autoimmune disease. Cell. Mol. Life Sci., 2013, 70(24), 4795-4808.
[http://dx.doi.org/10.1007/s00018-013-1425-y] [PMID: 23892891]
[15]
Frostegård, J.; Ulfgren, A-K.; Nyberg, P.; Hedin, U.; Swedenborg, J.; Andersson, U.; Hansson, G.K. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis, 1999, 145(1), 33-43.
[http://dx.doi.org/10.1016/S0021-9150(99)00011-8] [PMID: 10428293]
[16]
Liang, X.H.; Cheung, W.; Heng, C.K.; Wang, D.Y. Reduced transcriptional activity in individuals with IL-18 gene variants detected from functional but not association study. Biochem. Biophys. Res. Commun., 2005, 338(2), 736-741.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.012] [PMID: 16243298]
[17]
Gu, Y.; Kuida, K.; Tsutsui, H.; Ku, G.; Hsiao, K.; Fleming, M.A.; Hayashi, N.; Higashino, K.; Okamura, H.; Nakanishi, K.; Kurimoto, M.; Tanimoto, T.; Flavell, R.A.; Sato, V.; Harding, M.W.; Livingston, D.J.; Su, M.S. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science, 1997, 275(5297), 206-209.
[http://dx.doi.org/10.1126/science.275.5297.206] [PMID: 8999548]
[18]
Dinarello, C.A.; Novick, D.; Kim, S.; Kaplanski, G. Interleukin-18 and IL-18 binding protein. Front. Immunol., 2013, 4, 289.
[http://dx.doi.org/10.3389/fimmu.2013.00289] [PMID: 24115947]
[19]
Novick, D.; Kim, S.; Kaplanski, G.; Dinarello, C.A. Interleukin-18, more than a Th1 cytokine. Semin. Immunol., 2013, 25(6), 439-448.
[http://dx.doi.org/10.1016/j.smim.2013.10.014] [PMID: 24275602]
[20]
Ghayur, T.; Banerjee, S.; Hugunin, M.; Butler, D.; Herzog, L.; Carter, A.; Quintal, L.; Sekut, L.; Talanian, R.; Paskind, M.; Wong, W.; Kamen, R.; Tracey, D.; Allen, H. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature, 1997, 386(6625), 619-623.
[http://dx.doi.org/10.1038/386619a0] [PMID: 9121587]
[21]
Formanowicz, D.; Gutowska, K.; Formanowicz, P. Theoretical studies on the engagement of interleukin 18 in the immuno-inflammatory processes underlying atherosclerosis. Int. J. Mol. Sci., 2018, 19(11), 3476.
[http://dx.doi.org/10.3390/ijms19113476] [PMID: 30400655]
[22]
Nakanishi, K.; Yoshimoto, T.; Tsutsui, H.; Okamura, H. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev., 2001, 12(1), 53-72.
[http://dx.doi.org/10.1016/S1359-6101(00)00015-0] [PMID: 11312119]
[23]
Suk, K.; Yeou Kim, S.; Kim, H. Regulation of IL-18 production by IFN γ and PGE2 in mouse microglial cells: involvement of NF-kB pathway in the regulatory processes. Immunol. Lett., 2001, 77(2), 79-85.
[http://dx.doi.org/10.1016/S0165-2478(01)00209-7] [PMID: 11377701]
[24]
Ushio, S.; Namba, M.; Okura, T.; Hattori, K.; Nukada, Y.; Akita, K.; Tanabe, F.; Konishi, K.; Micallef, M.; Fujii, M.; Torigoe, K.; Tanimoto, T.; Fukuda, S.; Ikeda, M.; Okamura, H.; Kurimoto, M. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli and studies on the biologic activities of the protein. J. Immunol., 1996, 156(11), 4274-4279.
[PMID: 8666798]
[25]
Medzhitov, R.; Preston-Hurlburt, P.; Kopp, E.; Stadlen, A.; Chen, C.; Ghosh, S.; Janeway, C.A., Jr MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell, 1998, 2(2), 253-258.
[http://dx.doi.org/10.1016/S1097-2765(00)80136-7] [PMID: 9734363]
[26]
Kojima, H.; Takeuchi, M.; Ohta, T.; Nishida, Y.; Arai, N.; Ikeda, M.; Ikegami, H.; Kurimoto, M. Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem. Biophys. Res. Commun., 1998, 244(1), 183-186.
[http://dx.doi.org/10.1006/bbrc.1998.8236] [PMID: 9514903]
[27]
Dinarello, C.A. Novel targets for interleukin 18 binding protein. Ann. Rheum. Dis., 2001, 60(Suppl. 3), iii18-iii24.
[http://dx.doi.org/10.1136/ard.60.90003.iii18] [PMID: 11890646]
[28]
Mariño, E.; Cardier, J.E. Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-α and Fas (CD95). Cytokine, 2003, 22(5), 142-148.
[http://dx.doi.org/10.1016/S1043-4666(03)00150-9] [PMID: 12842762]
[29]
Micallef, M.J.; Tanimoto, T.; Torigoe, K.; Nishida, Y.; Kohno, K.; Ikegami, H.; Kurimoto, M. Simultaneous exposure to interleukin-18 and interleukin-10 in vitro synergistically augments murine spleen natural killer cell activity. Cancer Immunol. Immunother., 1999, 48(2-3), 109-117.
[http://dx.doi.org/10.1007/s002620050554] [PMID: 10414464]
[30]
Sukhova, G.K.; Schönbeck, U.; Rabkin, E.; Schoen, F.J.; Poole, A.R.; Billinghurst, R.C.; Libby, P. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation, 1999, 99(19), 2503-2509.
[http://dx.doi.org/10.1161/01.CIR.99.19.2503] [PMID: 10330380]
[31]
Okamura, H.; Tsutsui, H.; Kashiwamura, S.I.; Yoshimoto, T.; Nakanishi, K. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv. Immunol., 1998, 70, 281-312.
[http://dx.doi.org/10.1016/S0065-2776(08)60389-2] [PMID: 9755340]
[32]
Stephens, J.M.; Butts, M.D.; Pekala, P.H. Regulation of transcription factor mRNA accumulation during 3T3-L1 preadipocyte differentiation by tumour necrosis factor-α. J. Mol. Endocrinol., 1992, 9(1), 61-72.
[http://dx.doi.org/10.1677/jme.0.0090061] [PMID: 1515026]
[33]
Heinrich, P.C.; Castell, J.V.; Andus, T. Interleukin-6 and the acute phase response. Biochem. J., 1990, 265(3), 621-636.
[http://dx.doi.org/10.1042/bj2650621] [PMID: 1689567]
[34]
Robertson, A-K.L.; Hansson, G.K. T cells in atherogenesis: for better or for worse? Arterioscler. Thromb. Vasc. Biol., 2006, 26(11), 2421-2432.
[http://dx.doi.org/10.1161/01.ATV.0000245830.29764.84] [PMID: 16973967]
[35]
Yamaoka-Tojo, M.; Tojo, T.; Masuda, T.; Machida, Y.; Kitano, Y.; Kurosawa, T.; Izumi, T. C-reactive protein-induced production of interleukin-18 in human endothelial cells: a mechanism of orchestrating cytokine cascade in acute coronary syndrome. Heart Vessels, 2003, 18(4), 183-187.
[http://dx.doi.org/10.1007/s00380-003-0719-7] [PMID: 14520485]
[36]
Dinarello, C.A. Interleukin-18, a proinflammatory cytokine. Eur. Cytokine Netw., 2000, 11(3), 483-486.
[PMID: 11203186]
[37]
Vidal-Vanaclocha, F.; Fantuzzi, G.; Mendoza, L.; Fuentes, A.M.; Anasagasti, M.J.; Martín, J.; Carrascal, T.; Walsh, P.; Reznikov, L.L.; Kim, S-H.; Novick, D.; Rubinstein, M.; Dinarello, C.A. IL-18 regulates IL-1β-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc. Natl. Acad. Sci. USA, 2000, 97(2), 734-739.
[http://dx.doi.org/10.1073/pnas.97.2.734] [PMID: 10639148]
[38]
Leon, M.L.; Zuckerman, S.H. Gamma interferon: a central mediator in atherosclerosis. Inflamm. Res., 2005, 54(10), 395-411.
[http://dx.doi.org/10.1007/s00011-005-1377-2] [PMID: 16283107]
[39]
Kelly, R.A.; Smith, T.W. Cytokines and cardiac contractile function. Circulation, 1997, 95(4), 778-781.
[http://dx.doi.org/10.1161/01.CIR.95.4.778] [PMID: 9054727]
[40]
Krown, K.A.; Page, M.T.; Nguyen, C.; Zechner, D.; Gutierrez, V.; Comstock, K.L.; Glembotski, C.C.; Quintana, P.J.; Sabbadini, R.A. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J. Clin. Invest., 1996, 98(12), 2854-2865.
[http://dx.doi.org/10.1172/JCI119114] [PMID: 8981934]
[41]
Koglin, J.; Granville, D.J.; Glysing-Jensen, T.; Mudgett, J.S.; Carthy, C.M.; McManus, B.M.; Russell, M.E. Attenuated acute cardiac rejection in NOS2 -/- recipients correlates with reduced apoptosis. Circulation, 1999, 99(6), 836-842.
[http://dx.doi.org/10.1161/01.CIR.99.6.836] [PMID: 9989972]
[42]
Puren, A.J.; Fantuzzi, G.; Gu, Y.; Su, M.S.; Dinarello, C.A. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J. Clin. Invest., 1998, 101(3), 711-721.
[http://dx.doi.org/10.1172/JCI1379] [PMID: 9449707]
[43]
Mallat, Z.; Corbaz, A.; Scoazec, A.; Besnard, S.; Lesèche, G.; Chvatchko, Y.; Tedgui, A. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation, 2001, 104(14), 1598-1603.
[http://dx.doi.org/10.1161/hc3901.096721] [PMID: 11581135]
[44]
Nishihira, K.; Imamura, T.; Hatakeyama, K.; Yamashita, A.; Shibata, Y.; Date, H.; Manabe, I.; Nagai, R.; Kitamura, K.; Asada, Y. Expression of interleukin-18 in coronary plaque obtained by atherectomy from patients with stable and unstable angina. Thromb. Res., 2007, 121(2), 275-279.
[http://dx.doi.org/10.1016/j.thromres.2007.04.003] [PMID: 17512041]
[45]
Yamagami, H.; Kitagawa, K.; Hoshi, T.; Furukado, S.; Hougaku, H.; Nagai, Y.; Hori, M. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler. Thromb. Vasc. Biol., 2005, 25(7), 1458-1462.
[http://dx.doi.org/10.1161/01.ATV.0000168417.52486.56] [PMID: 15860738]
[46]
Nakamura, A.; Shikata, K.; Hiramatsu, M.; Nakatou, T.; Kitamura, T.; Wada, J.; Itoshima, T.; Makino, H. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care, 2005, 28(12), 2890-2895.
[http://dx.doi.org/10.2337/diacare.28.12.2890] [PMID: 16306550]
[47]
Zadelaar, S.; Kleemann, R.; Verschuren, L.; de Vries-Van der Weij, J.; van der Hoorn, J.; Princen, H.M.; Kooistra, T. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler. Thromb. Vasc. Biol., 2007, 27(8), 1706-1721.
[http://dx.doi.org/10.1161/ATVBAHA.107.142570] [PMID: 17541027]
[48]
Tang, X. Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp. Ther. Med., 2019, 18(1), 517-522.
[http://dx.doi.org/10.3892/etm.2019.7634] [PMID: 31281442]
[49]
Elhage, R.; Jawien, J.; Rudling, M.; Ljunggren, H-G.; Takeda, K.; Akira, S.; Bayard, F.; Hansson, G.K. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res., 2003, 59(1), 234-240.
[http://dx.doi.org/10.1016/S0008-6363(03)00343-2] [PMID: 12829194]
[50]
Wågsäter, D.; Olofsson, P.S.; Norgren, L.; Stenberg, B.; Sirsjö, A. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by interferon γ. Biochem. Biophys. Res. Commun., 2004, 325(4), 1187-1193.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.160] [PMID: 15555552]
[51]
Bhat, O.M.; Kumar, P.U.; Giridharan, N.V.; Kaul, D.; Kumar, M.J.; Dhawan, V. Interleukin-18-induced atherosclerosis involves CD36 and NF-κB crosstalk in Apo E-/- mice. J. Cardiol., 2015, 66(1), 28-35.
[http://dx.doi.org/10.1016/j.jjcc.2014.10.012] [PMID: 25475966]
[52]
Wang, J.; Sun, C.; Gerdes, N.; Liu, C.; Liao, M.; Liu, J.; Shi, M.A.; He, A.; Zhou, Y.; Sukhova, G.K.; Chen, H.; Cheng, X.W.; Kuzuya, M.; Murohara, T.; Zhang, J.; Cheng, X.; Jiang, M.; Shull, G.E.; Rogers, S.; Yang, C.L.; Ke, Q.; Jelen, S.; Bindels, R.; Ellison, D.H.; Jarolim, P.; Libby, P.; Shi, G.P. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat. Med., 2015, 21(7), 820-826.
[http://dx.doi.org/10.1038/nm.3890] [PMID: 26099046]
[53]
Gamba, G.; Miyanoshita, A.; Lombardi, M.; Lytton, J.; Lee, W-S.; Hediger, M.A.; Hebert, S.C. Molecular cloning, primary structure and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J. Biol. Chem., 1994, 269(26), 17713-17722.
[PMID: 8021284]
[54]
Pacheco-Alvarez, D.; Cristóbal, P.S.; Meade, P.; Moreno, E.; Vazquez, N.; Muñoz, E.; Díaz, A.; Juárez, M.E.; Giménez, I.; Gamba, G. The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J. Biol. Chem., 2006, 281(39), 28755-28763.
[http://dx.doi.org/10.1074/jbc.M603773200] [PMID: 16887815]
[55]
Rozansky, D.J.; Cornwall, T.; Subramanya, A.R.; Rogers, S.; Yang, Y-F.; David, L.L.; Zhu, X.; Yang, C-L.; Ellison, D.H. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J. Clin. Invest., 2009, 119(9), 2601-2612.
[http://dx.doi.org/10.1172/JCI38323] [PMID: 19690383]
[56]
de Nooijer, R.; von der Thüsen, J.H.; Verkleij, C.J.; Kuiper, J.; Jukema, J.W.; van der Wall, E.E.; van Berkel, J.C.; Biessen, E.A. Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler. Thromb. Vasc. Biol., 2004, 24(12), 2313-2319.
[http://dx.doi.org/10.1161/01.ATV.0000147126.99529.0a] [PMID: 15472128]
[57]
Mallat, Z.; Corbaz, A.; Scoazec, A.; Graber, P.; Alouani, S.; Esposito, B.; Humbert, Y.; Chvatchko, Y.; Tedgui, A. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ. Res., 2001, 89(7), E41-E45.
[http://dx.doi.org/10.1161/hh1901.098735] [PMID: 11577031]
[58]
Mallat, Z.; Silvestre, J-S.; Le Ricousse-Roussanne, S.; Lecomte-Raclet, L.; Corbaz, A.; Clergue, M.; Duriez, M.; Barateau, V.; Akira, S.; Tedgui, A.; Tobelem, G.; Chvatchko, Y.; Lévy, B.I. Interleukin-18/interleukin-18 binding protein signaling modulates ischemia-induced neovascularization in mice hindlimb. Circ. Res., 2002, 91(5), 441-448.
[http://dx.doi.org/10.1161/01.RES.0000033592.11674.D8] [PMID: 12215494]
[59]
Whitman, S.C.; Ravisankar, P.; Daugherty, A. Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-γ. Circ. Res., 2002, 90(2), E34-E38.
[http://dx.doi.org/10.1161/hh0202.105292] [PMID: 11834721]
[60]
Munder, M.; Mallo, M.; Eichmann, K.; Modolell, M. Murine macrophages secrete interferon γ upon combined stimulation with interleukin (IL)-12 and IL-18: A novel pathway of autocrine macrophage activation. J. Exp. Med., 1998, 187(12), 2103-2108.
[http://dx.doi.org/10.1084/jem.187.12.2103] [PMID: 9625771]
[61]
Micallef, M.J.; Ohtsuki, T.; Kohno, K.; Tanabe, F.; Ushio, S.; Namba, M.; Tanimoto, T.; Torigoe, K.; Fujii, M.; Ikeda, M.; Fukuda, S.; Kurimoto, M. Interferon-γ-inducing factor enhances T helper 1 cytokine production by stimulated human T cells: synergism with interleukin-12 for interferon-γ production. Eur. J. Immunol., 1996, 26(7), 1647-1651.
[http://dx.doi.org/10.1002/eji.1830260736] [PMID: 8766574]
[62]
Kohno, K.; Kataoka, J.; Ohtsuki, T.; Suemoto, Y.; Okamoto, I.; Usui, M.; Ikeda, M.; Kurimoto, M. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J. Immunol., 1997, 158(4), 1541-1550.
[PMID: 9029088]
[63]
Zhang, T.; Kawakami, K.; Qureshi, M.H.; Okamura, H.; Kurimoto, M.; Saito, A. Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of gamma interferon by natural killer cells. Infect. Immun., 1997, 65(9), 3594-3599.
[http://dx.doi.org/10.1128/IAI.65.9.3594-3599.1997] [PMID: 9284124]
[64]
Davenport, P.; Tipping, P.G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol., 2003, 163(3), 1117-1125.
[http://dx.doi.org/10.1016/S0002-9440(10)63471-2] [PMID: 12937153]
[65]
Tenger, C.; Sundborger, A.; Jawien, J.; Zhou, X. IL-18 accelerates atherosclerosis accompanied by elevation of IFN-γ and CXCL16 expression independently of T cells. Arterioscler. Thromb. Vasc. Biol., 2005, 25(4), 791-796.
[http://dx.doi.org/10.1161/01.ATV.0000153516.02782.65] [PMID: 15604417]
[66]
Pejnovic, N.; Vratimos, A.; Lee, S.H.; Popadic, D.; Takeda, K.; Akira, S.; Chan, W.L. Increased atherosclerotic lesions and Th17 in interleukin-18 deficient apolipoprotein E-knockout mice fed high-fat diet. Mol. Immunol., 2009, 47(1), 37-45.
[http://dx.doi.org/10.1016/j.molimm.2008.12.032] [PMID: 19201478]
[67]
Chandrasekar, B.; Mummidi, S.; Li, J.; Hatano, M.; Jensen, L. Interleukin-18 induces CXCL16 expression in aortic smooth muscle cells via a novel signal transduction pathway involving IRAK1-IRAK4-TRAF6/c-Src/PI3 kinase/Akt//JNK/AP-1.In Circulation; Lippincott Williams & Wilkins: Philadelphia, 2004, pp. 19106-3621.
[68]
Binder, C.J.; Hartvigsen, K.; Chang, M-K.; Miller, M.; Broide, D.; Palinski, W.; Curtiss, L.K.; Corr, M.; Witztum, J.L. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest., 2004, 114(3), 427-437.
[http://dx.doi.org/10.1172/JCI200420479] [PMID: 15286809]
[69]
Quillard, T.; Tesmenitsky, Y.; Croce, K.; Travers, R.; Shvartz, E.; Koskinas, K.C.; Sukhova, G.K.; Aikawa, E.; Aikawa, M.; Libby, P. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(11), 2464-2472.
[http://dx.doi.org/10.1161/ATVBAHA.111.231563] [PMID: 21903941]
[70]
Guzik, T.J.; Marvar, P.J.; Czesnikiewicz-Guzik, M.; Korbut, R. Perivascular adipose tissue as a messenger of the brain-vessel axis: role in vascular inflammation and dysfunction. J. Physiol. Pharmacol., 2007, 58(4), 591-610.
[PMID: 18195475]
[71]
Westerweel, P.E.; Rabelink, T.J.; Rookmaaker, M.B.; Gröne, H-J.; Verhaar, M.C. RANTES is required for ischaemia-induced angiogenesis, which may hamper RANTES-targeted anti-atherosclerotic therapy. Thromb. Haemost., 2008, 99(4), 794-795.
[http://dx.doi.org/10.1160/TH07-10-0628] [PMID: 18392345]
[72]
Parissis, J.T.; Adamopoulos, S.; Venetsanou, K.F.; Mentzikof, D.G.; Karas, S.M.; Kremastinos, D.T. Serum profiles of C-C chemokines in acute myocardial infarction: possible implication in postinfarction left ventricular remodeling. J. Interferon Cytokine Res., 2002, 22(2), 223-229.
[http://dx.doi.org/10.1089/107999002753536194] [PMID: 11911805]
[73]
Koper-Lenkiewicz, O.M.; Kamińska, J.; Lisowska, A.; Milewska, A.; Hirnle, T.; Dymicka-Piekarska, V. Factors associated with RANTES concentration in cardiovascular disease patients. BioMed Res. Int., 2019, 2019, 3026453.
[http://dx.doi.org/10.1155/2019/3026453] [PMID: 31396527]
[74]
Reiss, A.B.; Siegart, N.M.; De Leon, J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clin. Lipidol., 2017, 12, 14-23.
[http://dx.doi.org/10.1080/17584299.2017.1319787]
[75]
Watanabe, S.; Mu, W.; Kahn, A.; Jing, N.; Li, J.H.; Lan, H.Y.; Nakagawa, T.; Ohashi, R.; Johnson, R.J. Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am. J. Nephrol., 2004, 24(4), 387-392.
[http://dx.doi.org/10.1159/000079706] [PMID: 15256805]
[76]
Wung, B.S.; Hsu, M.C.; Wu, C.C.; Hsieh, C.W. Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci., 2005, 78(4), 389-397.
[http://dx.doi.org/10.1016/j.lfs.2005.04.052] [PMID: 16150460]
[77]
Davì, G.; Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med., 2007, 357(24), 2482-2494.
[http://dx.doi.org/10.1056/NEJMra071014] [PMID: 18077812]
[78]
Gierens, H.; Nauck, M.; Roth, M.; Schinker, R.; Schürmann, C.; Scharnagl, H.; Neuhaus, G.; Wieland, H.; März, W. Interleukin-6 stimulates LDL receptor gene expression via activation of sterol-responsive and Sp1 binding elements. Arterioscler. Thromb. Vasc. Biol., 2000, 20(7), 1777-1783.
[http://dx.doi.org/10.1161/01.ATV.20.7.1777] [PMID: 10894816]
[79]
Libby, P.; Ordovas, J.M.; Birinyi, L.K.; Auger, K.R.; Dinarello, C.A. Inducible interleukin-1 gene expression in human vascular smooth muscle cells. J. Clin. Invest., 1986, 78(6), 1432-1438.
[http://dx.doi.org/10.1172/JCI112732] [PMID: 3491091]
[80]
Abbate, A.; Salloum, F.N.; Van Tassell, B.W.; Vecile, E.; Toldo, S.; Seropian, I.; Mezzaroma, E.; Dobrina, A. Alterations in the interleukin-1/interleukin-1 receptor antagonist balance modulate cardiac remodeling following myocardial infarction in the mouse. PLoS One, 2011, 6(11), e27923.
[http://dx.doi.org/10.1371/journal.pone.0027923] [PMID: 22140485]
[81]
Sawamura, T.; Kume, N.; Aoyama, T.; Moriwaki, H.; Hoshikawa, H.; Aiba, Y.; Tanaka, T.; Miwa, S.; Katsura, Y.; Kita, T.; Masaki, T. An endothelial receptor for oxidized low-density lipoprotein. Nature, 1997, 386(6620), 73-77.
[http://dx.doi.org/10.1038/386073a0] [PMID: 9052782]
[82]
Kume, N.; Kita, T. New scavenger receptors and their functions in atherogenesis. Curr. Atheroscler. Rep., 2002, 4(4), 253-257.
[http://dx.doi.org/10.1007/s11883-002-0001-y] [PMID: 12052275]
[83]
Mukherjee, T.K.; Mukhopadhyay, S.; Hoidal, J.R. The role of reactive oxygen species in TNFα-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells. Biochim. Biophys. Acta, 2005, 1744(2), 213-223.
[http://dx.doi.org/10.1016/j.bbamcr.2005.03.007] [PMID: 15893388]
[84]
Ouslimani, N.; Mahrouf, M.; Peynet, J.; Bonnefont-Rousselot, D.; Cosson, C.; Legrand, A.; Beaudeux, J-L. Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidized receptor 1. Metabolism, 2007, 56(3), 308-313.
[http://dx.doi.org/10.1016/j.metabol.2006.10.010] [PMID: 17292717]
[85]
Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL and atherosclerosis. Mediators Inflamm., 2013, 2013, 152786.
[http://dx.doi.org/10.1155/2013/152786] [PMID: 23935243]
[86]
Murase, T.; Kume, N.; Kataoka, H.; Minami, M.; Sawamura, T.; Masaki, T.; Kita, T. Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler. Thromb. Vasc. Biol., 2000, 20(3), 715-720.
[http://dx.doi.org/10.1161/01.ATV.20.3.715] [PMID: 10712396]
[87]
Kataoka, H.; Kume, N.; Miyamoto, S.; Minami, M.; Moriwaki, H.; Murase, T.; Sawamura, T.; Masaki, T.; Hashimoto, N.; Kita, T. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation, 1999, 99(24), 3110-3117.
[http://dx.doi.org/10.1161/01.CIR.99.24.3110] [PMID: 10377073]
[88]
Ishino, S.; Mukai, T.; Kume, N.; Asano, D.; Ogawa, M.; Kuge, Y.; Minami, M.; Kita, T.; Shiomi, M.; Saji, H. Lectin-like oxidized LDL receptor-1 (LOX-1) expression is associated with atherosclerotic plaque instability--analysis in hypercholesterolemic rabbits. Atherosclerosis, 2007, 195(1), 48-56.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.11.031] [PMID: 17239887]
[89]
Mitsuoka, H.; Kume, N.; Hayashida, K.; Inui-Hayashiada, A.; Aramaki, Y.; Toyohara, M.; Jinnai, T.; Nishi, E.; Kita, T. Interleukin 18 stimulates release of soluble lectin-like oxidized LDL receptor-1 (sLOX-1). Atherosclerosis, 2009, 202(1), 176-182.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.04.002] [PMID: 18514661]
[90]
Seta, Y.; Kanda, T.; Tanaka, T.; Arai, M.; Sekiguchi, K.; Yokoyama, T.; Kurimoto, M.; Tamura, J.; Kurabayashi, M. Interleukin 18 in acute myocardial infarction. Heart, 2000, 84(6), 668-669.
[http://dx.doi.org/10.1136/heart.84.6.668] [PMID: 11083751]
[91]
Motoyama, S.; Sarai, M.; Harigaya, H.; Anno, H.; Inoue, K.; Hara, T.; Naruse, H.; Ishii, J.; Hishida, H.; Wong, N.D.; Virmani, R.; Kondo, T.; Ozaki, Y.; Narula, J. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J. Am. Coll. Cardiol., 2009, 54(1), 49-57.
[http://dx.doi.org/10.1016/j.jacc.2009.02.068] [PMID: 19555840]
[92]
Grech, E.D.; Ramsdale, D.R. Acute coronary syndrome: unstable angina and non-ST segment elevation myocardial infarction. BMJ, 2003, 326(7401), 1259-1261.
[http://dx.doi.org/10.1136/bmj.326.7401.1259] [PMID: 12791748]
[93]
Hartford, M.; Wiklund, O.; Hultén, L.M.; Persson, A.; Karlsson, T.; Herlitz, J.; Hulthe, J.; Caidahl, K. Interleukin-18 as a predictor of future events in patients with acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol., 2010, 30(10), 2039-2046.
[http://dx.doi.org/10.1161/ATVBAHA.109.202697] [PMID: 20689079]
[94]
Ji, Q; Zeng, Q; Huang, Y; Shi, Y; Lin, Y; Lu, Z; Meng, K; Wu, B; Yu, K; Chai, M; Liu, Y; Zhou, Y Elevated plasma IL-37, IL-18 and IL-18BP concentrations in patients with acute coronary syndrome. Mediators Inflamm., 2014, 2014, 165742.
[http://dx.doi.org/10.1155/2014/165742] [PMID: 24733959]
[95]
Welsh, P.; Woodward, M.; Rumley, A.; Lowe, G. Associations of circulating TNFalpha and IL-18 with myocardial infarction and cardiovascular risk markers: the Glasgow Myocardial Infarction Study. Cytokine, 2009, 47(2), 143-147.
[http://dx.doi.org/10.1016/j.cyto.2009.06.002] [PMID: 19581111]
[96]
Mallat, Z.; Henry, P.; Fressonnet, R.; Alouani, S.; Scoazec, A.; Beaufils, P.; Chvatchko, Y.; Tedgui, A. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart, 2002, 88(5), 467-469.
[http://dx.doi.org/10.1136/heart.88.5.467] [PMID: 12381634]
[97]
Narins, C.R.; Lin, D.A.; Burton, P.B.; Jin, Z-G.; Berk, B.C. Interleukin-18 and interleukin-18 binding protein levels before and after percutaneous coronary intervention in patients with and without recent myocardial infarction. Am. J. Cardiol., 2004, 94(10), 1285-1287.
[http://dx.doi.org/10.1016/j.amjcard.2004.07.114] [PMID: 15541247]
[98]
Youssef, A.A.; Chang, L-T.; Hang, C-L.; Wu, C-J.; Cheng, C-I.; Yang, C-H.; Sheu, J-J.; Chai, H-T.; Chua, S.; Yeh, K-H.; Yip, H.K. Level and value of interleukin-18 in patients with acute myocardial infarction undergoing primary coronary angioplasty. Circ. J., 2007, 71(5), 703-708.
[http://dx.doi.org/10.1253/circj.71.703] [PMID: 17456995]
[99]
Furtado, M.V.; Rossini, A.P.W.; Campani, R.B.; Meotti, C.; Segatto, M.; Vietta, G.; Polanczyk, C.A. Interleukin-18: an independent predictor of cardiovascular events in patients with acute coronary syndrome after 6 months of follow-up. Coron. Artery Dis., 2009, 20(5), 327-331.
[http://dx.doi.org/10.1097/MCA.0b013e32832e5c73] [PMID: 19593889]
[100]
Åkerblom, A.; James, S.K.; Lakic, T.G.; Becker, R.C.; Cannon, C.P.; Steg, P.G.; Himmelmann, A.; Katus, H.A.; Storey, R.F.; Wallentin, L.; Weaver, W.D.; Siegbahn, A. PLATO Investigators. Interleukin-18 in patients with acute coronary syndromes. Clin. Cardiol., 2019, 42(12), 1202-1209.
[http://dx.doi.org/10.1002/clc.23274] [PMID: 31596518]
[101]
Suehiro, C.; Suzuki, J.; Hamaguchi, M.; Takahashi, K.; Nagao, T.; Sakaue, T.; Uetani, T.; Aono, J.; Ikeda, S.; Okura, T.; Okamura, H.; Yamaguchi, O. Deletion of interleukin-18 attenuates abdominal aortic aneurysm formation. Atherosclerosis, 2019, 289, 14-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.08.003] [PMID: 31445353]
[102]
Liu, C-L.; Ren, J.; Wang, Y.; Zhang, X.; Sukhova, G.K.; Liao, M.; Santos, M.; Luo, S.; Yang, D.; Xia, M.; Inouye, K.; Hotamisligil, G.S.; Lu, G.; Upchurch, G.R.; Libby, P.; Guo, J.; Zhang, J.; Shi, G.P. Adipocytes promote interleukin-18 binding to its receptors during abdominal aortic aneurysm formation in mice. Eur. Heart J., 2019., ehz856.
[http://dx.doi.org/10.1093/eurheartj/ehz856] [PMID: 31821481]
[103]
Hu, H; Zhang, G; Hu, H; Liu, W; Liu, J; Xin, S; Zhao, X; Han, L; Duan, L; Huang, X Interleukin-18 expression increases in the aorta and plasma of patients with acute aortic dissection. Mediators Inflamm., 2019, 2019, 8691294.
[http://dx.doi.org/10.1155/2019/8691294] [PMID: 31427887]
[104]
Mehta, P.K.; Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol., 2007, 292(1), C82-C97.
[http://dx.doi.org/10.1152/ajpcell.00287.2006] [PMID: 16870827]
[105]
Chandrasekar, B.; Mummidi, S.; Mahimainathan, L.; Patel, D.N.; Bailey, S.R.; Imam, S.Z.; Greene, W.C.; Valente, A.J. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB- and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin. J. Biol. Chem., 2006, 281(22), 15099-15109.
[http://dx.doi.org/10.1074/jbc.M600200200] [PMID: 16554298]
[106]
Jiang, H.; Liu, W.; Liu, Y.; Cao, F. High levels of HB-EGF and interleukin-18 are associated with a high risk of in-stent restenosis. Anatol. J. Cardiol., 2015, 15(11), 907-912.
[http://dx.doi.org/10.5152/akd.2015.5798] [PMID: 25868040]
[107]
Li, J-M.; Eslami, M.H.; Rohrer, M.J.; Dargon, P.; Joris, I.; Hendricks, G.; Baker, S.; Cutler, B.S. Interleukin 18 binding protein (IL18-BP) inhibits neointimal hyperplasia after balloon injury in an atherosclerotic rabbit model. J. Vasc. Surg., 2008, 47(5), 1048-1057.
[http://dx.doi.org/10.1016/j.jvs.2007.12.005] [PMID: 18455646]
[108]
Valente, A.J.; Yoshida, T.; Murthy, S.N.; Sakamuri, S.S.; Katsuyama, M.; Clark, R.A.; Delafontaine, P.; Chandrasekar, B. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1 and interleukin-18. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(3), H282-H296.
[http://dx.doi.org/10.1152/ajpheart.00231.2012] [PMID: 22636674]
[109]
Sahar, S.; Dwarakanath, R.S.; Reddy, M.A.; Lanting, L.; Todorov, I.; Natarajan, R. Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ. Res., 2005, 96(10), 1064-1071.
[http://dx.doi.org/10.1161/01.RES.0000168210.10358.f4] [PMID: 15860756]
[110]
Jafarzadeh, A.; Esmaeeli-Nadimi, A.; Nough, H.; Nemati, M.; Rezayati, M.T. Serum levels of interleukin (IL)-13, IL-17 and IL-18 in patients with ischemic heart disease. Anatolian Journal of Cardiology. Anadolu Kardiyol. Derg., 2009, 9(2), 75-83.
[PMID: 19357047]
[111]
Sokolic, J.; Tokmadzic, V.S.; Knezevic, D.; Medved, I.; Vukelic Damjani, N.; Balen, S.; Rakic, M.; Lanca Bastiancic, A.; Laskarin, G. Endothelial dysfunction mediated by interleukin-18 in patients with ischemic heart disease undergoing coronary artery bypass grafting surgery. Med. Hypotheses, 2017, 104, 20-24.
[http://dx.doi.org/10.1016/j.mehy.2017.05.009] [PMID: 28673582]
[112]
Koenig, W.; Khuseyinova, N.; Baumert, J.; Thorand, B.; Loewel, H.; Chambless, L.; Meisinger, C.; Schneider, A.; Martin, S.; Kolb, H.; Herder, C. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler. Thromb. Vasc. Biol., 2006, 26(12), 2745-2751.
[http://dx.doi.org/10.1161/01.ATV.0000248096.62495.73] [PMID: 17008587]
[113]
Everett, B.M.; Bansal, S.; Rifai, N.; Buring, J.E.; Ridker, P.M. Interleukin-18 and the risk of future cardiovascular disease among initially healthy women. Atherosclerosis, 2009, 202(1), 282-288.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.04.015] [PMID: 18514203]
[114]
Blankenberg, S.; Luc, G.; Ducimetière, P.; Arveiler, D.; Ferrières, J.; Amouyel, P.; Evans, A.; Cambien, F.; Tiret, L. PRIME Study Group. Interleukin-18 and the risk of coronary heart disease in European men: the prospective epidemiological study of myocardial infarction (PRIME). Circulation, 2003, 108(20), 2453-2459.
[http://dx.doi.org/10.1161/01.CIR.0000099509.76044.A2] [PMID: 14581397]
[115]
Blankenberg, S.; Tiret, L.; Bickel, C.; Peetz, D.; Cambien, F.; Meyer, J.; Rupprecht, H.J. AtheroGene Investigators. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation, 2002, 106(1), 24-30.
[http://dx.doi.org/10.1161/01.CIR.0000020546.30940.92] [PMID: 12093765]
[116]
Luan, Y.; Guo, Y.; Li, S.; Yu, B.; Zhu, S.; Li, S.; Li, N.; Tian, Z.; Peng, C.; Cheng, J.; Li, Q.; Cui, J.; Tian, Y. Interleukin-18 among atrial fibrillation patients in the absence of structural heart disease. Europace, 2010, 12(12), 1713-1718.
[http://dx.doi.org/10.1093/europace/euq321] [PMID: 20833691]
[117]
Ross, D.J.; Strieter, R.M.; Fishbein, M.C.; Ardehali, A.; Belperio, J.A. Type I immune response cytokine-chemokine cascade is associated with pulmonary arterial hypertension. J. Heart Lung Transplant., 2012, 31(8), 865-873.
[http://dx.doi.org/10.1016/j.healun.2012.04.008] [PMID: 22658713]
[118]
Morisawa, D.; Hirotani, S.; Oboshi, M.; Nishimura, K.; Sawada, H.; Eguchi, A.; Okuhara, Y.; Iwasaku, T.; Naito, Y.; Mano, T.; Okamura, H.; Masuyama, T. Interleukin-18 disruption suppresses hypoxia-induced pulmonary artery hypertension in mice. Int. J. Cardiol., 2016, 202, 522-524.
[http://dx.doi.org/10.1016/j.ijcard.2015.09.118] [PMID: 26440469]
[119]
Odewusi, O.; Osadolor, H. Interleukin 10 and 18 levels in essential hypertensive. J. Appl. Sci. Environ. Manag., 2019, 23, 819-824.
[http://dx.doi.org/10.4314/jasem.v23i5.7]
[120]
Hao, Y.; Ding, J.; Hong, R.; Bai, S.; Wang, Z.; Mo, C.; Hu, Q.; Li, Z.; Guan, Y. Increased interleukin-18 level contributes to the development and severity of ischemic stroke. Aging (Albany NY), 2019, 11(18), 7457-7472.
[http://dx.doi.org/10.18632/aging.102253] [PMID: 31525735]
[121]
Aso, Y.; Okumura, K.; Takebayashi, K.; Wakabayashi, S.; Inukai, T. Relationships of plasma interleukin-18 concentrations to hyperhomocysteinemia and carotid intimal-media wall thickness in patients with type 2 diabetes. Diabetes Care, 2003, 26(9), 2622-2627.
[http://dx.doi.org/10.2337/diacare.26.9.2622] [PMID: 12941729]
[122]
Fischer, C.P.; Perstrup, L.B.; Berntsen, A.; Eskildsen, P.; Pedersen, B.K. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans. Clin. Immunol., 2005, 117(2), 152-160.
[http://dx.doi.org/10.1016/j.clim.2005.07.008] [PMID: 16112617]
[123]
Durpès, M-C.; Morin, C.; Paquin-Veillet, J.; Beland, R.; Paré, M.; Guimond, M-O.; Rekhter, M.; King, G.L.; Geraldes, P. PKC-β activation inhibits IL-18-binding protein causing endothelial dysfunction and diabetic atherosclerosis. Cardiovasc. Res., 2015, 106(2), 303-313.
[http://dx.doi.org/10.1093/cvr/cvv107] [PMID: 25808972]
[124]
Drager, L.F.; Bortolotto, L.A.; Lorenzi, M.C.; Figueiredo, A.C.; Krieger, E.M.; Lorenzi-Filho, G. Early signs of atherosclerosis in obstructive sleep apnea. Am. J. Respir. Crit. Care Med., 2005, 172(5), 613-618.
[http://dx.doi.org/10.1164/rccm.200503-340OC] [PMID: 15901608]
[125]
Drager, L.F.; Polotsky, V.Y.; Lorenzi-Filho, G. Obstructive sleep apnea: an emerging risk factor for atherosclerosis. Chest, 2011, 140(2), 534-542.
[http://dx.doi.org/10.1378/chest.10-2223] [PMID: 21813534]
[126]
Li, C.; Zhang, X.L.; Liu, H.; Wang, Z.G.; Yin, K.S. Association among plasma interleukin-18 levels, carotid intima- media thickness and severity of obstructive sleep apnea. Chin. Med. J. (Engl.), 2009, 122(1), 24-29.
[PMID: 19187612]
[127]
Imagawa, S.; Yamaguchi, Y.; Ogawa, K.; Obara, N.; Suzuki, N.; Yamamoto, M.; Nagasawa, T. Interleukin-6 and tumor necrosis factor-α in patients with obstructive sleep apnea-hypopnea syndrome. Respiration, 2004, 71(1), 24-29.
[http://dx.doi.org/10.1159/000075645] [PMID: 14872107]
[128]
Hedtjärn, M.; Leverin, A-L.; Eriksson, K.; Blomgren, K.; Mallard, C.; Hagberg, H. Interleukin-18 involvement in hypoxic-ischemic brain injury. J. Neurosci., 2002, 22(14), 5910-5919.
[http://dx.doi.org/10.1523/JNEUROSCI.22-14-05910.2002] [PMID: 12122053]
[129]
Dawood, A.; Alkafrawy, N.; Saleh, S.; Noreldin, R.; Zewain, S. The relationship between IL-18 and atherosclerotic cardiovascular risk in Egyptian lean women with polycystic ovary syndrome. Gynecol. Endocrinol., 2018, 34(4), 294-297.
[http://dx.doi.org/10.1080/09513590.2017.1395835] [PMID: 29105530]
[130]
Chang, C-H.; Fan, P-C.; Lin, C-Y.; Yang, C-H.; Chen, Y-T.; Chang, S-W.; Yang, H-Y.; Jenq, C-C.; Hung, C-C.; Yang, C-W.; Chen, Y.C. Elevation of interleukin-18 correlates with cardiovascular, cerebrovascular and peripheral vascular events: a cohort study of hemodialysis patients. Medicine (Baltimore), 2015, 94(42), e1836.
[http://dx.doi.org/10.1097/MD.0000000000001836] [PMID: 26496326]
[131]
Zirlik, A.; Abdullah, S.M.; Gerdes, N.; MacFarlane, L.; Schönbeck, U.; Khera, A.; McGuire, D.K.; Vega, G.L.; Grundy, S.; Libby, P.; de Lemos, J.A. Interleukin-18, the metabolic syndrome and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler. Thromb. Vasc. Biol., 2007, 27(9), 2043-2049.
[http://dx.doi.org/10.1161/ATVBAHA.107.149484] [PMID: 17626902]
[132]
Arimitsu, J.; Hirano, T.; Higa, S.; Kawai, M.; Naka, T.; Ogata, A.; Shima, Y.; Fujimoto, M.; Yamadori, T.; Hagiwara, K.; Ohgawara, T.; Kuwabara, Y.; Kawase, I.; Tanaka, T. IL-18 gene polymorphisms affect IL-18 production capability by monocytes. Biochem. Biophys. Res. Commun., 2006, 342(4), 1413-1416.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.096] [PMID: 16516851]
[133]
Giedraitis, V.; He, B.; Huang, W-X.; Hillert, J. Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J. Neuroimmunol., 2001, 112(1-2), 146-152.
[http://dx.doi.org/10.1016/S0165-5728(00)00407-0] [PMID: 11108943]
[134]
Liu, W.; Tang, Q.; Jiang, H.; Ding, X.; Liu, Y.; Zhu, R.; Tang, Y.; Li, B.; Wei, M. Promoter polymorphism of interleukin-18 in angiographically proven coronary artery disease. Angiology, 2009, 60(2), 180-185.
[http://dx.doi.org/10.1177/0003319714522854] [PMID: 18599493]
[135]
Hernesniemi, J.A.; Anttila, K.; Nieminen, T.; Kähönen, M.; Mononen, N.; Nikus, K.; Turjanmaa, V.; Viik, J.; Lehtinen, R.; Lehtimäki, T. IL-18 gene polymorphism, cardiovascular mortality and coronary artery disease. Eur. J. Clin. Invest., 2010, 40(11), 994-1001.
[http://dx.doi.org/10.1111/j.1365-2362.2010.02356.x] [PMID: 20735470]
[136]
Opstad, T.B.; Pettersen, A.Å.; Arnesen, H.; Seljeflot, I. Circulating levels of IL-18 are significantly influenced by the IL-18 +183 A/G polymorphism in coronary artery disease patients with diabetes type 2 and the metabolic syndrome: an observational study. Cardiovasc. Diabetol., 2011, 10, 110.
[http://dx.doi.org/10.1186/1475-2840-10-110] [PMID: 22141572]
[137]
Opstad, T.B.; Pettersen, A.Å.; Arnesen, H.; Seljeflot, I. The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS One, 2013, 8(9), e74498.
[http://dx.doi.org/10.1371/journal.pone.0074498] [PMID: 24040261]
[138]
Zhang, B.; Ye, S.; Herrmann, S-M.; Eriksson, P.; de Maat, M.; Evans, A.; Arveiler, D.; Luc, G.; Cambien, F.; Hamsten, A.; Watkins, H.; Henney, A.M. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation, 1999, 99(14), 1788-1794.
[http://dx.doi.org/10.1161/01.CIR.99.14.1788] [PMID: 10199873]
[139]
Koh, Y.S.; Chang, K.; Kim, P.J.; Seung, K.B.; Baek, S.H.; Shin, W.S.; Lim, S.H.; Kim, J.H.; Choi, K.B. A close relationship between functional polymorphism in the promoter region of matrix metalloproteinase-9 and acute myocardial infarction. Int. J. Cardiol., 2008, 127(3), 430-432.
[http://dx.doi.org/10.1016/j.ijcard.2007.04.107] [PMID: 17698228]
[140]
Zhang, N.; Yu, J-T.; Yu, N-N.; Lu, R-C.; Ma, T.; Wang, N-D.; Miao, D.; Song, J-H.; Tan, L. Interleukin-18 promoter polymorphisms and risk of ischemic stroke. Brain Res. Bull., 2010, 81(6), 590-594.
[http://dx.doi.org/10.1016/j.brainresbull.2010.01.008] [PMID: 20097272]
[141]
Hernesniemi, J.A.; Karhunen, P.J.; Rontu, R.; Ilveskoski, E.; Kajander, O.; Goebeler, S.; Viiri, L.E.; Pessi, T.; Hurme, M.; Lehtimäki, T. Interleukin-18 promoter polymorphism associates with the occurrence of sudden cardiac death among Caucasian males: the Helsinki Sudden Death Study. Atherosclerosis, 2008, 196(2), 643-649.
[http://dx.doi.org/10.1016/j.atherosclerosis.2007.07.018] [PMID: 17765248]
[142]
Szeto, C.C.; Chow, K.M.; Poon, P.Y.; Kwan, B.C.; Li, P.K. Association of interleukin-18 promoter polymorphism and atherosclerotic diseases in Chinese patients with diabetic nephropathy. Nephrology (Carlton), 2009, 14(6), 606-612.
[http://dx.doi.org/10.1111/j.1440-1797.2008.01075.x] [PMID: 19712260]
[143]
Lian, Z.; Li, S-F.; Cui, Y-X.; Wu, M-Y.; Su, L-N.; Hu, D.; Xiong, W-J.; Chen, H. Association between polymorphisms in interleukin-18 promoter and risk of coronary artery disease: a meta-analysis. Biosci. Rep., 2019, 39(11), 39.
[http://dx.doi.org/10.1042/BSR20192721] [PMID: 31661113]
[144]
Frigerio, S.; Holländer, G.A.; Zumsteg, U. Functional IL-18 Is produced by primary pancreatic mouse islets and NIT-1 beta cells and participates in the progression towards destructive insulitis. Horm. Res., 2002, 57(3-4), 94-104.
[http://dx.doi.org/10.1159/000057959] [PMID: 12006705]
[145]
Grisoni, M-L.; Proust, C.; Alanne, M.; Desuremain, M.; Salomaa, V.; Kuulasmaa, K.; Cambien, F.; Nicaud, V.; Wiklund, P-G.; Virtamo, J.; Kee, F.; Tiret, L.; Evans, A.; Tregouet, D.A. Lack of association between polymorphisms of the IL18R1 and IL18RAP genes and cardiovascular risk: the MORGAM Project. BMC Med. Genet., 2009, 10, 44.
[http://dx.doi.org/10.1186/1471-2350-10-44] [PMID: 19473509]
[146]
Hwang, K-S.; Cho, W-K.; Yoo, J.; Seong, Y.R.; Kim, B-K.; Kim, S. Im, D-S. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity. Cancer Gene Ther., 2004, 11(6), 397-407.
[http://dx.doi.org/10.1038/sj.cgt.7700711] [PMID: 15044962]
[147]
Xie, S.-L.; Chen, Y.-Y.; Zhang, H.-F.; Deng, B.-Q.; Shu, X.-R.; Su, Z.-Z.; Lin, Y.-Q.; Nie, R.-Q.; Wang, J.-F. Interleukin 18 and extracellular matrix metalloproteinase inducer cross-regulation: implications in acute myocardial infarction. Transl. Res., 2015, 165(3), 387-395.
[http://dx.doi.org/10.1016/j.trsl.2014.09.001] [PMID: 25267095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy