Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Biocompatible Delivery System for Metformin: Characterization, Radiolabeling and In Vitro Studies

Author(s): Burcu Aydın*, Eser Uçar, Volkan Tekin, Çiğdem İçhedef and Serap Teksöz

Volume 20, Issue 13, 2020

Page: [1626 - 1634] Pages: 9

DOI: 10.2174/1871520620666200423081235

Price: $65

conference banner
Abstract

Background: In recent years, the uses of nanotechnology in medicine have an increasing potential as an effective nanocarrier system. These systems are improved with the purpose of maximizing therapeutic activity and minimizing undesirable side-effects. Moreover, radiolabeled nanoparticles can be used as agents for diagnosis and therapeutic purposes in clinical applications. They have three main components: the core, the targeting biomolecule, and the radionuclide.

Objective: It is aimed to synthesize Metformin (MET) loaded Solid Lipid Nanoparticles (MET-SLN) and radiolabeled with technetium-99m tricarbonyl core.

Methods: The structure of synthesized nanoparticles was characterized by Fourier Transform Infrared Spectroscopy (FTIR). The particle size and morphology of nanoparticles were examined by Dynamic Light Scattering (DLS), and Scanning Electron Microscope (SEM). Quality control studies of radiolabeled MET-SLN [99mTc(CO)3-MET-SLN] were performed by High-Performance Liquid Radiochromatography (HPLRC) and Thin Layer Radiochromatography (TLRC).

Results: The radiolabeling yield of [99mTc(CO)3-MET-SLN] was found to be 88%. In vitro studies have been performed on cancer lines(MCF7, MDA-MD-231 breast, and HEPG2 liver cancer cells) to determine the biological behavior of 99mTc(CO)3-MET-SLNs.

Conclusion: The results showed that higher uptake values were observed on estrogen-positive MCF7 breast cancer cell line according to estrogen negative MDA-MB-231 breast cancer and HEPG2 liver cancer cell lines.

Keywords: Metformin, solid lipid nanoparticle, technetium tricarbonyl core, cell culture, diabetes, radiolabeled, cancer.

« Previous
Graphical Abstract
[1]
Feng, L.; Mumper, R.J. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett., 2013, 334(2), 157-175.
[http://dx.doi.org/10.1016/j.canlet.2012.07.006] [PMID: 22796606]
[2]
Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J. Physiol. Sci., 2014, 25(1), 59-75.
[PMID: 24081524]
[3]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[4]
Kleynhans, J.; Grobler, A.F.; Ebenhan, T.; Sathekge, M.M.; Zeevaart, J.R. Radiopharmaceutical enhancement by drug delivery systems: A review. J. Control. Release, 2018, 287, 177-193.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.008] [PMID: 30086338]
[5]
Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid Lipid Nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release, 1994, 30(1), 83-96.
[http://dx.doi.org/10.1016/0168-3659(94)90047-7]
[6]
Lin, C.H.; Chen, C.H.; Lin, Z.C.; Fang, J.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi, 2017, 25(2), 219-234.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[7]
Cavalli, R.; Caputo, O.; Eugenia, M.; Trotta, M.; Scarnecchia, C.; Gasco, M.R. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. J. Pharmaceut, 1997, 148, 47-54.
[8]
Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288.
[9]
Formoso, P.; Muzzalupo, R.; Tavano, L.; De Filpo, G.; Nicoletta, F.P. Nanotechnology for the environment and medicine. Mini Rev. Med. Chem., 2016, 16(8), 668-675.
[http://dx.doi.org/10.2174/1389557515666150709105129] [PMID: 26955878]
[10]
Jurisson, S.; Berning, D.; Jia, W.; Ma, D. Coordination compounds in nuclear medicine. Chem. Rev., 1993, 93(3), 1137-1156.
[http://dx.doi.org/10.1021/cr00019a013]
[11]
Alfassi, Z.B.; Groppi, F.; Bonardi, M.L.; de Goeij, J.J.M. On the “artificial” nature of Tc and the “carrier-free” nature of 99mTc from 99Mo/99mTc generators. Appl. Radiat. Isot., 2005, 63(1), 37-40.
[http://dx.doi.org/10.1016/j.apradiso.2005.01.009] [PMID: 15866445]
[12]
Mani, S.; Singh, A.; Srivastava, S. Metformin targeting complex I: A future anticancer drug; Res. Reports, 2019.
[13]
Hu, F.Q.; Yuan, H.; Zhang, H.H.; Fang, M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int. J. Pharm., 2002, 239(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00081-9] [PMID: 12052697]
[14]
Wan, M. Conducting Polymers with Micro or Nanometer Structure; Springer: Germany, 2008.
[15]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[16]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[17]
Tiwari, R.; Pathak, K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm., 2011, 415(1-2), 232-243.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.044] [PMID: 21640809]
[18]
Kovačević, A.B.; Müller, R.H.; Savić, S.D.; Vuleta, G.M.; Keck, C.M. Solid Lipid Nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation. Colloids Surf. A Physicochem. Eng. Asp., 2014, 444, 15-25.
[http://dx.doi.org/10.1016/j.colsurfa.2013.12.023]
[19]
Jannin, V.; Blas, L.; Chevrier, S.; Miolane, C.; Demarne, F.; Spitzer, D. Evaluation of the digestibility of solid lipid nanoparticles of glyceryl dibehenate produced by two techniques: Ultrasonication and spray-flash evaporation. Eur. J. Pharm. Sci., 2018, 111(111), 91-95.
[http://dx.doi.org/10.1016/j.ejps.2017.09.049] [PMID: 28966096]
[20]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002] [PMID: 15109768]
[21]
Zhang, X.; Zhou, P.; Liu, J.; Huang, Y.; Lin, Y.; Chen, Y.; Gu, T.; Yang, W.; Wang, X. Preparation and biodistribution of 99mTc-tricarbonyl complex with 4-[(2-methoxyphenyl)piperazin-1-yl]-dithioformate as a potential 5-HT1A receptor imaging agent. Appl. Radiat. Isot., 2007, 65(3), 287-292.
[http://dx.doi.org/10.1016/j.apradiso.2006.09.001] [PMID: 17074495]
[22]
Ucar, E.; Teksoz, S.; Ichedef, C.; Kilcar, A.Y.; Medine, E.I.; Ari, K.; Parlak, Y.; Sayit Bilgin, B.E.; Unak, P. Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Appl. Radiat. Isot., 2017, 119, 72-79.
[http://dx.doi.org/10.1016/j.apradiso.2016.11.002] [PMID: 27866122]
[23]
Içhedef, Ç.; Teksöz, S.; Şenocak, K.; Uçar, E.; Kılçar, A.Y. Preparation and bioevaluation of 99mTc-carbonyl complex of guanine. J. Radioanal. Nucl. Chem., 2011, 289(3), 845-849.
[http://dx.doi.org/10.1007/s10967-011-1164-1]
[24]
Kim, J.; Lee, J.; Jang, S.Y.; Kim, C.; Choi, Y.; Kim, A. Anticancer effect of metformin on estrogen receptor-positive and tamoxifen-resistant breast cancer cell lines. Oncol. Rep., 2016, 35(5), 2553-2560.
[http://dx.doi.org/10.3892/or.2016.4675] [PMID: 26986571]
[25]
Giles, E.D.; Jindal, S.; Wellberg, E.A.; Schedin, T.; Anderson, S.M.; Thor, A.D.; Edwards, D.P.; MacLean, P.S.; Schedin, P. Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. Breast Cancer Res., 2018, 20(1), 50.
[http://dx.doi.org/10.1186/s13058-018-0974-2] [PMID: 29898754]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy