Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Future Oncotargets: Targeting Overexpressed Conserved Protein Targets in Androgen Independent Prostate Cancer Cell Lines

Author(s): Abdul M. Baig*, Zohaib Rana, Mohammad M. Mannan, Areeba Khaleeq, Fizza Nazim, Preet Katyara and Farhat Abbas

Volume 20, Issue 8, 2020

Page: [1017 - 1027] Pages: 11

DOI: 10.2174/1871520620666200409142239

Price: $65

conference banner
Abstract

Background: Targeting evolutionarily conserved proteins in malignant cells and the adapter proteins involved in signalling that generates from such proteins may play a cardinal role in the selection of anti-cancer drugs. Drugs targeting these proteins could be of importance in developing anti-cancer drugs.

Objectives: We inferred that drugs like loperamide and promethazine that act as antagonists of proteins conserved in cancer cells like voltage-gated Calcium channels (Cav), Calmodulin (CaM) and drug efflux (ABCB1) pump may have the potential to be re-purposed as an anti-cancer agent in Prostate Cancer (PCa).

Methods: Growth and cytotoxic assays were performed by selecting loperamide and promethazine to target Cav, CaM and drug efflux (ABCB1) pumps to elucidate their effects on androgen-independent PC3 and DU145 PCa cell lines.

Result: We show that loperamide and promethazine in doses of 80-100μg/ml exert oncocidal effects when tested in DU145 and PC3 cell lines. Diphenhydramine, which shares its targets with promethazine, except the CaM, failed to exhibit oncocidal effects.

Conclusion: Anti-cancer effects can be of significance if structural analogues of loperamide and promethazine that specifically target Cav, CaM and ABCB1 drug efflux pumps can be synthesized, or these two drugs could be re-purposed after human trials in PCa.

Keywords: Microarray, gene expression, prostate cancer, PC3, DU145, anti-cancer drugs, calmodulin, the oncomine, anti-cancer drugs.

Graphical Abstract
[1]
Liu, L.; Chen, X.; Hu, C.; Zhang, D.; Shao, Z.; Jin, Q.; Yang, J.; Xie, H.; Liu, B.; Hu, M.; Ke, K. Synthetic lethality-based identification of targets for anticancer drugs in the human signaling network. Sci. Rep. May, 2018, 8(1), 8440.
[2]
Nieto Gutierrez, A.; McDonald, P.H. GPCRs: Emerging anti-cancer drug targets. Cell. Signal., 2018, 41, 65-74.
[http://dx.doi.org/10.1016/j.cellsig.2017.09.005]
[3]
Lappano, R.; Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov., 2011, 10(1), 47-60.
[http://dx.doi.org/10.1038/nrd3320]
[4]
Mannan Baig, A.; Khan, N.A.; Effendi, V.; Rana, Z.; Ahmad, H.R.; Abbas, F. Differential receptor dependencies: expression and significance of muscarinic M1 receptors in the biology of prostate cancer. Anticancer Drugs, 2017, 28(1), 75-87.
[5]
Govindarajan, R.; Duraiyan, J.; Kaliyappan, K.; Palanisamy, M. Microarray and its applications. J. Pharm. Bioallied Sci., 2012, 4(2), S310-S312.
[6]
Rhodes, D.R.; Kalyana, S.; Sundaram, V. The Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 2007, 9, 166-180.
[7]
Tym, J.E.; Mitsopoulos, C.; Coker, E.A.; Razaz, P.; Schierz, A.C.; Antolin, A.A.; Al-Lazikani, B. canSAR: an updated cancer research and drug discovery knowledgebase. Nucleic Acids Res., 2016, 44(D1), D938-D943.
[8]
Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Szigyarto, C.A.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P.H.; Berling, H.; Tegel, H.; Mulder, J.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Pontén, F. Proteomics. Tissue-based map of the human proteome. Science, 2015, 347(6220)1260419
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[9]
Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res., 2016, 44(D1), D457-D462.
[10]
Leung, W-H. Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXRγ activation. J. Experim. Med., 2017, 210(12), 2675-2692.
[11]
Lee, K.J. Pharmacologic agents for chronic diarrhea. Intest. Res., 2015, 13(4), 306-312.
[http://dx.doi.org/10.5217/ir.2015.13.4.306] [PMID: 26576135]
[12]
Giagnoni, G.; Casiraghi, L.; Senini, R.; Revel, L.; Parolaro, D.; Sala, M.; Gori, E. Loperamide: evidence of interaction with mu and delta opioid receptors. Life Sci., 1983, 33(Suppl. 1), 315-318.
[http://dx.doi.org/10.1016/0024-3205(83)90506-4] [PMID: 6319884]
[13]
Brunton, L.L.; Chabner, B.A.; Knollmann, B.C. Goodman & Gilman’s: The Pharmacological basis of Therapeutics, 12th ed; Mc-Graw Hill Education: New York, 2011.
[14]
Gong, X.W.; Xu, Y.H.; Chen, X.L.; Wang, Y.X. Loperamide, an antidiarrhea drug, has antitumor activity by inducing cell apoptosis. Pharmacol. Res., 2012, 65(3), 372-378.
[http://dx.doi.org/10.1016/j.phrs.2011.11.007] [PMID: 22119769]
[15]
Awouters, F.; Megens, A.; Verlinden, M.; Schuurkes, J.; Niemegeers, C.; Janssen, P.A. Loperamide. Survey of studies on mechanism of its antidiarrheal activity. Dig. Dis. Sci., 1993, 38(6), 977-995.
[http://dx.doi.org/10.1007/BF01295711] [PMID: 8508715]
[16]
Nussinov, R.; Wang, G.; Tsai, C.J.; Jang, H.; Lu, S.; Banerjee, A.; Zhang, J.; Gaponenko, V. Calmodulin and PI3K signaling in KRAS cancers. Trends Cancer, 2017, 3(3), 214-224.
[17]
Regan, R.C.; Gogal, R.M., Jr; Barber, J.P.; Tuckfield, R.C.; Howerth, E.W.; Lawrence, J.A. Cytotoxic effects of loperamide hydrochloride on canine cancer cells. J. Vet. Med. Sci., 2014, 76(12), 1563-1568.
[18]
Zhu, Y.; Liu, C.; Nadiminty, N.; Lou, W.; Tummala, R.; Evans, C.P.; Gao, A.C. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol. Cancer Ther., 2013, 12(9), 1829-1836.
[19]
Yeh, C.T.; Wu, A.T.; Chang, P.M. promethazine Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am. J. Respir. Crit. Care Med., 2012, 186(11), 1180-1188.
[http://dx.doi.org/10.1164/rccm.201207-1180OC]
[20]
Grief, F.; Soroff, H.S.; Albers, K.M.; Taichman, L.B. The effect of Promethazine, a calmodulin antagonist, on the growth of normal and malignant epidermal keratinocytes in culture. Eur. J. Cancer Clin. Oncol., 1989, 25(1), 19-26.
[21]
Kimmelman, A.C. Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer, 2018, 21(8), 1828-1834.
[22]
Goymer, P. Genetics: Conserved by evolution, but altered in cancer. Nat. Rev. Cancer, 2007, 7, 812-813.
[http://dx.doi.org/10.1038/nrc2268]
[23]
Lu, K.P.; Means, A.R. Regulation of the cell cycle by calcium and calmodulin. Endocr. Rev., 1993, 14(1), 40-58.
[24]
Mancini, M.; Toker, A. NFAT proteins: emerging roles in cancer progression. Nat. Rev. Cancer, 2009, 9(11), 810-820.
[http://dx.doi.org/10.1038/nrc2735] [PMID: 19851316]
[25]
Abdul, M.; Hoosein, N. Potentiation of the antiproliferative activity of MKT-077 by loperamide, diltiazem and tamoxifen. Oncol. Rep., 2003, 10(6), 2023-2026.
[http://dx.doi.org/10.3892/or.10.6.2023] [PMID: 14534737]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy