Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Syntheses and Preliminary Evaluation of Dual Target PET Probe [18F]-NOTA-Gly3- E (2PEG4-RGD-WH701) for PET Imaging of Breast Cancer

Author(s): Zijun Chen, Hao Fu, Hua Wu, Jinxiong Huang, Lanlin Yao, Xianzhong Zhang and Yesen Li*

Volume 20, Issue 13, 2020

Page: [1548 - 1557] Pages: 10

DOI: 10.2174/1871520620666200424101936

Price: $65

conference banner
Abstract

Purpose: Tumor Necrosis Factor Receptor 1 (TNFR1) and integrin αvβ3 receptor are overexpressed in breast cancer. We hypothesized that a peptide ligand recognizing both receptors in a single receptor-binding probe would be advantageous. Here, we developed a novel 18F-labeled fusion peptide probe [18F]-NOTA-Gly3- E(2PEG4-RGD-WH701) targeting dual receptors (TNFR1 and αvβ3) and evaluated the diagnostic efficacy of this radioactive probe in both MDA-MB-231 and MCF-7 xenograft models in mice.

Methods: The NOTA-conjugated RGD-WH701 analog was radiolabeled with 18F using NOTA-AlF chelation method. We used two PEG4 molecules and Glutamic acid (Glu) to covalently link c(RGDyK) with WH701. Gly3 was also added to further improve the water solubility and pharmacokinetic properties of the probe. The expression of TNFR1 and Integrin αvβ3 in MCF-7 and MDA-MB-231 cells was detected by western blot analysis and immunofluorescence staining. The tumor-targeting characteristics of [18F]-NOTA-Gly3-E(2PEG4-RGDWH701) were assessed in nude mice bearing MDA-MB-231 and MCF-7 xenografts.

Results: HPLC analysis of the product NOTA-G3-E (2P4-RGD-WH701) revealed a purity >95%. The yield after attenuation correction was approximately 33.5%±2.8% (n=5), and the radiochemical purity was above 95%. The MDA-MB-231 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.14±0.14%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]- NOTA-WH701 in MDA-MB-231 xenografts was 0.96±0.13%ID/g and 0.93±0.28%ID/g, respectively. The MCF-7 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.22±0.11%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]-NOTA-WH701 in MCF-7 xenografts was 0.99±0.18%ID/g and 0.57±0.08%ID/g, respectively.

Conclusion: [18F]AlF-NOTA-Gly3-E(2PEG4-RGD-WH701) was successfully synthesized and labeled with 18F. The results from the microPET/CT and biodistribution studies of [18F]AlF-NOTA-Gly3-E(2PEG4-RGDWH701) showed that the tracer could specifically target TNFR1 and integrin αvβ3 receptors.

Keywords: 18F labeling, peptides, TNFR1, αvβ3 receptors, dual target, PET imaging.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[2]
Terry, M.B.; Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.C.; Martin, M.B.; Miller, R.L.; Neuhausen, S.L.; Silk, K.; Trentham-Dietz, A. Breast Cancer and the Environment Research Program (BCERP). Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res., 2019, 21(1), 96.
[http://dx.doi.org/10.1186/s13058-019-1168-2] [PMID: 31429809]
[3]
Nelson, H.D.; Pappas, M.; Cantor, A.; Haney, E.; Holmes, R. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: Updated evidence report and systematic review for the US preventive services task force. JAMA, 2019, 322(7), 666-685.
[http://dx.doi.org/10.1001/jama.2019.8430] [PMID: 31429902]
[4]
Schmitz, K.H.; Troxel, A.B.; Dean, L.T.; DeMichele, A.; Brown, J.C.; Sturgeon, K.; Zhang, Z.; Evangelisti, M.; Spinelli, B.; Kallan, M.J.; Denlinger, C.; Cheville, A.; Winkels, R.M.; Chodosh, L.; Sarwer, D.B. Effect of home-based exercise and weight loss programs on breast cancer-related lymphedema outcomes among overweight breast cancer survivors: The WISER survivor randomized clinical trial. JAMA Oncol., 2019, 5(11), 1605-1613.
[http://dx.doi.org/10.1001/jamaoncol.2019.2109] [PMID: 31415063]
[5]
DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin., 2014, 64(1), 52-62.
[http://dx.doi.org/10.3322/caac.21203] [PMID: 24114568]
[6]
Fan, L.; Strasser-Weippl, K.; Li, J.J.; St Louis, J.; Finkelstein, D.M.; Yu, K.D.; Chen, W.Q.; Shao, Z.M.; Goss, P.E. Breast cancer in China. Lancet Oncol., 2014, 15(7), e279-e289.
[http://dx.doi.org/10.1016/S1470-2045(13)70567-9] [PMID: 24872111]
[7]
Malhotra, G.K.; Zhao, X.; Band, H.; Band, V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther., 2010, 10(10), 955-960.
[http://dx.doi.org/10.4161/cbt.10.10.13879] [PMID: 21057215]
[8]
Yeo, S.K.; Guan, J.L. Breast cancer: Multiple subtypes within a tumor? Trends Cancer, 2017, 3(11), 753-760.
[http://dx.doi.org/10.1016/j.trecan.2017.09.001] [PMID: 29120751]
[9]
Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150.
[http://dx.doi.org/10.1016/S0140-6736(16)31891-8] [PMID: 27865536]
[10]
Holm, J.; Eriksson, L.; Ploner, A.; Eriksson, M.; Rantalainen, M.; Li, J.; Hall, P.; Czene, K. Assessment of breast cancer risk factors reveals subtype heterogeneity. Cancer Res., 2017, 77(13), 3708-3717.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2574] [PMID: 28512241]
[11]
The, L. The Lancet. Breast cancer targeted therapy: Successes and challenges. Lancet, 2017, 389(10087), 2350.
[http://dx.doi.org/10.1016/S0140-6736(17)31662-8] [PMID: 28635596]
[12]
Horton, J.K.; Jagsi, R.; Woodward, W.A.; Ho, A. Breast cancer biology: Clinical implications for breast radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2018, 100(1), 23-37.
[http://dx.doi.org/10.1016/j.ijrobp.2017.08.025] [PMID: 29254776]
[13]
Mauri, D.; Pavlidis, N.; Ioannidis, J.P. Neoadjuvant versus adjuvant systemic treatment in breast cancer: A meta-analysis. J. Natl. Cancer Inst., 2005, 97(3), 188-194.
[http://dx.doi.org/10.1093/jnci/dji021] [PMID: 15687361]
[14]
Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin receptor antagonists for imaging and therapy. J. Nuclear Med.,, 201758((Suppl 2)),. , 61S-66S..
[15]
Traub-Weidinger, T.; Putzer, D.; von Guggenberg, E.; Dobrozemsky, G.; Nilica, B.; Kendler, D.; Bale, R.; Virgolini, I.J. Multiparametric PET imaging in thyroid malignancy characterizing tumour heterogeneity: Somatostatin receptors and glucose metabolism. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(13), 1995-2001.
[http://dx.doi.org/10.1007/s00259-015-3114-6] [PMID: 26173620]
[16]
Ulaner, G.A.; Lyashchenko, S.K.; Riedl, C.; Ruan, S.; Zanzonico, P.B.; Lake, D.; Jhaveri, K.; Zeglis, B.; Lewis, J.S.; O’Donoghue, J.A. First-in-Human human epidermal growth factor receptor 2-targeted imaging using (89)Zr-Pertuzumab PET/CT: Dosimetry and clinical application in patients with breast cancer. J. Nuclear. Med., 2018, 59(6), 900-906.
[17]
Pondé, N.; Brandão, M.; El-Hachem, G.; Werbrouck, E.; Piccart, M. Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat. Rev., 2018, 67, 10-20.
[http://dx.doi.org/10.1016/j.ctrv.2018.04.016] [PMID: 29751334]
[18]
Takeda, K.; Stagg, J.; Yagita, H.; Okumura, K.; Smyth, M.J. Targeting death-inducing receptors in cancer therapy. Oncogene, 2007, 26(25), 3745-3757.
[http://dx.doi.org/10.1038/sj.onc.1210374] [PMID: 17530027]
[19]
Finnberg, N.; El-Deiry, W.S. TRAIL death receptors as tumor suppressors and drug targets. Cell Cycle, 2008, 7(11), 1525-1528.
[http://dx.doi.org/10.4161/cc.7.11.5975] [PMID: 18469516]
[20]
Martínez-Reza, I.; Díaz, L.; García-Becerra, R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J. Biomed. Sci., 2017, 24(1), 90.
[http://dx.doi.org/10.1186/s12929-017-0398-9] [PMID: 29202842]
[21]
Basudhar, D.; Glynn, S.A.; Greer, M.; Somasundaram, V.; No, J.H.; Scheiblin, D.A.; Garrido, P.; Heinz, W.F.; Ryan, A.E.; Weiss, J.M.; Cheng, R.Y.S.; Ridnour, L.A.; Lockett, S.J.; McVicar, D.W.; Ambs, S.; Wink, D.A. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc. Natl. Acad. Sci. USA, 2017, 114(49), 13030-13035.
[http://dx.doi.org/10.1073/pnas.1709119114] [PMID: 29087320]
[22]
Labovsky, V.; Vallone, V.B.; Martinez, L.M.; Otaegui, J.; Chasseing, N.A. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Int., 2012, 12(1), 29.
[http://dx.doi.org/10.1186/1475-2867-12-29] [PMID: 22709548]
[23]
Yeruva, L.; Elegbede, J.A.; Carper, S.W. Methyl jasmonate decreases membrane fluidity and induces apoptosis through tumor necrosis factor receptor 1 in breast cancer cells. Anticancer Drugs, 2008, 19(8), 766-776.
[http://dx.doi.org/10.1097/CAD.0b013e32830b5894] [PMID: 18690087]
[24]
Rivas, M.A.; Carnevale, R.P.; Proietti, C.J.; Rosemblit, C.; Beguelin, W.; Salatino, M.; Charreau, E.H.; Frahm, I.; Sapia, S.; Brouckaert, P.; Elizalde, P.V.; Schillaci, R. TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways. Exp. Cell Res., 2008, 314(3), 509-529.
[http://dx.doi.org/10.1016/j.yexcr.2007.10.005] [PMID: 18061162]
[25]
Puimège, L.; Libert, C.; Van Hauwermeiren, F. Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev., 2014, 25(3), 285-300.
[http://dx.doi.org/10.1016/j.cytogfr.2014.03.004] [PMID: 24746195]
[26]
Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer, 2009, 9(5), 361-371.
[http://dx.doi.org/10.1038/nrc2628] [PMID: 19343034]
[27]
Xiao, Z.X.; Willette-Brown, J.; Hu, Y.L.; Xi, S.C. TNFR1 is indispensable in the development of spontaneous lung squamous cell carcinomas. Cancer Res., 2014, 74(19)
[28]
Ji, H.; Cao, R.; Yang, Y.; Zhang, Y.; Iwamoto, H.; Lim, S.; Nakamura, M.; Andersson, P.; Wang, J.; Sun, Y.; Dissing, S.; He, X.; Yang, X.; Cao, Y. TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat. Commun., 2014, 5, 4944.
[http://dx.doi.org/10.1038/ncomms5944] [PMID: 25229256]
[29]
Fu, H.; Wu, H.; Zhang, X.; Huang, J.; He, X.; Chen, L.; Guo, W.; Guo, X.; Hao, B.; Li, Y. Pre-clinical study of a TNFR1-targeted 18F probe for PET imaging of breast cancer. Amino Acids, 2018, 50(3-4), 409-419.
[http://dx.doi.org/10.1007/s00726-017-2526-y] [PMID: 29243062]
[30]
Eliceiri, B.P.; Cheresh, D.A. Role of alpha v integrins during angiogenesis. Cancer J., 2000, 6(Suppl. 3), S245-S249.
[PMID: 10874494]
[31]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[32]
Niu, J.; Li, Z. The roles of integrin αvβ6 in cancer. Cancer Lett., 2017, 403, 128-137.
[http://dx.doi.org/10.1016/j.canlet.2017.06.012] [PMID: 28634043]
[33]
Shattil, S.J.; Kim, C.; Ginsberg, M.H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol., 2010, 11(4), 288-300.
[http://dx.doi.org/10.1038/nrm2871] [PMID: 20308986]
[34]
Zitzmann, S.; Ehemann, V.; Schwab, M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res., 2002, 62(18), 5139-5143.
[PMID: 12234975]
[35]
Park, J.A.; Lee, Y.J.; Lee, J.W.; Lee, K.C.; An, G.I.; Kim, K.M.; Kim, B.I.; Kim, T.J.; Kim, J.Y. Cyclic RGD Peptides Incorporating Cycloalkanes: Synthesis and Evaluation as PET Radiotracers for Tumor Imaging. ACS Med. Chem. Lett., 2014, 5(9), 979-982.
[http://dx.doi.org/10.1021/ml500135t] [PMID: 25221652]
[36]
Tsiapa, I.; Efthimiadou, E.K.; Fragogeorgi, E.; Loudos, G.; Varvarigou, A.D.; Bouziotis, P.; Kordas, G.C.; Mihailidis, D.; Nikiforidis, G.C.; Xanthopoulos, S.; Psimadas, D.; Paravatou-Petsotas, M.; Palamaris, L.; Hazle, J.D.; Kagadis, G.C. (99m)Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J. Colloid Interface Sci., 2014, 433, 163-175.
[http://dx.doi.org/10.1016/j.jcis.2014.07.032] [PMID: 25128864]
[37]
Haubner, R.; Beer, A.J.; Wang, H.; Chen, X. Positron emission tomography tracers for imaging angiogenesis. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37(1)(Suppl. 1), S86-S103.
[http://dx.doi.org/10.1007/s00259-010-1503-4] [PMID: 20559632]
[38]
Yu, C.; Pan, D.; Mi, B.; Xu, Y.; Lang, L.; Niu, G.; Yang, M.; Wan, W.; Chen, X. (18)F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(13), 2021-2028.
[http://dx.doi.org/10.1007/s00259-015-3118-2] [PMID: 26121930]
[39]
Zhang, H.; Liu, N.; Gao, S.; Hu, X.; Zhao, W.; Tao, R.; Chen, Z.; Zheng, J.; Sun, X.; Xu, L.; Li, W.; Yu, J.; Yuan, S. Can an (1)(8)F-ALF-NOTA-PRGD2 PET/CT scan predict treatment sensitivity to concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma? Journal. Nuclear. Med., 2016, 57(4), 524-9.
[40]
Jin, X.; Liang, N.; Wang, M.; Meng, Y.; Jia, B.; Shi, X.; Li, S.; Luo, J.; Luo, Y.; Cui, Q.; Zheng, K.; Liu, Z.; Shi, J.; Li, F.; Wang, F.; Zhu, Z. Integrin Imaging with 99mTc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from non-small cell lung cancer. Radiology, 2016, 281(3), 958-966.
[http://dx.doi.org/10.1148/radiol.2016150813] [PMID: 27479638]
[41]
Haubner, R.; Finkenstedt, A.; Stegmayr, A.; Rangger, C.; Decristoforo, C.; Zoller, H.; Virgolini, I.J. [(68)Ga]NODAGA-RGD - Metabolic stability, biodistribution, and dosimetry data from patients with hepatocellular carcinoma and liver cirrhosis. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(11), 2005-2013.
[http://dx.doi.org/10.1007/s00259-016-3396-3] [PMID: 27164900]
[42]
Chen, S.H.; Wang, H.M.; Lin, C.Y.; Chang, J.T.; Hsieh, C.H.; Liao, C.T.; Kang, C.J.; Yang, L.Y.; Yen, T.C. RGD-K5 PET/CT in patients with advanced head and neck cancer treated with concurrent chemoradiotherapy: Results from a pilot study. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(9), 1621-1629.
[http://dx.doi.org/10.1007/s00259-016-3345-1] [PMID: 26922351]
[43]
Kenny, L.M.; Coombes, R.C.; Oulie, I.; Contractor, K.B.; Miller, M.; Spinks, T.J.; McParland, B.; Cohen, P.S.; Hui, A.M.; Palmieri, C.; Osman, S.; Glaser, M.; Turton, D.; Al-Nahhas, A.; Aboagye, E.O. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. Journal of. Nuclear Med., 2008, 49(6), 879-886.
[44]
Mi, B.; Yu, C.; Pan, D.; Yang, M.; Wan, W.; Niu, G.; Chen, X. Pilot prospective evaluation of pilot prospective evaluation of (18)F-Alfatide II for detection of skeletal metastases. Theranostics, 2015, 5(10), 1115-1121.
[http://dx.doi.org/10.7150/thno.12938] [PMID: 26199649]
[45]
Yu, H.M.; Chen, J.H.; Lin, K.L.; Lin, W.J. Synthesis of (68)Ga-labeled NOTA-RGD-GE11 heterodimeric peptide for dual integrin and epidermal growth factor receptor-targeted tumor imaging. J. Labelled Comp. Radiopharm., 2015, 58(7), 299-303.
[http://dx.doi.org/10.1002/jlcr.3296] [PMID: 25997858]
[46]
AL-Nahhas. A.; Fanti, S. Radiolabelled peptides in diagnosis and therapy: an introduction. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(Suppl. 1), S1-S3.
[http://dx.doi.org/10.1007/s00259-012-2064-5] [PMID: 22388632]
[47]
Lam, K.; Chan, C.; Reilly, R.M. Development and preclinical studies of 64Cu-NOTA-pertuzumab F(ab’)2 for imaging changes in tumor HER2 expression associated with response to trastuzumab by PET/CT. MAbs, 2017, 9(1), 154-164.
[http://dx.doi.org/10.1080/19420862.2016.1255389] [PMID: 27813707]
[48]
Adumeau, P.; Sharma, S.K.; Brent, C.; Zeglis, B.M. Sitespecifically labeled immunoconjugates for molecular imaging--Part2: Peptide Tags and Unnatural Amino Acids. Mol. Imaging nd Biol., 2016, 18(2), 153-65.
[49]
de Visser, M.; van Weerden, W.M.; de Ridder, C.M.; Reneman, S.; Melis, M.; Krenning, E.P.; de Jong, M. Androgen-dependent expression of the gastrin-releasing peptide receptor in human prostate tumor xenografts. J. Nuclear Med., 2007, 48(1), 88-93.
[50]
Norton, K.A.; Popel, A.S.; Pandey, N.B. Heterogeneity of chemokine cell-surface receptor expression in triple-negative breast cancer. Am. J. Cancer Res., 2015, 5(4), 1295-1307.
[PMID: 26101698]
[51]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[52]
Smith, C.J.; Volkert, W.A.; Hoffman, T.J. Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl. Med. Biol., 2005, 32(7), 733-740.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.05.005] [PMID: 16243649]
[53]
Wu, H.; Chen, H.; Pan, D.; Ma, Y.; Liang, S.; Wan, Y.; Fang, Y. Imaging integrin αvβ3 and NRP-1 positive gliomas with a novel fluorine-18 labeled RGD-ATWLPPR heterodimeric peptide probe. Mol. Imaging Biol., 2014, 16(6), 781-792.
[http://dx.doi.org/10.1007/s11307-014-0761-0] [PMID: 25001194]
[54]
Durkan, K.; Jiang, Z.; Rold, T.L.; Sieckman, G.L.; Hoffman, T.J.; Bandari, R.P.; Szczodroski, A.F.; Liu, L.; Miao, Y.; Reynolds, T.S.; Smith, C.J. A heterodimeric [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radiotracer for PET imaging of prostate tumors. Nucl. Med. Biol., 2014, 41(2), 133-139.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.11.006] [PMID: 24480266]
[55]
Jiang, L.; Miao, Z.; Liu, H.; Ren, G.; Bao, A.; Cutler, C.S.; Shi, H.; Cheng, Z. 177Lu-labeled RGD-BBN heterodimeric peptide for targeting prostate carcinoma. Nucl. Med. Commun., 2013, 34(9), 909-914.
[http://dx.doi.org/10.1097/MNM.0b013e328362d2b6] [PMID: 23708872]
[56]
Ehlerding, E.B.; Sun, L.; Lan, X.; Zeng, D.; Cai, W. Dual-targeted molecular imaging of cancer. J. Nuclear Med., 2018, 59(3), 390-395.
[57]
Liu, Z.; Yan, Y.; Liu, S.; Wang, F.; Chen, X. (18)F, (64)Cu, and (68)Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer. Bioconjug. Chem., 2009, 20(5), 1016-1025.
[http://dx.doi.org/10.1021/bc9000245] [PMID: 20540537]
[58]
Yan, Y.; Chen, X. Peptide heterodimers for molecular imaging. Amino Acids, 2011, 41(5), 1081-1092.
[http://dx.doi.org/10.1007/s00726-010-0546-y] [PMID: 20232091]
[59]
Chen, C.J.; Chan, C.H.; Lin, K.L.; Chen, J.H.; Tseng, C.H.; Wang, P.Y.; Chien, C.Y.; Yu, H.M.; Lin, W.J. 68Ga-labelled NOTA-RGD-GE11 peptide for dual integrin and EGFR-targeted tumour imaging. Nucl. Med. Biol., 2019, 68-69, 22-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2018.11.003] [PMID: 30578136]
[60]
Ma, Y.; Liang, S.; Guo, J.; Guo, R.; Wang, H. (18)F labeled RGD-A7R peptide for dual integrin and VEGF-targeted tumor imaging in mice bearing U87MG tumors. J. Labelled Comp. Radiopharm., 2014, 57(11), 627-631.
[http://dx.doi.org/10.1002/jlcr.3222] [PMID: 25294311]
[61]
Marmé, D. Tumor angiogenesis: A key target for cancer therapy. Oncol. Res. Treat., 2018, 41(4), 164.
[http://dx.doi.org/10.1159/000488340] [PMID: 29587285]
[62]
Wang, Y.; Wang, L.; Chen, C.; Chu, X. New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications. Mol. Cancer, 2018, 17(1), 22.
[http://dx.doi.org/10.1186/s12943-018-0766-4] [PMID: 29415727]
[63]
Pirola, L.; Ciesielski, O.; Balcerczyk, A. The methylation status of the epigenome: Its emerging role in the regulation of tumor angiogenesis and tumor growth, and potential for drug targeting. Cancers (Basel), 2018, 10(8) E268
[http://dx.doi.org/10.3390/cancers10080268] [PMID: 30103412]
[64]
Stockmann, C.; Schadendorf, D.; Klose, R.; Helfrich, I. The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front. Oncol., 2014, 4, 69.
[http://dx.doi.org/10.3389/fonc.2014.00069] [PMID: 24782982]
[65]
Lonsdorf, A.S.; Krämer, B.F.; Fahrleitner, M.; Schönberger, T.; Gnerlich, S.; Ring, S.; Gehring, S.; Schneider, S.W.; Kruhlak, M.J.; Meuth, S.G.; Nieswandt, B.; Gawaz, M.; Enk, A.H.; Langer, H.F. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: A connection to hematogenous metastasis. J. Biol. Chem., 2012, 287(3), 2168-2178.
[http://dx.doi.org/10.1074/jbc.M111.269811] [PMID: 22102277]
[66]
Chen, H.; Niu, G.; Wu, H.; Chen, X. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3. Theranostics, 2016, 6(1), 78-92.
[http://dx.doi.org/10.7150/thno.13242] [PMID: 26722375]
[67]
Shin, D.H.; Lee, H.J.; Min, H.Y.; Choi, S.P.; Lee, M.S.; Lee, J.W.; Johnson, F.M.; Mehta, K.; Lippman, S.M.; Glisson, B.S.; Lee, H.Y. Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway. J. Natl. Cancer Inst., 2013, 105(20), 1558-1570.
[http://dx.doi.org/10.1093/jnci/djt263] [PMID: 24092920]
[68]
Liu, S.; Liu, H.; Jiang, H.; Xu, Y.; Zhang, H.; Cheng, Z. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(9), 1732-1741.
[http://dx.doi.org/10.1007/s00259-011-1847-4] [PMID: 21617974]
[69]
Liu, Q.; Pan, D.; Cheng, C.; Zhang, D.; Zhang, A.; Wang, L.; Jiang, H.; Wang, T.; Liu, H.; Xu, Y.; Yang, R.; Chen, F.; Yang, M.; Zuo, C. Development of a novel PET tracer [18F]AlF-NOTA-C6 targeting MMP2 for tumor imaging. PLoS One, 2015, 10(11) e0141668
[http://dx.doi.org/10.1371/journal.pone.0141668] [PMID: 26540114]
[70]
McBride, W.J.; Sharkey, R.M.; Goldenberg, D.M. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res., 2013, 3(1), 36.
[http://dx.doi.org/10.1186/2191-219X-3-36] [PMID: 23651690]
[71]
McBride, W.J.; Sharkey, R.M.; Karacay, H.; D’Souza, C.A.; Rossi, E.A.; Laverman, P.; Chang, C.H.; Boerman, O.C.; Goldenberg, D.M. A novel method of 18F radiolabeling for PET. J. Nuclear Med., 2009, 50(6), 991-8.
[72]
Xu, Q.; Zhu, C.; Xu, Y.; Pan, D.; Liu, P.; Yang, R.; Wang, L.; Chen, F.; Sun, X.; Luo, S.; Yang, M. Preliminary evaluation of [18F]AlF-NOTA-MAL-Cys39-exendin-4 in insulinoma with PET. J. Drug Target., 2015, 23(9), 813-820.
[http://dx.doi.org/10.3109/1061186X.2015.1020808] [PMID: 25758750]
[73]
Zhang, J.; Mao, F.; Niu, G.; Peng, L.; Lang, L.; Li, F.; Ying, H.; Wu, H.; Pan, B.; Zhu, Z.; Chen, X. 68Ga-BBN-RGD PET/CT for GRPR and integrin αvβ3 imaging in patients with breast cancer. Theranostics, 2018, 8(4), 1121-1130.
[http://dx.doi.org/10.7150/thno.22601] [PMID: 29464003]
[74]
Zhang, J.; Niu, G.; Lang, L.; Li, F.; Fan, X.; Yan, X.; Yao, S.; Yan, W.; Huo, L.; Chen, L.; Li, Z.; Zhu, Z.; Chen, X. Clinical translation of a dual integrin alphavbeta3- and gastrin-releasing peptide receptor-targeting PET radiotracer, 68Ga-BBN-RGD. J. Nuclear Med., 2017, 58(2), 228-234.
[75]
Lucente, E.; Liu, H.; Liu, Y.; Hu, X.; Lacivita, E.; Leopoldo, M.; Cheng, Z. Novel 64Cu labeled RGD2-BBN heterotrimers for PET imaging of prostate cancer. Bioconjug. Chem., 2018, 29(5), 1595-1604.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00113] [PMID: 29587479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy