Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Evaluation of Anticancer, Antibacterial and Antioxidant Properties of a Medicinally Treasured Fern Tectaria coadunata with its Phytoconstituents Analysis by HR-LCMS

Author(s): Mandadi N. Reddy, Mohd. Adnan*, Mousa M. Alreshidi, Mohd. Saeed and Mitesh Patel

Volume 20, Issue 15, 2020

Page: [1845 - 1856] Pages: 12

DOI: 10.2174/1871520620666200318101938

Price: $65

conference banner
Abstract

Background: Tectaria coadunata (T. coadunata) is an important fern species with a number of medicinal properties. It has been evidently found for its effectiveness in ethanomedicinal usage, which can also emerge as one of the most promising sources for nutraceuticals.

Objective: This study aims to examine the phytochemistry of the whole crude extract of T. coadunata for the first time with evaluation of antibacterial, antioxidant and anticancer activity.

Methods: High Resolution Liquid Chromatography Mass Spectrometry analysis (HR-LCMS) was performed for confirming the presence of biologically active constituents in the extract of T. coadunata followed by antibacterial, antioxidant and anticancer activity.

Results: With the detailed Mass spectra data, absorbance spectra and retention times, chemical composition of T. coadunata holds a diverse group of bioactive/chemical components such as sugars, sugar alcohol, flavonoids, terpenoids and phenolics. The results for antioxidant activity showed that T. coadunata crude extract had higher scavenging potential against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals than H2O2 molecules, which was followed by positive antibacterial activity against several pathogenic bacteria like Shigella flexneri, Staphylococcus aureus and Salmonella typhi.

Discussion: The ethanolic extract of T. coadunata showed favorable antiproliferation activity against three leukemic (KG1, MOLT-3 and K-562) cells in a dose dependent manner, especially for KG1 42.850±1.24μg/ml.

Conclusion: This study has provided a better understanding of the presence of biologically active phytochemical constituents in the extract of T. coadunata, which can be the reason for its bioactive potential. Moreover, T. coadunata has significant anticancer activities against human leukemic cancer cell lines, indicating it as a potential anticancer agent.

Keywords: Tectaria coadunata, phytochemical analysis, HR-LCMS, antibacterial, antioxidant, anticancer, leukemia, ethanomedicinal plants.

Graphical Abstract
[1]
Adnan, M.; Alshammari, E.; Patel, M.; Amir Ashraf, S.; Khan, S.; Hadi, S. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: Necessity for green chemistry. PeerJ, 2018, 6, e5049
[http://dx.doi.org/10.7717/peerj.5049 ] [PMID: 29967730]
[2]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042 ] [PMID: 28937585]
[3]
Koo, Y.E.; Song, J.; Bae, S. Use of plant and herb derived medicine for therapeutic usage in cardiology. Medicines (Basel), 2018, 5(2), 38.
[http://dx.doi.org/10.3390/medicines5020038 ] [PMID: 29690545]
[4]
Chettri, S.; Manivannan, S.; Muddarsu, V.R. Nutrient and elemental composition of wild edible ferns of the Himalaya. Am. Fern J., 2018, 108, 95-106.
[http://dx.doi.org/10.1640/0002-8444-108.3.95]
[5]
Malviya, J.; Joshi, V.; Singh, K. Antimicrobial activity of some ethnomedicinal plants used by Baiga tribes from Amarkantak, India. Adv. Life Sci. Technol., 2012, 4, 186-187.
[6]
Upreti, K.; Jalal, J.; Tewari, L.; Joshi, J.; Pangtey, Y.P.S.; Tewari, G. Ethnomedicinal uses of pteridophytes of Kumaun Himalaya, Uttrakhand, India. Am. J. Sci., 2009, 5, 167-170.
[7]
Baskaran, X.R.; Geo Vigila, A.V.; Zhang, S.Z.; Feng, S.X.; Liao, W.B. A review of the use of pteridophytes for treating human ailments. J. Zhejiang Univ. Sci. B, 2018, 19(2), 85-119.
[http://dx.doi.org/10.1631/jzus.B1600344 ] [PMID: 29405039]
[8]
Adnan, M.; Patel, M.; Hadi, S. Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. PeerJ, 2017, 5, e3085
[http://dx.doi.org/10.7717/peerj.3085 ] [PMID: 28316889]
[9]
Adnan, M.; Patel, M.; Reddy, M.N.; Alshammari, E. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid. Sci. Rep., 2018, 8(1), 1740.
[http://dx.doi.org/10.1038/s41598-018-20237-z ] [PMID: 29379181]
[10]
Wang, J.F.; Su, R.B.; Wu, N.; Xu, B.; Lu, X.Q.; Liu, Y.; Li, J. Inhibitory effect of agmatine on proliferation of tumor cells by modulation of polyamine metabolism. Acta Pharmacol. Sin., 2005, 26(5), 616-622.
[PMID: 15842783]
[11]
Zhang, L.; Liu, W.S.; Han, B.Q.; Peng, Y.F.; Wang, D.F. Antitumor activities of D-glucosamine and its derivatives. J. Zhejiang Univ. Sci. B, 2006, 7(8), 608-614.
[http://dx.doi.org/10.1631/jzus.2006.B0608 ] [PMID: 16845712]
[12]
Hirakawa, N.; Okauchi, R.; Miura, Y.; Yagasaki, K. Anti-invasive activity of niacin and trigonelline against cancer cells. Biosci. Biotechnol. Biochem., 2005, 69(3), 653-658.
[http://dx.doi.org/10.1271/bbb.69.653 ] [PMID: 15785001]
[13]
Yi, E.Y.; Kim, Y.J. Betaine inhibits in vitro and in vivo angiogenesis through suppression of the NF-κB and Akt signaling pathways. Int. J. Oncol., 2012, 41(5), 1879-1885.
[http://dx.doi.org/10.3892/ijo.2012.1616 ] [PMID: 22940742]
[14]
Engle, D.B.; Belisle, J.A.; Gubbels, J.A.A.; Petrie, S.E.; Hutson, P.R.; Kushner, D.M.; Patankar, M.S. Effect of acetyl-l-carnitine on ovarian cancer cells’ proliferation, nerve growth factor receptor (Trk-A and p75) expression, and the cytotoxic potential of paclitaxel and carboplatin. Gynecol. Oncol., 2009, 112(3), 631-636.
[http://dx.doi.org/10.1016/j.ygyno.2008.11.020 ] [PMID: 19263582]
[15]
Sinthupoom, N.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Nicotinic acid and derivatives as multifunctional pharmacophores for medical applications. Eur. Food Res. Technol., 2014, 240, 1-17.
[http://dx.doi.org/10.1007/s00217-014-2354-1]
[16]
Xiao, F.; Wang, C.; Yin, H.; Yu, J.; Chen, S.; Fang, J.; Guo, F. Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget, 2016, 7(39), 63679-63689.
[http://dx.doi.org/10.18632/oncotarget.11626 ] [PMID: 27579768]
[17]
Suh, D.Y.; Han, Y.N.; Han, B.H. Maltol, an antioxidant component of Korean red ginseng, shows little prooxidant activity. Arch. Pharm. Res., 1996, 19, 112-115.
[http://dx.doi.org/10.1007/BF02976844]
[18]
Joondan, N.; Laulloo, S.J.; Caumul, P.; Kharkar, P.S. Antioxidant, antidiabetic and anticancer activities of L-phenylalanine and L-tyrosine ester surfactants: In vitro and in silico studies of their interactions with macromolecules as plausible mode of action for their biological properties. Curr. Bioact. Compd., 2018, 15(6), 610-622.
[19]
Cloonan, S.M.; Keating, J.J.; Butler, S.G.; Knox, A.J.; Jørgensen, A.M.; Peters, G.H.; Rai, D.; Corrigan, D.; Lloyd, D.G.; Williams, D.C.; Meegan, M.J. Synthesis and serotonin transporter activity of sulphur-substituted alpha-alkyl phenethylamines as a new class of anticancer agents. Eur. J. Med. Chem., 2009, 44(12), 4862-4888.
[http://dx.doi.org/10.1016/j.ejmech.2009.07.027 ] [PMID: 19717215]
[20]
Phillips, J.P. The reactions of 8-quinolinol. Chem. Rev., 1956, 56, 271-297.
[http://dx.doi.org/10.1021/cr50008a003]
[21]
Walczak, K.; Turski, W.A.; Rajtar, G. Kynurenic acid inhibits colon cancer proliferation in vitro: Effects on signaling pathways. Amino Acids, 2014, 46(10), 2393-2401.
[http://dx.doi.org/10.1007/s00726-014-1790-3 ] [PMID: 25012123]
[22]
Leal, L.K.; Ferreira, A.A.; Bezerra, G.A.; Matos, F.J.; Viana, G.S. Antinociceptive, anti-inflammatory and bronchodilator activities of Brazilian medicinal plants containing coumarin: A comparative study. J. Ethnopharmacol., 2000, 70(2), 151-159.
[http://dx.doi.org/10.1016/S0378-8741(99)00165-8 ] [PMID: 10771205]
[23]
Lino, C.S.; Taveira, M.L.; Viana, G.S.B.; Matos, F.J.A. Analgesic and antiinflammatory activities of Justicia pectoralis Jacq and its main constituents: Coumarin and umbelliferone. Phytother. Res., 1997, 11, 211-215.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199705)11:3<211:AID-PTR72>3.0.CO;2-W]
[24]
Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G.; Sasikumar, P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur. J. Pharmacol., 2011, 670(2-3), 623-631.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.159 ] [PMID: 21963451]
[25]
Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Gu, L.; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int., 2018, 18, 102.
[http://dx.doi.org/10.1186/s12935-018-0595-y ] [PMID: 30013454]
[26]
Zhang, W.Y.; Lee, J.J.; Kim, Y.; Kim, I.S.; Han, J.H.; Lee, S.G.; Ahn, M.J.; Jung, S.H.; Myung, C.S. Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J. Agric. Food Chem., 2012, 60(31), 7652-7658.
[http://dx.doi.org/10.1021/jf300601z ] [PMID: 22809065]
[27]
Jung, J.C.; Lee, J.H.; Oh, S.; Lee, J.G.; Park, O.S. Synthesis and antitumor activity of 4-hydroxycoumarin derivatives. Bioorg. Med. Chem. Lett., 2004, 14(22), 5527-5531.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.009 ] [PMID: 15482917]
[28]
An, F.; Yang, G.; Tian, J.; Wang, S. Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in D-galactose-aged mice. Neural Regen. Res., 2012, 7(33), 2565-2575.
[PMID: 25368632]
[29]
Thangaraj, K.; Balasubramanian, B.; Park, S.; Natesan, K.; Liu, W.; Manju, V. Orientin induces G0/G1 cell cycle arrest and mitochondria mediated intrinsic apoptosis in human colorectal carcinoma HT29 cells. Biomolecules, 2019, 9(9), 418.
[http://dx.doi.org/10.3390/biom9090418 ] [PMID: 31461995]
[30]
Kim, H.; Kong, H.; Choi, B.; Yang, Y.; Kim, Y.; Lim, M.J.; Neckers, L.; Jung, Y. Metabolic and pharmacological properties of rutin, a dietary quercetin glycoside, for treatment of inflammatory bowel disease. Pharm. Res., 2005, 22(9), 1499-1509.
[http://dx.doi.org/10.1007/s11095-005-6250-z ] [PMID: 16132362]
[31]
Liu, X.; Jiang, Q.; Liu, H.; Luo, S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol. Res., 2019, 52(1), 7.
[http://dx.doi.org/10.1186/s40659-019-0214-y ] [PMID: 30797236]
[32]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335 ] [PMID: 21428901]
[33]
Luo, J.; Hu, Y.L.; Wang, H. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp. Ther. Med., 2017, 14(4), 3623-3631.
[http://dx.doi.org/10.3892/etm.2017.4965 ] [PMID: 29042957]
[34]
Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Reddy, B.V. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem., 2011, 349(1-2), 11-19.
[http://dx.doi.org/10.1007/s11010-010-0655-7 ] [PMID: 21116690]
[35]
Blando, F.; Calabriso, N.; Berland, H.; Maiorano, G.; Gerardi, C.; Carluccio, M.A.; Andersen, Ø.M. Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. Int. J. Mol. Sci., 2018, 19(1), 169.
[http://dx.doi.org/10.3390/ijms19010169 ] [PMID: 29316619]
[36]
Maharaj, D.S.; Glass, B.D.; Daya, S. Melatonin: New places in therapy. Biosci. Rep., 2007, 27(6), 299-320.
[http://dx.doi.org/10.1007/s10540-007-9052-1 ] [PMID: 17828452]
[37]
Álvarez-Diduk, R.; Galano, A.; Tan, D.X.; Reiter, R.J. N-acetylserotonin and 6-hydroxymelatonin against oxidative stress: Implications for the overall protection exerted by melatonin. J. Phys. Chem. B, 2015, 119(27), 8535-8543.
[http://dx.doi.org/10.1021/acs.jpcb.5b04920 ] [PMID: 26079042]
[38]
Ferguson, L.R.; Lim, I.F.; Pearson, A.E.; Ralph, J.; Harris, P.J. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutat. Res., 2003, 542(1-2), 49-58.
[http://dx.doi.org/10.1016/j.mrgentox.2003.08.005 ] [PMID: 14644353]
[39]
Kroon, P.A.; Williamson, G. Hydroxycinnamates in plants and food: current and future perspectives. J. Sci. Food Agric., 1999, 79, 355-361.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<355:AID-JSFA255>3.0.CO;2-G]
[40]
Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med., 2016, 5(10), 3007-3017.
[http://dx.doi.org/10.1002/cam4.816 ] [PMID: 27696789]
[41]
Lan, L.; Wang, Y.; Pan, Z.; Wang, B.; Yue, Z.; Jiang, Z.; Li, L.; Wang, C.; Tang, H. Rhamnetin induces apoptosis in human breast cancer cells via the miR-34a/Notch-1 signaling pathway. Oncol. Lett., 2019, 17(1), 676-682.
[PMID: 30655816]
[42]
Abraham, I.; Joshi, R.; Pardasani, P.; Pardasani, R.T. Recent advances in 1,4-benzoquinone chemistry. J. Braz. Chem., 2011, 22, 385-421.
[http://dx.doi.org/10.1590/S0103-50532011000300002]
[43]
Cheng, W.Y.; Chiao, M.T.; Liang, Y.J.; Yang, Y.C.; Shen, C.C.; Yang, C.Y. Luteolin inhibits migration of human glioblastoma U-87 MG and T98G cells through downregulation of Cdc42 expression and PI3K/AKT activity. Mol. Biol. Rep., 2013, 40(9), 5315-5326.
[http://dx.doi.org/10.1007/s11033-013-2632-1 ] [PMID: 23677714]
[44]
Dasari, R.; De Carvalho, A.; Medellin, D.C.; Middleton, K.N.; Hague, F.; Volmar, M.N.M.; Frolova, L.V.; Rossato, M.F.; De La Chapa, J.J.; Dybdal-Hargreaves, N.F.; Pillai, A.; Mathieu, V.; Rogelj, S.; Gonzales, C.B.; Calixto, J.B.; Evidente, A.; Gautier, M.; Munirathinam, G.; Glass, R.; Burth, P.; Pelly, S.C.; van Otterlo, W.A.L.; Kiss, R.; Kornienko, A. Synthetic and biological studies of sesquiterpene polygodial: Activity of 9-epipolygodial against drug-resistant cancer cellS. ChemMedChem, 2015, 10(12), 2014-2026.
[http://dx.doi.org/10.1002/cmdc.201500360 ] [PMID: 26434977]
[45]
Lin, X.; Ozbey, U.; Sabitaliyevich, U.Y.; Attar, R.; Ozcelik, B.; Zhang, Y.; Guo, M.; Liu, M.; Alhewairini, S.S.; Farooqi, A.A. Maslinic acid as an effective anticancer agent. Cell. Mol. Biol., 2018, 64(10), 87-91.
[http://dx.doi.org/10.14715/cmb/2018.64.10.14 ] [PMID: 30084808]
[46]
Lin, F.H.; Lin, J.Y.; Gupta, R.D.; Tournas, J.A.; Burch, J.A.; Selim, M.A.; Monteiro-Riviere, N.A.; Grichnik, J.M.; Zielinski, J.; Pinnell, S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Invest. Dermatol., 2005, 125(4), 826-832.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23768.x ] [PMID: 16185284]
[47]
Król, S.K.; Kiełbus, M.; Rivero-Müller, A.; Stepulak, A. Comprehensive review on betulin as a potent anticancer agent. BioMed Res. Int., 2015, 2015, 584189
[http://dx.doi.org/10.1155/2015/584189 ] [PMID: 25866796]
[48]
Tang, J.J.; Li, J.G.; Qi, W.; Qiu, W.W.; Li, P.S.; Li, B.L.; Song, B.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab., 2011, 13(1), 44-56.
[http://dx.doi.org/10.1016/j.cmet.2010.12.004 ] [PMID: 21195348]
[49]
Donio, M.B.S.; Ronica, F.A.; Viji, V.T.; Velmurugan, S.; Jenifer, J.S.; Michaelbabu, M.; Dhar, P.; Citarasu, T. Halomonas sp. BS4, A biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. Springerplus, 2013, 2(1), 149.
[http://dx.doi.org/10.1186/2193-1801-2-149 ] [PMID: 23667807]
[50]
Zhao, B.; Tomoda, Y.; Mizukami, H.; Makino, T. 9-Oxo-(10E,12E)-octadecadienoic acid, a cytotoxic fatty acid ketodiene isolated from eggplant calyx, induces apoptosis in human ovarian cancer (HRA) cells. J. Nat. Med., 2015, 69(3), 296-302.
[http://dx.doi.org/10.1007/s11418-015-0892-x ] [PMID: 25724148]
[51]
Liu, J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol., 2005, 100(1-2), 92-94.
[http://dx.doi.org/10.1016/j.jep.2005.05.024 ] [PMID: 15994040]
[52]
Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic Acid (UA): A metabolite with promising therapeutic potential. Life Sci., 2016, 146, 201-213.
[http://dx.doi.org/10.1016/j.lfs.2016.01.017 ] [PMID: 26775565]
[53]
Tratsk, K.S.; Campos, M.M.; Vaz, Z.R.; Filho, V.C.; Schlemper, V.; Yunes, R.A.; Calixto, J.B. Anti-allergic effects and oedema inhibition caused by the extract of Drymis winteri. Inflamm. Res., 1997, 46(12), 509-514.
[http://dx.doi.org/10.1007/s000110050234 ] [PMID: 9459082]
[54]
da Cunha, F.M.; Fröde, T.S.; Mendes, G.L.; Malheiros, A.; Cechinel Filho, V.; Yunes, R.A.; Calixto, J.B. Additional evidence for the anti-inflammatory and anti-allergic properties of the sesquiterpene polygodial. Life Sci., 2001, 70(2), 159-169.
[http://dx.doi.org/10.1016/S0024-3205(01)01387-X ] [PMID: 11787941]
[55]
Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm., 2011, 403(1-2), 136-138.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035 ] [PMID: 20933071]
[56]
Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol., 2010, 48(3), 937-943.
[http://dx.doi.org/10.1016/j.fct.2010.01.003 ] [PMID: 20064576]
[57]
Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal., 2004, 35(2), 289-301.
[http://dx.doi.org/10.1016/S0731-7085(03)00645-9 ] [PMID: 15063463]
[58]
Komatsu, S.; Yanaka, N.; Matsubara, K.; Kato, N. Antitumor effect of vitamin B6 and its mechanisms. Biochim. Biophys. Acta, 2003, 1647(1-2), 127-130.
[http://dx.doi.org/10.1016/S1570-9639(03)00076-1 ] [PMID: 12686121]
[59]
Dutta, S.; Ray, S.; Nagarajan, K. Glutamic acid as anticancer agent: An overview. Saudi Pharm. J., 2013, 21(4), 337-343.
[http://dx.doi.org/10.1016/j.jsps.2012.12.007 ] [PMID: 24227952]
[60]
Arentsen, H.C.; Jansen, C.F.; Hulsbergen-van de Kaa, C.A.; Laihia, J.K.; Pylkkänen, L.; Leino, L.; Oosterwijk, E.; Witjes, J.A. Antitumor effects of cis-urocanic acid on experimental urothelial cell carcinoma of the bladder. J. Urol., 2012, 187(4), 1445-1449.
[http://dx.doi.org/10.1016/j.juro.2011.11.080 ] [PMID: 22341270]
[61]
Min, J.; Shen, H.; Xi, W.; Wang, Q.; Yin, L.; Zhang, Y.; Yu, Y.; Yang, Q.; Wang, Z.N. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cell. Physiol. Biochem., 2018, 48(4), 1433-1442.
[http://dx.doi.org/10.1159/000492253 ] [PMID: 30064123]
[62]
Kim, R.K.; Suh, Y.; Yoo, K.C.; Cui, Y.H.; Hwang, E.; Kim, H.J.; Kang, J.S.; Kim, M.J.; Lee, Y.Y.; Lee, S.J. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Sci., 2015, 106(1), 94-101.
[http://dx.doi.org/10.1111/cas.12562 ] [PMID: 25456733]
[63]
Imran, M.; Rauf, A.; Shah, Z.A.; Saeed, F.; Imran, A.; Arshad, M.U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D.G.; Mubarak, M.S. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res., 2019, 33(2), 263-275.
[http://dx.doi.org/10.1002/ptr.6227 ] [PMID: 30402931]
[64]
Marfe, G.; Tafani, M.; Indelicato, M.; Sinibaldi-Salimei, P.; Reali, V.; Pucci, B.; Fini, M.; Russo, M.A. Kaempferol induces apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial dysfunction. J. Cell. Biochem., 2009, 106(4), 643-650.
[http://dx.doi.org/10.1002/jcb.22044 ] [PMID: 19160423]
[65]
Volate, S.R.; Davenport, D.M.; Muga, S.J.; Wargovich, M.J. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin). Carcinogenesis, 2005, 26(8), 1450-1456.
[http://dx.doi.org/10.1093/carcin/bgi089 ] [PMID: 15831530]
[66]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177 ] [PMID: 31261749]
[67]
Cho, E.; Chung, E.Y.; Jang, H.Y.; Hong, O.Y.; Chae, H.S.; Jeong, Y.J.; Kim, S.Y.; Kim, B.S.; Yoo, D.J.; Kim, J.S.; Park, K.H. Anticancer effect of Cyanidin-3-glucoside from Mulberry via caspase-3 clevage and DNA fragmentation in vitro and in vivo. Anticancer. Agents Med. Chem., 2017, 17(11), 1519-1525.
[http://dx.doi.org/10.2174/1871520617666170327152026 ] [PMID: 28356020 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy