Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Film-Forming Nanogels: Effects of Nanocarriers and Film-Forming Gel on the Sustained Release of Curcumin

Author(s): Khanh T. Nguyen, Phuong H.L. Tran, Hai V. Ngo and Thao T.D. Tran*

Volume 21, Issue 5, 2021

Published on: 07 April, 2020

Page: [658 - 666] Pages: 9

DOI: 10.2174/1871520620666200407124020

Price: $65

conference banner
Abstract

Background: Although film-forming hydrogels possess the advantages of both film and hydrogel dosage forms, certain limitations still remain.

Objective: This study aims to investigate the use of film-forming hydrogels and the effects of nanocarriers on the sustained release of a poorly water-soluble drug, curcumin.

Methods: The film-forming hydrogels contained either zein or polyvinylpyrrolidone as a film former, in addition to hydroxypropyl methylcellulose, oleic acid, ethanol and water. Curcumin was encapsulated in poly(lacticco- glycolic acid) and gelatine nanoparticles using a sonoprecipitation method. Free drug and drug-loaded nanoparticles were later dispersed into blank hydrogels to produce the film-forming nanogels.

Results: The results suggested that the encapsulation of curcumin in nanoparticles could reduce the drug particle size to less than 200nm for easier diffusion and could shield curcumin from chemical interactions that limit its topical permeability. Curcumin was more compatible with gelatine nanoparticles than with poly(lactic-coglycolic acid) nanoparticles, and gelatine nanoparticles, in turn, were more compatible with zein than with polyvinylpyrrolidone film-forming nanogels. Therefore, gelatine nanoparticles in zein film-forming nanogels greatly elevated the permeability of curcumin by over five times that afforded by gelatine nanoparticles in polyvinylpyrrolidone film-forming nanogels.

Conclusion: This research suggested that film-forming nanogel is a promising drug delivery system for both improved permeability and sustained topical diffusion of the extremely hydrophobic drug curcumin depending on the compatibility between the nanocarrier and the film-forming hydrogel.

Keywords: Film-forming hydrogel, film-forming nanogels, sustained release, nanocarrier, improved permeability, curcumin.

« Previous
Graphical Abstract
[1]
Tran, T.T.D.; Tran, P.H.L. Controlled release film forming systems in drug delivery: The potential for efficient drug delivery. Pharmaceutics, 2019, 11(6), 290.
[http://dx.doi.org/10.3390/pharmaceutics11060290] [PMID: 31226748]
[2]
Wang, Y.; Xiong, Y.; Wang, J.; Zhang, X. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 903-913.
[http://dx.doi.org/10.1016/j.colsurfa.2017.02.050]]
[3]
Wang, Y.; Xiong, Y.; Sun, F-L.; Yang, Y-Q.; Zhang, X-D. Ultrasonic-assisted synthesis of a superabsorbent composite hydrogel for the responsive and removal properties of Pb(II). Wuli Huaxue Xuebao, 2016, 32(10), 2563-2573.
[4]
Frederiksen, K.; Guy, R.H.; Petersson, K. The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs. Expert Opin. Drug Deliv., 2016, 13(3), 349-360.
[http://dx.doi.org/10.1517/17425247.2016.1124412] [PMID: 26609868]
[5]
Couteau, C.; Demé, A.; Cheignon, C.; Coiffard, L.J. Influence of the hydrophilic-lipophilic balance of sunscreen emulsions on their water resistance property. Drug Dev. Ind. Pharm., 2012, 38(11), 1405-1407.
[http://dx.doi.org/10.3109/03639045.2011.653362] [PMID: 22435388]
[6]
Roberts, M.S.; Cross, S.E.; Anissimov, Y.G. Factors affecting the formation of a skin reservoir for topically applied solutes. Skin Pharmacol. Physiol., 2004, 17(1), 3-16.
[http://dx.doi.org/10.1159/000074057] [PMID: 14755122]
[7]
Felton, L.A. Mechanisms of polymeric film formation. Int. J. Pharm., 2013, 457(2), 423-427.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.027] [PMID: 23305867]
[8]
Surber, C.; Davis, A.F. Bioavailability and bioequivalence of dermatological formulations. Drugs Pharmaceut. Sci., 2002, 119, 401-498.
[9]
Brouwers, J.; Brewster, M.E.; Augustijns, P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J. Pharm. Sci., 2009, 98(8), 2549-2572.
[http://dx.doi.org/10.1002/jps.21650] [PMID: 19373886]
[10]
Poulsen, B.J. Diffusion of drugs from topical vehicles: An analysis of vehicle effects. Adv. Biol. Skin, 1972, 12, 495-509.
[PMID: 4579203]
[11]
Kim, D.W.; Kim, K.S.; Seo, Y.G.; Lee, B-J.; Park, Y.J.; Youn, Y.S.; Kim, J.O.; Yong, C.S.; Jin, S.G.; Choi, H-G. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int. J. Pharm., 2015, 495(1), 67-74.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.082] [PMID: 26325319]
[12]
Ribeiro, W.X.; Lopes Filho, J.F.; Cortes, M.S.; Tadini, C.C. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate. Cienc. Rural, 2015, 45(10), 1890-1894.
[http://dx.doi.org/10.1590/0103-8478cr20141391]
[13]
Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci., 2010, 351(1), 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[14]
Ngo, H.V.; Tran, P.H.L.; Lee, B-J.; Tran, T.T.D. Development of film-forming gel containing nanoparticles for transdermal drug delivery. Nanotechnology, 2019, 30(41), 415102.
[http://dx.doi.org/10.1088/1361-6528/ab2e29] [PMID: 31261146]
[15]
Gangwar, R.K.; Dhumale, V.A.; Kumari, D.; Nakate, U.T.; Gosavi, S.; Sharma, R.B.; Kale, S.; Datar, S. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. Mater. Sci. Eng. C, 2012, 32(8), 2659-2663.
[http://dx.doi.org/10.1016/j.msec.2012.07.022]
[16]
Erbetta, C. Synthesis and characterization of poly(D,L-lactide-co-glycolide) copolymer. J. Biomater. Nanobiotechnol., 2012, 03, 208-225.
[http://dx.doi.org/10.4236/jbnb.2012.32027]
[17]
Burger, A.; Henck, J.O.; Hetz, S.; Rollinger, J.M.; Weissnicht, A.A.; Stöttner, H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J. Pharm. Sci., 2000, 89(4), 457-468.
[http://dx.doi.org/10.1002/(SICI)1520-6017(200004)89:4<457::AID-JPS3>3.0.CO;2-G] [PMID: 10737907]
[18]
Chaochai, T.; Imai, Y.; Furuike, T.; Tamura, H. Preparation and properties of gelatin fibers fabricated by dry spinning. Fibers (Basel), 2016, 4(1), 2.
[http://dx.doi.org/10.3390/fib4010002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy