Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Targeting Strategies for Renal Cancer Stem Cell Therapy

Author(s): Pengchao Fang, Liuting Zhou, Lee Y. Lim, Hualin Fu , Zhi-xiang Yuan* and Juchun Lin*

Volume 26, Issue 17, 2020

Page: [1964 - 1978] Pages: 15

DOI: 10.2174/1381612826666200318153106

Price: $65

conference banner
Abstract

Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.

Keywords: Renal cell carcinoma, renal cancer stem cells, signal pathways, biomarkers, targeting strategy, microRNAs.

[1]
Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Primers 2017; 3(1): 17009.
[http://dx.doi.org/10.1038/nrdp.2017.9] [PMID: 28276433]
[2]
Casuscelli J, Weinhold N, Gundem G, et al. Genomic landscape and evolution of metastatic chromophobe renal cell carcinoma. JCI Insight 2017; 2(12): 1-15.
[http://dx.doi.org/10.1172/jci.insight.92688] [PMID: 28614790]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[4]
Posadas EM, Limvorasak S, Figlin RA. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol 2017; 13(8): 496-511.
[http://dx.doi.org/10.1038/nrneph.2017.82] [PMID: 28691713]
[5]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Fidler MM, Bray F. Global cancer inequalities. Front Oncol 2018; 8(293): 293.
[http://dx.doi.org/10.3389/fonc.2018.00293] [PMID: 30155440]
[7]
Su D, Stamatakis L, Singer EA, Srinivasan R. Renal cell carcinoma: molecular biology and targeted therapy. Curr Opin Oncol 2014; 26(3): 321-7.
[http://dx.doi.org/10.1097/CCO.0000000000000069] [PMID: 24675233]
[8]
Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008; 34(3): 193-205.
[http://dx.doi.org/10.1016/j.ctrv.2007.12.001] [PMID: 18313224]
[9]
Rasti A, Abolhasani M, Zanjani LS, Asgari M, Mehrazma M, Madjd Z. Reduced expression of CXCR4, a novel renal cancer stem cell marker, is associated with high-grade renal cell carcinoma. J Cancer Res Clin Oncol 2017; 143(1): 95-104.
[http://dx.doi.org/10.1007/s00432-016-2239-8] [PMID: 27638770]
[10]
Bielecka ZF, Czarnecka AM, Szczylik C. Genomic analysis as the first step toward personalized treatment in renal cell carcinoma. Front Oncol 2014; 4(194): 194.
[http://dx.doi.org/10.3389/fonc.2014.00194] [PMID: 25120953]
[11]
Xu Q, Krause M, Samoylenko A, Vainio S. Wnt signaling in renal cell carcinoma. Cancers (Basel) 2016; 8(6): 1-14.
[http://dx.doi.org/10.3390/cancers8060057] [PMID: 27322325]
[12]
Qian W, Kong X, Zhang T, et al. Cigarette smoke stimulates the stemness of renal cancer stem cells via Sonic Hedgehog pathway. Oncogenesis 2018; 7(3): 24.
[http://dx.doi.org/10.1038/s41389-018-0029-7] [PMID: 29540668]
[13]
Venkatesh V, Nataraj R, Thangaraj GS, et al. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 2018; 5(3): 5.
[http://dx.doi.org/10.21037/sci.2018.02.02] [PMID: 29682512]
[14]
Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2017; 8(21): 35351-67.
[http://dx.doi.org/10.18632/oncotarget.10169] [PMID: 27343550]
[15]
Lucarelli G, Galleggiante V, Rutigliano M, Vavallo A, Ditonno P, Battaglia M. Isolation and characterization of cancer stem cells in renal cell carcinoma. Urologia 2015; 82(1): 46-53.
[http://dx.doi.org/10.5301/uro.5000099] [PMID: 25451878]
[16]
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4(1): 3-18.
[http://dx.doi.org/10.1002/cjp2.91] [PMID: 29416873]
[17]
Li J, You J, Wu C, et al. T1-T2 molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents. Int J Nanomedicine 2018; 13: 4607-25.
[http://dx.doi.org/10.2147/IJN.S168660] [PMID: 30127609]
[18]
Yuan ZX, Mo J, Zhao G, Shu G, Fu HL, Zhao W. Targeting strategies for renal cell carcinoma: from renal cancer cells to renal cancer stem cells. Front Pharmacol 2016; 7(194): 423.
[http://dx.doi.org/10.3389/fphar.2016.00423] [PMID: 27891093]
[19]
Lazzeri E, Crescioli C, Ronconi E, et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J Am Soc Nephrol 2007; 18(12): 3128-38.
[http://dx.doi.org/10.1681/ASN.2007020210] [PMID: 17978305]
[20]
Oliver JA, Klinakis A, Cheema FH, et al. Proliferation and migration of label-retaining cells of the kidney papilla. J Am Soc Nephrol 2009; 20(11): 2315-27.
[http://dx.doi.org/10.1681/ASN.2008111203] [PMID: 19762493]
[21]
Patschan D, Michurina T, Shi HK, et al. Normal distribution and medullary-to-cortical shift of Nestin-expressing cells in acute renal ischemia. Kidney Int 2007; 71(8): 744-54.
[http://dx.doi.org/10.1038/sj.ki.5002102] [PMID: 17290297]
[22]
Song J, Czerniak S, Wang T, et al. Characterization and fate of telomerase-expressing epithelia during kidney repair. J Am Soc Nephrol 2011; 22(12): 2256-65.
[http://dx.doi.org/10.1681/ASN.2011050447] [PMID: 22021716]
[23]
Romagnani P, Remuzzi G. CD133+ renal stem cells always co-express CD24 in adult human kidney tissue. Stem Cell Res (Amst) 2014; 12(3): 828-9.
[http://dx.doi.org/10.1016/j.scr.2013.12.011] [PMID: 24467938]
[24]
Angelotti ML, Ronconi E, Ballerini L, et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 2012; 30(8): 1714-25.
[http://dx.doi.org/10.1002/stem.1130] [PMID: 22628275]
[25]
Kitamura S, Yamasaki Y, Kinomura M, et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J 2005; 19(13): 1789-97.
[http://dx.doi.org/10.1096/fj.05-3942com] [PMID: 16260649]
[26]
Matak D, Szymanski L, Szczylik C, et al. Biology of renal tumour cancer stem cells applied in medicine. Contemp Oncol (Pozn) 2015; 19(1A): A44-51.
[http://dx.doi.org/10.5114/wo.2014.47128] [PMID: 25691821]
[27]
Bussolati B, Camussi G. Cancer stem cells and renal carcinoma 2012. Springer, NY. 211-20.
[28]
Myszczyszyn A, Czarnecka AM, Matak D, et al. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev Rep 2015; 11(6): 919-43.
[http://dx.doi.org/10.1007/s12015-015-9611-y] [PMID: 26210994]
[29]
Salcido CD, Larochelle A, Taylor BJ, Dunbar CE, Varticovski L. Molecular characterisation of side population cells with cancer stem cell-like characteristics in small-cell lung cancer. Br J Cancer 2010; 102(11): 1636-44.
[http://dx.doi.org/10.1038/sj.bjc.6605668] [PMID: 20424609]
[30]
Yun EJ, Zhou J, Lin CJ, et al. Abstract 3078: Epigenetic regulation of miR-138 confers cancer stem cell characteristics of renal cell carcinoma. Cancer Res 2015; 75(15): 3078.
[http://dx.doi.org/10.1158/1538-7445.am2015-3078]
[31]
Salehi PM, Foroutan T, Javeri A, Taha MF. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells. Iran J Basic Med Sci 2017; 20(11): 1200-6.
[PMID: 29299196]
[32]
Bu Y, Cao D. The origin of cancer stem cells. Front Biosci (Schol Ed) 2012; 4(3): 819-30.
[PMID: 22202093]
[33]
Hasmim M, Bruno S, Azzi S, et al. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget 2016; 7(13): 15507-24.
[http://dx.doi.org/10.18632/oncotarget.6266] [PMID: 26551931]
[34]
Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 2008; 22(10): 3696-705.
[http://dx.doi.org/10.1096/fj.08-102590] [PMID: 18614581]
[35]
Ueda K, Ogasawara S, Akiba J, et al. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLoS One 2013; 8(10) e75463
[http://dx.doi.org/10.1371/journal.pone.0075463] [PMID: 24116047]
[36]
Khan MI, Czarnecka AM, Duchnowska R, Kukwa W, Szczylik C. Metastasis-initiating cells in renal cancer. Curr Signal Transduct Ther 2014; 8(3): 240-6.
[http://dx.doi.org/10.2174/1574362409666140206222431] [PMID: 25152705]
[37]
Smith BH, Gazda LS, Conn BL, et al. Three-dimensional culture of mouse renal carcinoma cells in agarose macrobeads selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties. Cancer Res 2011; 71(3): 716-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2254] [PMID: 21266363]
[38]
Zhong Y, Guan K, Guo S, et al. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Letters 2010; 299(2): 160.
[http://dx.doi.org/10.1016/j.canlet.2010.08.013] [PMID: 2084678]
[39]
Lichner Z, Saleh C, Subramaniam V, Seivwright A, Prud’homme GJ, Yousef GM. miR-17 inhibition enhances the formation of kidney cancer spheres with stem cell/ tumor initiating cell properties. Oncotarget 2015; 6(8): 5567-81.
[http://dx.doi.org/10.18632/oncotarget.1901] [PMID: 25011053]
[40]
Xiao W, Gao Z, Duan Y, Yuan W, Ke Y. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res 2017; 36(1): 41.
[http://dx.doi.org/10.1186/s13046-017-0507-3] [PMID: 28279221]
[41]
Kaminska B, Kulesza DW, Ramji K. Overview of mechanisms of cancer stem cell drug resistance. Curr Signal Transduct Ther 2014; 8(3): 180-92.
[http://dx.doi.org/10.2174/1574362409666140206221621]
[42]
Kim Y, Joo KM, Jin J, Nam DH. Cancer stem cells and their mechanism of chemo-radiation resistance. Int J Stem Cells 2009; 2(2): 109-14.
[http://dx.doi.org/10.15283/ijsc.2009.2.2.109] [PMID: 24855529]
[43]
Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Tyrosine kinase inhibitors target cancer stem cells in renal cell cancer. Oncol Rep 2016; 35(3): 1433-42.
[http://dx.doi.org/10.3892/or.2015.4514] [PMID: 26708631]
[44]
Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 2012; 7(4): 597-615.
[http://dx.doi.org/10.2217/nnm.12.22] [PMID: 22471722]
[45]
Mier JW. The tumor microenvironment in renal cell cancer. Curr Opin Oncol 2019; 31(3): 194-9.
[http://dx.doi.org/10.1097/CCO.0000000000000512] [PMID: 30985497]
[46]
Frödin M, Mezheyeuski A, Corvigno S, et al. Perivascular PDGFR-β is an independent marker for prognosis in renal cell carcinoma. Br J Cancer 2017; 116(2): 195-201.
[http://dx.doi.org/10.1038/bjc.2016.407] [PMID: 27931046]
[47]
Fujita K, Tumor Angiogenesis MA. A focus on the role of cancer stem cells. physiologic and pathologic angiogenesis - signaling mechanisms and targeted therapy 2017; 215-5.
[48]
Chae YC, Kim JH. Cancer stem cell metabolism: target for cancer therapy. BMB Rep 2018; 51(7): 319-26.
[http://dx.doi.org/10.5483/BMBRep.2018.51.7.112] [PMID: 29764565]
[49]
Wang Y, Li C, Li Y, Zhu Z. Involvement of breast cancer stem cells in tumor angiogenesis. Oncol Lett 2017; 14(6): 8150-5.
[http://dx.doi.org/10.3892/ol.2017.7238] [PMID: 29344258]
[50]
Ruiz-Saurí A, García-Bustos V, Granero E, et al. Distribution of vascular patterns in different subtypes of renal cell carcinoma. a morphometric study in two distinct types of blood vessels. Pathol Oncol Res 2018; 24(3): 515-24.
[http://dx.doi.org/10.1007/s12253-017-0262-y] [PMID: 28669081]
[51]
Zhang Y, Sun B, Zhao X, et al. Clinical significances and prognostic value of cancer stem-like cells markers and vasculogenic mimicry in renal cell carcinoma. J Surg Oncol 2013; 108(6): 414-9.
[http://dx.doi.org/10.1002/jso.23402] [PMID: 23996537]
[52]
Qian CN, Huang D, Wondergem B, Teh BT. Complexity of tumor vasculature in clear cell renal cell carcinoma. Cancer 2009; 115(10)(Suppl.): 2282-9.
[http://dx.doi.org/10.1002/cncr.24238] [PMID: 19402071]
[53]
Yao H, Liu N, Lin MC, Zheng J. Positive feedback loop between cancer stem cells and angiogenesis in hepatocellular carcinoma. Cancer Lett 2016; 379(2): 213-9.
[http://dx.doi.org/10.1016/j.canlet.2016.03.014] [PMID: 27108065]
[54]
Berlato C, Kahn MN, Schioppa T, et al. Abstract 1076: Antagonists of the chemokine receptor CCR4 reverse the tumor-promoting microenvironment of renal cancer. Cancer Res 2014; 74(19): 1076.
[55]
Tanigawa S, Perantoni AO. Modeling renal progenitors - defining the niche. Differentiation 2016; 91(4-5): 152-8.
[http://dx.doi.org/10.1016/j.diff.2016.01.007] [PMID: 26856661]
[56]
Lan J, Li J, Ju X, et al. Relationship between microvessel density and cancer stem cells in tumor angiogenesis: a meta-analysis. Biomarkers Med 2016; 10(8): 919-32.
[http://dx.doi.org/10.2217/bmm-2016-0026] [PMID: 27414103]
[57]
Li L, Cole J, Margolin DA. Cancer stem cell and stromal microenvironment. Ochsner J 2013; 13(1): 109-18.http://espace.library.uq.edu.au/view/UQ:321194
[PMID: 23531695]
[58]
Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer Biol Ther 2010; 10(7): 658-64.
[http://dx.doi.org/10.4161/cbt.10.7.13247] [PMID: 20814228]
[59]
Rasti A, Mehrazma M, Madjd Z, Abolhasani M, Saeednejad Zanjani L, Asgari M. Co-expression of cancer stem cell markers OCT4 and NANOG predicts poor prognosis in renal cell carcinomas. Sci Rep 2018; 8(1): 11739.
[http://dx.doi.org/10.1038/s41598-018-30168-4] [PMID: 30082842]
[60]
Xie Z, Lee YH, Boeke M, et al. MET inhibition in clear cell renal cell carcinoma. J Cancer 2016; 7(10): 1205-14.
[http://dx.doi.org/10.7150/jca.14604] [PMID: 27390595]
[61]
Liu X, Wang J, Sun G. Identification of key genes and pathways in renal cell carcinoma through expression profiling data. Kidney Blood Press Res 2015; 40(3): 288-97.
[http://dx.doi.org/10.1159/000368504] [PMID: 26043775]
[62]
Wang D, Lu P, Zhang H, et al. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 2014; 5(21): 10803-15.
[http://dx.doi.org/10.18632/oncotarget.2506] [PMID: 25301732]
[63]
Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016; 2016(3) 4798639
[http://dx.doi.org/10.1155/2016/4798639] [PMID: 27721835]
[64]
Bussolati B, Dekel B, Azzarone B, Camussi G. Human renal cancer stem cells. Cancer Lett 2013; 338(1): 141-6.
[http://dx.doi.org/10.1016/j.canlet.2012.05.007] [PMID: 22587951]
[65]
Hu J, Guan W, Liu P, et al. Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Reports 2017; 9(2): 464-77.
[http://dx.doi.org/10.1016/j.stemcr.2017.07.009] [PMID: 28793246]
[66]
Saroufim A, Messai Y, Hasmim M, et al. Tumoral CD105 is a novel independent prognostic marker for prognosis in clear-cell renal cell carcinoma. Br J Cancer 2014; 110(7): 1778-84.
[http://dx.doi.org/10.1038/bjc.2014.71] [PMID: 24594997]
[67]
Saeednejad Zanjani L, Madjd Z, Abolhasani M, Shariftabrizi A, Rasti A, Asgari M. Expression of CD105 cancer stem cell marker in three subtypes of renal cell carcinoma. Cancer Biomark 2018; 21(4): 821-37.
[http://dx.doi.org/10.3233/CBM-170755] [PMID: 29286924]
[68]
Khan MI, Czarnecka AM, Helbrecht I, Bartnik E, Lian F, Szczylik C. Current approaches in identification and isolation of human renal cell carcinoma cancer stem cells. Stem Cell Res Ther 2015; 6(1): 178.
[http://dx.doi.org/10.1186/s13287-015-0177-z] [PMID: 26377541]
[69]
Barzegar Behrooz A, Syahir A, Ahmad S. CD133: beyond a cancer stem cell biomarker. J Drug Target 2019; 27(3): 257-69.
[http://dx.doi.org/10.1080/1061186X.2018.1479756] [PMID: 29911902]
[70]
Grosse-Gehling P, Fargeas CA, Dittfeld C, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol 2013; 229(3): 355-78.
[http://dx.doi.org/10.1002/path.4086] [PMID: 22899341]
[71]
Bruno S, Bussolati B, Grange C, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 2006; 169(6): 2223-35.
[http://dx.doi.org/10.2353/ajpath.2006.060498] [PMID: 17148683]
[72]
Kim K, Ihm H, Ro JY, Cho YM. High-level expression of stem cell marker CD133 in clear cell renal cell carcinoma with favorable prognosis. Oncol Lett 2011; 2(6): 1095-100.
[PMID: 22848273]
[73]
Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 axis in tumor immunotherapy. Curr Med Chem 2019; 26(17): 3026-41.
[http://dx.doi.org/10.2174/0929867324666170830111531] [PMID: 28875842]
[74]
Weiss ID, Huff LM, Evbuomwan MO, et al. Screening of cancer tissue arrays identifies CXCR4 on adrenocortical carcinoma: correlates with expression and quantification on metastases using 64Cu-plerixafor PET. Oncotarget 2017; 8(43): 73387-406.
[http://dx.doi.org/10.18632/oncotarget.19945] [PMID: 29088715]
[75]
Gassenmaier M, Chen D, Buchner A, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells 2013; 31(8): 1467-76.
[http://dx.doi.org/10.1002/stem.1407] [PMID: 23630186]
[76]
Peired AJ, Sisti A, Romagnani P. Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Inter 2016; 2016(3): 1-22.
[http://dx.doi.org/10.1155/2016/4798639]
[77]
D’Alterio C, Cindolo L, Portella L, et al. Differential role of CD133 and CXCR4 in renal cell carcinoma. Cell Cycle 2010; 9(22): 4492-500.
[http://dx.doi.org/10.4161/cc.9.22.13680] [PMID: 21127401]
[78]
Weitzenfeld P, Ben-Baruch A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 2014; 352(1): 36-53.
[http://dx.doi.org/10.1016/j.canlet.2013.10.006] [PMID: 24141062]
[79]
Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2016; 7(10): 11018-32.
[http://dx.doi.org/10.18632/oncotarget.6920] [PMID: 26783961]
[80]
Wang K, Chen X, Zhan Y, et al. Increased expression of ALDH1A1 protein is associated with poor prognosis in clear cell renal cell carcinoma. Med Oncol 2013; 30(2): 574.
[http://dx.doi.org/10.1007/s12032-013-0574-z] [PMID: 23585015]
[81]
Schoenfeld D, Su W, Zairis S, et al. Abstract A24: PBRM1 alteration in clear cell renal cell carcinoma increases tumorigenicity through ALDH1A1 upregulation. Oncogene 2016; 76(2): 24.
[http://dx.doi.org/10.1158/1538-7445.chromepi15-a24]
[82]
Basakran NS. CD44 as a potential diagnostic tumor marker. Saudi Med J 2015; 36(3): 273-9.
[http://dx.doi.org/10.15537/smj.2015.3.9622] [PMID: 25737167]
[83]
Peired AJ, Sisti A, Romagnani P. Renal cancer stem cells: characterization and targeted therapies. Stem Cells Int 2016; 2016(12) 8342625
[http://dx.doi.org/10.1155/2016/8342625] [PMID: 27293448]
[84]
Moskvina LV, Andreeva IuIu, Frank GA, Zavalishina LÉ, Petrov AN, Mal’kov PG. [Prognostic value of the expression of adhesion molecules for non-clear-cell variants of renal cell carcinoma]. Arkh Patol 2013; 75(4): 3-8.
[PMID: 24313184]
[85]
Mikami S, Mizuno R, Kosaka T, Saya H, Oya M, Okada Y. Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int J Cancer 2015; 136(7): 1504-14.
[http://dx.doi.org/10.1002/ijc.29137] [PMID: 25123505]
[86]
Debeb BG, Zhang X, Krishnamurthy S, et al. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Mol Cancer 2010; 9(1): 180.
[http://dx.doi.org/10.1186/1476-4598-9-180] [PMID: 20615238]
[87]
Cheng B, Yang G, Jiang R, et al. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget 2016; 7(40): 65862-75.
[http://dx.doi.org/10.18632/oncotarget.11672] [PMID: 27588469]
[88]
Ma C, Komohara Y, Ohnishi K, et al. Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma. Cancer Sci 2016; 107(5): 700-7.
[http://dx.doi.org/10.1111/cas.12917] [PMID: 26918621]
[89]
Yu G, Li H, Wang J, et al. miRNA-34a suppresses cell proliferation and metastasis by targeting CD44 in human renal carcinoma cells. J Urol 2014; 192(4): 1229-37.
[http://dx.doi.org/10.1016/j.juro.2014.05.094] [PMID: 24866595]
[90]
Jing X, Cui X, Liang H, et al. CD24 is a potential biomarker for prognosis in human breast carcinoma. Cell Physiol Biochem 2018; 48(1): 111-9.
[http://dx.doi.org/10.1159/000491667] [PMID: 30001552]
[91]
Wang JL, Guo CR, Su WY, Chen YX, Xu J, Fang JY. CD24 overexpression related to lymph node invasion and poor prognosis of colorectal cancer. Clin Lab 2018; 64(4): 497-505.
[http://dx.doi.org/10.7754/Clin.Lab.2017.171012] [PMID: 29739071]
[92]
Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012; 2012(1) 708036
[http://dx.doi.org/10.1155/2012/708036] [PMID: 22693526]
[93]
Arik D, Can C, Dündar E, Kabukçuoğlu S, Paşaoğlu Ö. Prognostic Significance of CD24 in Clear Cell Renal Cell Carcinoma. Pathol Oncol Res 2017; 23(2): 409-16.
[http://dx.doi.org/10.1007/s12253-016-0128-8] [PMID: 27738793]
[94]
Cao J, Liu J, Xu R, Zhu X, Liu L, Zhao X. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol Med Rep 2016; 13(1): 75-82.
[http://dx.doi.org/10.3892/mmr.2015.4568] [PMID: 26572589]
[95]
Chen J, Gu Y, Shen W. MicroRNA-21 functions as an oncogene and promotes cell proliferation and invasion via TIMP3 in renal cancer. Eur Rev Med Pharmacol Sci 2017; 21(20): 4566-76.
[PMID: 29131259]
[96]
Papadopoulos EI, Petraki C, Gregorakis A, Fragoulis EG, Scorilas A. Clinical evaluation of microRNA-145 expression in renal cell carcinoma: a promising molecular marker for discriminating and staging the clear cell histological subtype. Biol Chem 2016; 397(6): 529-39.
[http://dx.doi.org/10.1515/hsz-2015-0284] [PMID: 26866880]
[97]
Li J, Li C, Li H, et al. MicroRNA‑30a‑5p suppresses tumor cell proliferation of human renal cancer via the MTDH/PTEN/AKT pathway. Int J Mol Med 2018; 41(2): 1021-9.
[http://dx.doi.org/10.3892/ijmm.2017.3269] [PMID: 29207012]
[98]
Khella HWZ, Daniel N, Youssef L, et al. miR-10b is a prognostic marker in clear cell renal cell carcinoma. J Clin Pathol 2017; 70(10): 854-9.
[http://dx.doi.org/10.1136/jclinpath-2017-204341] [PMID: 28360191]
[99]
Blinka S, Rao S. Nanog expression in embryonic stem cells - an ideal model system to dissect enhancer function. BioEssays 2017; 39(12): 1-23.
[http://dx.doi.org/10.1002/bies.201700086] [PMID: 28977693]
[100]
van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol 2018; 71(1): 88-91.
[http://dx.doi.org/10.1136/jclinpath-2017-204815] [PMID: 29180509]
[101]
Yu B, Cai H, Xu Z, Xu T, Zou Q, Gu M. Expressions of stem cell transcription factors Nanog and Oct4 in renal cell carcinoma tissues and clinical significance. Artif Cells Nanomed Biotechnol 2016; 44(8): 1818-23.
[http://dx.doi.org/10.3109/21691401.2015.1105238] [PMID: 26631537]
[102]
Gao ZW, Dong K, Zhang HZ. The roles of CD73 in cancer. BioMed Res Int 2014; 2014(4) 460654
[http://dx.doi.org/10.1155/2014/460654] [PMID: 25126561]
[103]
Song L, Ye W, Cui Y, et al. Ecto-5′-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget 2017; 8(19): 31977-92.
[http://dx.doi.org/10.18632/oncotarget.16667] [PMID: 28404888]
[104]
Grange C, Tapparo M, Tritta S, et al. Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation. BMC Cancer 2015; 15(1): 1009.
[http://dx.doi.org/10.1186/s12885-015-2025-z] [PMID: 26704308]
[105]
Earwaker P. Resistance mechanisms to mTOR inhibition in renal cancer. University of Oxford 2015. Available at:. https://ora.ox.ac.uk/objects/uuid:dc500011-d486-43cc-a0a7-87b9d6d9e682
[106]
Brossa A, Grange C, Mancuso L, et al. Sunitinib but not VEGF blockade inhibits cancer stem cell endothelial differentiation. Oncotarget 2015; 6(13): 11295-309.
[http://dx.doi.org/10.18632/oncotarget.3123] [PMID: 25948774]
[107]
Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11(12): 834-48.
[http://dx.doi.org/10.1038/nrm3012] [PMID: 21102609]
[108]
Bielecka ZF, Malinowska A, Brodaczewska KK, et al. Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells. Cell Biosci 2017; 7(1): 71.
[http://dx.doi.org/10.1186/s13578-017-0197-8] [PMID: 29270287]
[109]
Ciamporcero E, Miles KM, Adelaiye R, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther 2015; 14(1): 101-10.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0094] [PMID: 25381264]
[110]
Pichler R, Heidegger I. Novel concepts of antiangiogenic therapies in metastatic renal cell cancer. Memo 2017; 10(4): 206-12.
[http://dx.doi.org/10.1007/s12254-017-0344-2] [PMID: 29250198]
[111]
Lai Y, Zhao Z, Zeng T, et al. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int 2018; 18(1): 31.
[http://dx.doi.org/10.1186/s12935-018-0530-2] [PMID: 29527128]
[112]
Ghidini M, Petrelli F, Ghidini A, et al. Clinical development of mTor inhibitors for renal cancer. Expert Opin Investig Drugs 2017; 26(11): 1229-37.
[http://dx.doi.org/10.1080/13543784.2017.1384813] [PMID: 28952411]
[113]
Katsuno Y, Meyer DS, Zhang Z, et al. Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal 2019; 12(570): 1-17.
[http://dx.doi.org/10.1126/scisignal.aau8544] [PMID: 30808819]
[114]
Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res 2015; 5(5): 1602-9.
[PMID: 26175931]
[115]
Francipane MG, Lagasse E. Therapeutic potential of mTOR inhibitors for targeting cancer stem cells. Br J Clin Pharmacol 2016; 82(5): 1180-8.
[http://dx.doi.org/10.1111/bcp.12844] [PMID: 26609914]
[116]
Smith KM, Datti A, Fujitani M, et al. Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens. EMBO Mol Med 2010; 2(9): 371-84.
[http://dx.doi.org/10.1002/emmm.201000093] [PMID: 20721990]
[117]
Sharma N, Nanta R, Sharma J, et al. PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget 2015; 6(31): 32039-60.
[http://dx.doi.org/10.18632/oncotarget.5055] [PMID: 26451606]
[118]
Yang C, Zhang Y, Zhang Y, et al. Downregulation of cancer stem cell properties via mTOR signaling pathway inhibition by rapamycin in nasopharyngeal carcinoma. Int J Oncol 2015; 47(3): 909-17.
[http://dx.doi.org/10.3892/ijo.2015.3100] [PMID: 26202311]
[119]
Chen J, Shao R, Li F, et al. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 2015; 42(12): 1317-26.
[http://dx.doi.org/10.1111/1440-1681.12493] [PMID: 26399781]
[120]
Czarnecka AM, Kornakiewicz A, Lian F, Szczylik C. Future perspectives for mTOR inhibitors in renal cell cancer treatment. Future Oncol 2015; 11(5): 801-17.
[http://dx.doi.org/10.2217/fon.14.303] [PMID: 25757683]
[121]
Cho DC, Cohen MB, Panka DJ, et al. The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin Cancer Res 2010; 16(14): 3628-38.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-3022] [PMID: 20606035]
[122]
Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015; 16(15): 1473-82.
[http://dx.doi.org/10.1016/S1470-2045(15)00290-9] [PMID: 26482279]
[123]
Azzi S, Bruno S, Giron-Michel J, et al. Differentiation therapy: targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst 2011; 103(24): 1884-98.
[http://dx.doi.org/10.1093/jnci/djr451] [PMID: 22043039]
[124]
Fay AP, Signoretti S, Choueiri TK. MET as a target in papillary renal cell carcinoma. Clin Cancer Res 2014; 20(13): 3361-3.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0690] [PMID: 24812413]
[125]
Balan M, Mier y Teran E, Waaga-Gasser AM, et al. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J Biol Chem 2015; 290(13): 8110-20.
[http://dx.doi.org/10.1074/jbc.M114.612689] [PMID: 25645920]
[126]
Harshman LC, Choueiri TK. Targeting the hepatocyte growth factor/c-Met signaling pathway in renal cell carcinoma. Cancer J 2013; 19(4): 316-23.
[http://dx.doi.org/10.1097/PPO.0b013e31829e3c9a] [PMID: 23867513]
[127]
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. Transl Oncogenomics 2015; 7(1)(Suppl. 1): 13-31.
[PMID: 26628860]
[128]
Zhang Y, Jain RK, Zhu M. Recent progress and advances in HGF/MET-targeted therapeutic agents for cancer treatment. Biomedicines 2015; 3(1): 149-81.
[http://dx.doi.org/10.3390/biomedicines3010149] [PMID: 28536405]
[129]
Papa E, Weller M, Weiss T, Ventura E, Burghardt I, Szabó E. Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma. Cell Death Dis 2017; 8(12): 3210.
[http://dx.doi.org/10.1038/s41419-017-0051-2] [PMID: 29238047]
[130]
Huang J, Dong B, Zhang J, et al. miR-199a-3p inhibits hepatocyte growth factor/c-Met signaling in renal cancer carcinoma. Tumour Biol 2014; 35(6): 5833-43.
[http://dx.doi.org/10.1007/s13277-014-1774-7] [PMID: 24609899]
[131]
Parikh RA, Wang P, Beumer JH, Chu E, Appleman LJ. The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment. OncoTargets Ther 2014; 7: 969-83.
[http://dx.doi.org/10.2147/OTT.S40241] [PMID: 24959084]
[132]
Viola D, Cappagli V, Elisei R. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol 2013; 9(8): 1083-92.
[http://dx.doi.org/10.2217/fon.13.128] [PMID: 23902240]
[133]
Ooka Y, Chiba T, Ogasawara S, et al. A phase I/II study of S-1 with sorafenib in patients with advanced hepatocellular carcinoma. Invest New Drugs 2014; 32(4): 723-8.
[http://dx.doi.org/10.1007/s10637-014-0077-6] [PMID: 24599799]
[134]
Logan TF. Foretinib (XL880): c-MET inhibitor with activity in papillary renal cell cancer. Curr Oncol Rep 2013; 15(2): 83-90.
[http://dx.doi.org/10.1007/s11912-013-0299-3] [PMID: 23408121]
[135]
D’Amico L, Belisario D, Migliardi G, et al. C-met inhibition blocks bone metastasis development induced by renal cancer stem cells. Oncotarget 2016; 7(29): 45525-37.
[http://dx.doi.org/10.18632/oncotarget.9997] [PMID: 27322553]
[136]
Kruck S, Eyrich C, Scharpf M, et al. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma. Int J Mol Sci 2013; 14(6): 10944-57.
[http://dx.doi.org/10.3390/ijms140610944] [PMID: 23708097]
[137]
Perotti D, Hohenstein P, Bongarzone I, et al. Is Wilms tumor a candidate neoplasia for treatment with WNT/β-catenin pathway modulators?--A report from the renal tumors biology-driven drug development workshop. Mol Cancer Ther 2013; 12(12): 2619-27.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0335] [PMID: 24258344]
[138]
Zhao J, He Q, Gong Z, Chen S, Cui L. Niclosamide suppresses renal cell carcinoma by inhibiting Wnt/β-catenin and inducing mitochondrial dysfunctions. Springerplus 2016; 5(1): 1436.
[http://dx.doi.org/10.1186/s40064-016-3153-x] [PMID: 27652012]
[139]
Yi X, Shen T, Zhou W, et al. AB251. 15-oxospiramilactone inhibits human renal cell carcinoma cell tumorigenesis through inhibition of Wnt/β-catenin signaling. Transl Androl Urol 2016; 5(1): 166-7.
[http://dx.doi.org/10.21037/tau.2016.s251]
[140]
Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12(8): 445-64.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[141]
Ho; J-Y, Hsu; R-J, Wu; C-L et a. Ovatodiolide targets β-catenin signaling in suppressing tumorigenesis and overcoming drug resistance in renal cell carcinoma. Evidence-Based Compl Alter Med 2013; 2013(12): 1-16.
[http://dx.doi.org/10.1155/2013/161628] [PMID: 23781255]
[142]
Hirata H, Ueno K, Nakajima K, et al. Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br J Cancer 2013; 108(10): 2070-8.
[http://dx.doi.org/10.1038/bjc.2013.173] [PMID: 23591200]
[143]
Xiong S, Wang R, Chen Q, et al. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 2018; 8(2): 302-16.
[PMID: 29511600]
[144]
Huang B, Yang H, Cheng X, et al. tRF/miR-1280 suppresses stem cell-like cells and metastasis in colorectal cancer. Cancer Res 2017; 77(12): 3194-206.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3146] [PMID: 28446464]
[145]
Zhuang Z, Lin J, Huang Y, Lin T, Zheng Z, Ma X. Notch 1 is a valuable therapeutic target against cell survival and proliferation in clear cell renal cell carcinoma. Oncol Lett 2017; 14(3): 3437-44.
[http://dx.doi.org/10.3892/ol.2017.6587] [PMID: 28927098]
[146]
Bhagat TD, Zou Y, Huang S, et al. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J Biol Chem 2017; 292(3): 837-46.
[http://dx.doi.org/10.1074/jbc.M116.745208] [PMID: 27909050]
[147]
Wu C, Zhu X, Liu W, Ruan T, Tao K. Hedgehog signaling pathway in colorectal cancer: function, mechanism, and therapy. OncoTargets Ther 2017; 10: 3249-59.
[http://dx.doi.org/10.2147/OTT.S139639] [PMID: 28721076]
[148]
Li E, Zhang T, Sun X, et al. Sonic hedgehog pathway mediates genistein inhibition of renal cancer stem cells. Oncol Lett 2019; 18(3): 3081-91.
[http://dx.doi.org/10.3892/ol.2019.10657] [PMID: 31452785]
[149]
Cherepanov SA, Grinenko NF, Antonova OM, Kurapov PB, Shepeleva II, Chekhonin VP. Relationship between hedgehog signaling pathway and drug resistance of poorly differentiated gliomas. Bull Exp Biol Med 2018; 164(3): 356-61.
[http://dx.doi.org/10.1007/s10517-018-3989-x] [PMID: 29313231]
[150]
Sekulic A, Migden MR, Lewis K, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol 2015; 72(6): 1021-6.e8.
[http://dx.doi.org/10.1016/j.jaad.2015.03.021] [PMID: 25981002]
[151]
D’Amato C, Rosa R, Marciano R, et al. Inhibition of Hedgehog signalling by NVP-LDE225 (Erismodegib) interferes with growth and invasion of human renal cell carcinoma cells. Br J Cancer 2014; 111(6): 1168-79.
[http://dx.doi.org/10.1038/bjc.2014.421] [PMID: 25093491]
[152]
Dormoy V, Béraud C, Lindner V, et al. Vitamin D3 triggers antitumor activity through targeting hedgehog signaling in human renal cell carcinoma. Carcinogenesis 2012; 33(11): 2084-93.
[http://dx.doi.org/10.1093/carcin/bgs255] [PMID: 22843547]
[153]
Rosen LS, Gordon MS, Robert F, Matei DE. Endoglin for targeted cancer treatment. Curr Oncol Rep 2014; 16(2): 365-482.
[http://dx.doi.org/10.1007/s11912-013-0365-x] [PMID: 24445497]
[154]
Mohamed SY, Mohammed HL, Ibrahim HM, Mohamed EM, Salah M. Role of VEGF, CD105, and CD31 in the prognosis of colorectal cancer cases. J Gastrointest Cancer 2019; 50(1): 23-34.
[http://dx.doi.org/10.1007/s12029-017-0014-y] [PMID: 29110224]
[155]
Hong H, Wang F, Zhang Y, et al. Red fluorescent zinc oxide nanoparticle: a novel platform for cancer targeting. ACS Appl Mater Interfaces 2015; 7(5): 3373-81.
[http://dx.doi.org/10.1021/am508440j] [PMID: 25607242]
[156]
Brossa A, Buono L, Bussolati B. Effect of the monoclonal antibody TRC105 in combination with Sunitinib on renal tumor derived endothelial cells. Oncotarget 2018; 9(32): 22680-92.
[http://dx.doi.org/10.18632/oncotarget.25206] [PMID: 29854307]
[157]
Choueiri TK, Michaelson MD, Posadas EM. A phase 1b dose-escalation study of TRC105 (anti-Endoglin Antibody) in combination with axitinib in patients with metastatic renal cell carcinoma (mRCC). Annal Oncol 2016; 27(Suppl. 6).
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.e15562]
[158]
Choueiri TK, Michaelson MD, Posadas EM, et al. An open label phase Ib dose escalation study of TRC105 (anti-endoglin antibody) with axitinib in patients with metastatic renal cell carcinoma. Oncologist 2019; 24(2): 202-10.
[http://dx.doi.org/10.1634/theoncologist.2018-0299] [PMID: 30190302]
[159]
Duffy AG, Ma C, Ulahannan SV, et al. Phase I and preliminary phase II study of TRC105 in combination with sorafenib in hepatocellular carcinoma. Clin Cancer Res 2017; 23(16): 4633-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3171] [PMID: 28465443]
[160]
Dorff TB, Longmate JA, Pal SK, et al. Bevacizumab alone or in combination with TRC105 for patients with refractory metastatic renal cell cancer. Cancer 2017; 123(23): 4566-73.
[http://dx.doi.org/10.1002/cncr.30942] [PMID: 28832978]
[161]
Micucci C, Matacchione G, Valli D, Orciari S, Catalano A. HIF2α is involved in the expansion of CXCR4-positive cancer stem-like cells in renal cell carcinoma. Br J Cancer 2015; 113(8): 1178-85.
[http://dx.doi.org/10.1038/bjc.2015.338] [PMID: 26439684]
[162]
Panka DJ, Arbeit RD, Mier JW. Abstract 4155: Regulation of MDSC trafficking and function in RCC by CXCR4 in the presence of a VEGF-R antagonist. Cancer Res 2016; 76(14): 4155.
[http://dx.doi.org/10.1158/1538-7445.AM2016-4155]
[163]
Wang L, Huang T, Chen W, et al. Silencing of CXCR4 by RNA interference inhibits cell growth and metastasis in human renal cancer cells. Oncol Rep 2012; 28(6): 2043-8.
[http://dx.doi.org/10.3892/or.2012.2028] [PMID: 22972438]
[164]
Portella L, Vitale R, De Luca S, et al. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases. PLoS One 2013; 8(9) e74548
[http://dx.doi.org/10.1371/journal.pone.0074548] [PMID: 24058588]
[165]
Santagata S, Napolitano M, D’Alterio C, et al. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer. Oncotarget 2017; 8(44): 77110-20.
[http://dx.doi.org/10.18632/oncotarget.20363] [PMID: 29100374]
[166]
Peng SB, Zhang X, Paul D, et al. Identification of LY2510924, a novel cyclic peptide CXCR4 antagonist that exhibits antitumor activities in solid tumor and breast cancer metastatic models. Mol Cancer Ther 2015; 14(2): 480-90.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0850] [PMID: 25504752]
[167]
Hainsworth JD, Reeves JA, Mace JR, et al. A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib Versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target Oncol 2016; 11(5): 643-53.
[http://dx.doi.org/10.1007/s11523-016-0434-9] [PMID: 27154357]
[168]
Gironmichel J, Azzi S, Khawam K, et al. Interleukin-15 plays a central role in human kidney physiology and cancer through the γc signaling pathway. PLoS One 2012; 7(2): 1-14.
[http://dx.doi.org/10.1371/journal.pone.0031624] [PMID: 22363690]
[169]
Giron-Michel J, Azzi S, Ferrini S, et al. Interleukin-15 is a major regulator of the cell-microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev 2013; 24(1): 13-22.
[http://dx.doi.org/10.1016/j.cytogfr.2012.08.006] [PMID: 22981349]
[170]
Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J Clin Oncol 2015; 33(1): 74-82.
[http://dx.doi.org/10.1200/JCO.2014.57.3329] [PMID: 25403209]
[171]
Curtis SA, Cohen JV, Kluger HM. Evolving Immunotherapy Approaches for Renal Cell Carcinoma. Curr Oncol Rep 2016; 18(9): 57.
[http://dx.doi.org/10.1007/s11912-016-0542-9] [PMID: 27475806]
[172]
Derosa L, Albiges L, Escudier B. Targeting the Pd-1 Pathway in Renal Cell Carcinoma: A Review. J Onco-Nephrol 2017; 1(3): 179-87.
[http://dx.doi.org/10.5301/jo-n.5000027]
[173]
Gill D, Hahn AW, Sonpavde G, Agarwal N. Immunotherapy of advanced renal cell carcinoma: Current and future therapies. Hum Vaccin Immunother 2016; 12(12): 2997-3004.
[http://dx.doi.org/10.1080/21645515.2016.1212794] [PMID: 27494417]
[174]
Codd AS, Kanaseki T, Torigo T, Tabi Z. Cancer stem cells as targets for immunotherapy. Immunology 2018; 153(3): 304-14.
[http://dx.doi.org/10.1111/imm.12866] [PMID: 29150846]
[175]
Luna JI, Grossenbacher SK, Murphy WJ, Canter RJ. Targeting cancer stem cells with natural killer cell immunotherapy. Expert Opin Biol Ther 2017; 17(3): 313-24.
[http://dx.doi.org/10.1080/14712598.2017.1271874] [PMID: 27960589]
[176]
Zhang XF, Weng DS, Pan K, et al. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog 2017; 56(11): 2499-511.
[http://dx.doi.org/10.1002/mc.22697] [PMID: 28621442]
[177]
Schanza LM, Seles M, Stotz M, et al. MicroRNAs associated with von hippel-lindau pathway in renal cell carcinoma: a comprehensive review. Int J Mol Sci 2017; 18(11): 1-12.
[http://dx.doi.org/10.3390/ijms18112495] [PMID: 29165391]
[178]
Zhu J, Zhu DQ, Zhang Y, et al. MicroRNA-363 inhibits angiogenesis, proliferation, invasion, and migration of renal cell carcinoma via inactivation of the Janus tyrosine kinases 2-signal transducers and activators of transcription 3 axis by suppressing growth hormone receptor gene. J Cell Physiol 2019; 234(3): 2581-92.
[http://dx.doi.org/10.1002/jcp.27020] [PMID: 30229899]
[179]
Yun EJ, Zhou J, Lin CJ, et al. The network of DAB2IP-miR-138 in regulating drug resistance of renal cell carcinoma associated with stem-like phenotypes. Oncotarget 2017; 8(40): 66975-86.
[http://dx.doi.org/10.18632/oncotarget.17756] [PMID: 28978010]
[180]
An F, Liu Y, Hu Y. miR-21 inhibition of LATS1 promotes proliferation and metastasis of renal cancer cells and tumor stem cell phenotype. Oncol Lett 2017; 14(4): 4684-8.
[http://dx.doi.org/10.3892/ol.2017.6746] [PMID: 29085468]
[181]
Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 2011; 71(15): 5346-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0241] [PMID: 21670082]
[182]
Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory effects of microrna-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J Cancer 2011; 2(211): 515-26.
[http://dx.doi.org/10.7150/jca.2.515] [PMID: 22043236]
[183]
Liu GL, Yang H-J, Liu B, Liu T. Effects of MicroRNA-19b on the proliferation, apoptosis, and migration of wilms’ tumor cells via the PTEN/PI3K/AKT signaling pathway. J Cell Biochem 2017; 118(10): 3424-34.
[http://dx.doi.org/10.1002/jcb.25999] [PMID: 28322459]
[184]
Shen S, Xia JX, Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials 2016; 74: 1-18.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.037] [PMID: 26433488]
[185]
Xia P. Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 2014; 9(2): 102-11.
[http://dx.doi.org/10.2174/1574888X09666131217003709] [PMID: 24359139]
[186]
Kulkarni AA, Vijaykumar VE, Natarajan SK, Sengupta S, Sabbisetti VS. Sustained inhibition of cMET-VEGFR2 signaling using liposome-mediated delivery increases efficacy and reduces toxicity in kidney cancer. Nanomedicine (Lond) 2016; 12(7): 1853-61.
[http://dx.doi.org/10.1016/j.nano.2016.04.002] [PMID: 27084552]
[187]
Yang Q, Wang Y, Yang Q, et al. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials 2017; 146(5): 72-85.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.008] [PMID: 28898759]
[188]
Markovsky E, Vax E, Ben-Shushan D, et al. Wilms tumor ncam-expressing cancer stem cells as potential therapeutic target for polymeric nanomedicine. Mol Cancer Ther 2017; 16(11): 2462-72.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0184] [PMID: 28729402]
[189]
Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials 2017; 136: 98-114.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.013] [PMID: 28525855]
[190]
Min WK, Jeong HY, Kang SJ, et al. Cancer-targeted nucleic acid delivery and quantum dot imaging using EGF receptor aptamer-conjugated lipid nanoparticles. Sci Rep 2017; 7(1): 1-11.
[PMID: 28127051]
[191]
Ding H, Cai Y, Gao L, et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett 2019; 19(1): 203-9.
[http://dx.doi.org/10.1021/acs.nanolett.8b03709] [PMID: 30539641]
[192]
Gan BK, Yong CY, Ho KL, Omar AR, Alitheen NB, Tan WS. Targeted delivery of cell penetrating peptide virus-like nanoparticles to skin cancer cells. Sci Rep 2018; 8(1): 8499.
[http://dx.doi.org/10.1038/s41598-018-26749-y] [PMID: 29855618]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy