General Review Article

微管蛋白 Maytansine位点结合配体及其在肿瘤治疗中的应用

卷 27, 期 27, 2020

页: [4567 - 4576] 页: 10

弟呕挨: 10.2174/0929867327666200316144610

价格: $65

conference banner
摘要

背景:微管靶向药物(MTAs)是最成功的癌症化疗抗癌药物。MTAs通过干扰微管蛋白聚合和解聚动力学,影响细胞内转运和细胞信号通路,抑制细胞有丝分裂和细胞增殖,诱导细胞凋亡和死亡。微管蛋白maytansin位点结合剂是天然或天然衍生的产物,代表一种MTAs,可抑制微管蛋白聚合,并在体内外均表现出强大的抗肿瘤活性。它们在癌症化疗中被用作抗体-药物偶联物(ADCs)。 方法:以SciFinderR为工具,对有关maytansine及其衍生物、maytansine结合位点、maytansine位点结合剂及其作为MTAs在癌症治疗中的应用进行调查,排除作为专利发表的文献。临床试验的最新进展可从临床试验网站获得。 结果:本文介绍了MTAs、maytansin、maytansin结合位点及其配体,以及这些配体作为MTAs和ADCs在肿瘤治疗中的应用。 结论:maytansin位点结合剂是肿瘤化疗的强效MTAs。基于maytansin位点配体的ADCs被用于临床或临床试验中作为癌症靶向治疗,以提高其选择性并减少其副作用。进一步提高ADCs的传递效率将有利于肿瘤靶向治疗的患者。

关键词: 微管靶向药物,maytansin结合位点,根瘤毒素,普洛卡布林,抗体-药物偶联物,曲妥珠单抗。

[1]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[2]
Nogales, E.; Wolf, S.G.; Downing, K.H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature, 1998, 391(6663), 199-203.
[http://dx.doi.org/10.1038/34465] [PMID: 9428769]
[3]
Field, J.J.; Waight, A.B.; Senter, P.D. A previously undescribed tubulin binder. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13684-13685.
[http://dx.doi.org/10.1073/pnas.1414572111] [PMID: 25187564]
[4]
Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol., 1997, 13, 83-117.
[http://dx.doi.org/10.1146/annurev.cellbio.13.1.83] [PMID: 9442869]
[5]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[6]
Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther., 2014, 13(2), 275-284.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0791] [PMID: 24435445]
[7]
Stanton, R.A.; Gernert, K.M.; Nettles, J.H.; Aneja, R. Drugs that target dynamic microtubules: a new molecular perspective. Med. Res. Rev., 2011, 31(3), 443-481.
[http://dx.doi.org/10.1002/med.20242] [PMID: 21381049]
[8]
Prota, A.E.; Bargsten, K.; Zurwerra, D.; Field, J.J.; Díaz, J.F.; Altmann, K.H.; Steinmetz, M.O. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science, 2013, 339(6119), 587-590.
[http://dx.doi.org/10.1126/science.1230582] [PMID: 23287720]
[9]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
[10]
Gigant, B.; Wang, C.; Ravelli, R.B.; Roussi, F.; Steinmetz, M.O.; Curmi, P.A.; Sobel, A.; Knossow, M. Structural basis for the regulation of tubulin by vinblastine. Nature, 2005, 435(7041), 519-522.
[http://dx.doi.org/10.1038/nature03566] [PMID: 15917812]
[11]
Akhmanova, A.; Steinmetz, M.O. Control of microtubule organization and dynamics: two ends in the limelight. Nat. Rev. Mol. Cell Biol., 2015, 16(12), 711-726.
[http://dx.doi.org/10.1038/nrm4084] [PMID: 26562752]
[12]
Prota, A.E.; Setter, J.; Waight, A.B.; Bargsten, K.; Murga, J.; Diaz, J.F.; Steinmetz, M.O. Pironetin binds covalently to alphaCys316 and perturbs a major loop and helix of alpha-tubulin to inhibit microtubule formation. J. Mol. Biol., 2016, 428(15), 2981-2988.
[http://dx.doi.org/10.1016/j.jmb.2016.06.023] [PMID: 27395016]
[13]
Yang, J.; Wang, Y.; Wang, T.; Jiang, J.; Botting, C.H.; Liu, H.; Chen, Q.; Yang, J.; Naismith, J.H.; Zhu, X.; Chen, L. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat. Commun., 2016, 7, 12103.
[http://dx.doi.org/10.1038/ncomms12103] [PMID: 27357539]
[14]
Menchon, G.; Prota, A.E.; Lucena-Agell, D.; Bucher, P.; Jansen, R.; Irschik, H.; Müller, R.; Paterson, I.; Díaz, J.F.; Altmann, K.H.; Steinmetz, M.O. A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin. Nat. Commun., 2018, 9(1), 2106.
[http://dx.doi.org/10.1038/s41467-018-04535-8] [PMID: 29844393]
[15]
Silvestri, R. New prospects for vinblastine analogues as anticancer agents. J. Med. Chem., 2013, 56(3), 625-627.
[http://dx.doi.org/10.1021/jm400002j] [PMID: 23316748]
[16]
Jordan, M.A.; Wendell, K.; Gardiner, S.; Derry, W.B.; Copp, H.; Wilson, L. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res., 1996, 56(4), 816-825.
[PMID: 8631019]
[17]
Panchagnula, R. Pharmaceutical aspects of paclitaxel. Int. J. Pharm., 1998, 172(1-2), 1-15.
[http://dx.doi.org/10.1016/S0378-5173(98)00188-4] [PMID: 15129967]
[18]
Khanna, C.; Rosenberg, M.; Vail, D.M. A review of paclitaxel and novel formulations including those suitable for use in dogs. J. Vet. Intern. Med., 2015, 29(4), 1006-1012.
[http://dx.doi.org/10.1111/jvim.12596] [PMID: 26179168]
[19]
Ojima, I.; Lichtenthal, B.; Lee, S.; Wang, C.; Wang, X. Taxane anticancer agents: a patent perspective. Expert Opin. Ther. Pat., 2016, 26(1), 1-20.
[http://dx.doi.org/10.1517/13543776.2016.1111872] [PMID: 26651178]
[20]
Cheng, K.L.; Bradley, T.; Budman, D.R. Novel microtubule-targeting agents - the epothilones. Biologics, 2008, 2(4), 789-811.
[http://dx.doi.org/10.2147/btt.s3487] [PMID: 19707459]
[21]
Brogdon, C.F.; Lee, F.Y.; Canetta, R.M. Development of other microtubule-stabilizer families: the epothilones and their derivatives. Anticancer Drugs, 2014, 25(5), 599-609.
[http://dx.doi.org/10.1097/CAD.0000000000000071] [PMID: 24398663]
[22]
DeConti, R.C.; Algazi, A.P.; Andrews, S.; Urbas, P.; Born, O.; Stoeckigt, D.; Floren, L.; Hwang, J.; Weber, J.; Sondak, V.K.; Daud, A.I. Phase II trial of sagopilone, a novel epothilone analog in metastatic melanoma. Br. J. Cancer, 2010, 103(10), 1548-1553.
[http://dx.doi.org/10.1038/sj.bjc.6605931] [PMID: 20924376]
[23]
Morrow, P.K.; Divers, S.; Provencher, L.; Luoh, S.W.; Petrella, T.M.; Giurescu, M.; Schmelter, T.; Wang, Y.; Hortobagyi, G.N.; Vahdat, L.T. Phase II study evaluating the efficacy and safety of sagopilone (ZK-EPO) in patients with metastatic breast cancer that has progressed following chemotherapy. Breast Cancer Res. Treat., 2010, 123(3), 837-842.
[http://dx.doi.org/10.1007/s10549-010-1102-x] [PMID: 20697802]
[24]
Prota, A.E.; Bargsten, K.; Diaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13817-13821.
[http://dx.doi.org/10.1073/pnas.1408124111] [PMID: 25114240]
[25]
Broderick, J.M. OncLive; FDA Approves Brentuximab Vedotin for CTCL, 2017. Available at:onclive.com/web-exclusives/fda-approves-brentuximab-vedotin-for-ctcl.html
[26]
U.S. Food and Drug Administration. FDA expands approval of Adcetris for first-line treatment of stage III or IV classical Hodgkin lymphoma in combination with chemotherapy, 2018. Available at:fda.gov/news-events/press-announcements/fda-expands-approval-adcetris-first-line-treatment-stage-iii-or-iv-classical-hodgkin-lymphoma.html
[27]
Kupchan, S.M.; Komoda, Y.; Court, W.A.; Thomas, G.J.; Smith, R.M.; Karim, A.; Gilmore, C.J.; Haltiwanger, R.C.; Bryan, R.F. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J. Am. Chem. Soc., 1972, 94(4), 1354-1356.
[http://dx.doi.org/10.1021/ja00759a054] [PMID: 5062169]
[28]
Corey, E.J.; Weigel, L.O.; Chamberlin, A.R.; Cho, H.; Hua, D.H. Total synthesis of maytansine. J. Am. Chem. Soc., 1980, 102(21), 6613-6615.
[http://dx.doi.org/10.1021/ja00541a064]
[29]
Meyers, A.I.; Reider, P.J.; Campbell, A.L. Total synthesis of (+-)-maytansinol. The common precursor to the maytansinoids. J. Am. Chem. Soc., 1980, 102(21), 6597-6518.
[http://dx.doi.org/10.1021/ja00541a054]
[30]
Pera, B.; Barasoain, I.; Pantazopoulou, A.; Canales, A.; Matesanz, R.; Rodriguez-Salarichs, J.; García-Fernandez, L.F.; Moneo, V.; Jimenez-Barbero, J.; Galmarini, C.M.; Cuevas, C.; Penalva, M.A.; Diaz, J.F.; Andreu, J.M. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem. Biol., 2013, 8(9), 2084-2094.
[http://dx.doi.org/10.1021/cb400461j] [PMID: 23859655]
[31]
Widdison, W.C.; Wilhelm, S.D.; Cavanagh, E.E.; Whiteman, K.R.; Leece, B.A.; Kovtun, Y.; Goldmacher, V.S.; Xie, H.; Steeves, R.M.; Lutz, R.J.; Zhao, R.; Wang, L.; Blattler, W.A.; Chari, R.V.J. Semisynthetic maytansine analogues for the targeted treatment of cancer. J. Med. Chem., 2006, 49(14), 4392-4408.
[http://dx.doi.org/10.1021/jm060319f] [PMID: 16821799]
[32]
Chari, R.V.J.; Martell, B.A.; Gross, J.L.; Cook, S.B.; Shah, S.A.; Blattler, W.A.; McKenzie, S.J.; Goldmacher, V.S. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res., 1992, 52(1), 127-131.
[PMID: 1727373]
[33]
Kupchan, S.M.; Sneden, A.T.; Branfman, A.R.; Howie, G.A.; Rebhun, L.I.; McIvor, W.E.; Wang, R.W.; Schnaitman, T.C. Structural requirements for antileukemic activity among the naturally occurring and semisynthetic maytansinoids. J. Med. Chem., 1978, 21(1), 31-37.
[http://dx.doi.org/10.1021/jm00199a006] [PMID: 563462]
[34]
Iwasaki, S.; Kobayashi, H.; Furukawa, J.; Namikoshi, M.; Okuda, S.; Sato, Z.; Matsuda, I.; Noda, T. Studies on macrocyclic lactone antibiotics. VII. Structure of a phytotoxin “rhizoxin” produced by Rhizopus chinensis. J. Antibiot. (Tokyo), 1984, 37(4), 354-362.
[http://dx.doi.org/10.7164/antibiotics.37.354] [PMID: 6547134]
[35]
White, J.D.; Blakemore, P.R.; Green, N.J.; Hauser, E.B.; Holoboski, M.A.; Keown, L.E.; Nylund Kolz, C.S.; Phillips, B.W. Total synthesis of rhizoxin D, a potent antimitotic agent from the fungus Rhizopus chinensis. J. Org. Chem., 2002, 67(22), 7750-7760.
[http://dx.doi.org/10.1021/jo020537q] [PMID: 12398499]
[36]
Nakada, M.; Kobayashi, S.; Iwasaki, S.; Ohuo, M. The first total synthesis of the antitumor macrolide rhizoxin: synthesis of the key building blocks. Tetrahedron Lett., 1993, 34(6), 1035-1038.
[http://dx.doi.org/10.1016/S0040-4039(00)77485-5]
[37]
Nakada, M.; Kobayashi, S.; Shibasaki, M.; Iwasaki, S.; Ohuo, M. The first total synthesis of the antitumor macrolide, rhizoxin. Tetrahedron Lett., 1993, 34(6), 1039-1042.
[http://dx.doi.org/10.1016/S0040-4039(00)77486-7]
[38]
Tsuruo, T.; Oh-hara, T.; Iida, H.; Tsukagoshi, S.; Sato, Z.; Matsuda, I.; Iwasaki, S.; Okuda, S.; Shimizu, F.; Sasagawa, K.; Masaharu, F.; Kuniaki, F.; Masao, A. Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine-resistant sublines. Cancer Res., 1986, 46(1), 381-385.
[PMID: 3753552]
[39]
Hanauske, A.R.; Catimel, G.; Aamdal, S.; ten Bokkel Huinink, W.; Paridaens, R.; Pavlidis, N.; Kaye, S.B.; te Velde, A.; Wanders, J.; Verweij, J. The EORTC Early Clinical Trials Group. Phase II clinical trials with rhizoxin in breast cancer and melanoma. Br. J. Cancer, 1996, 73(3), 397-399.
[http://dx.doi.org/10.1038/bjc.1996.68] [PMID: 8562349]
[40]
Kato, Y.; Ogawa, Y.; Imada, T.; Iwasaki, S.; Shimazaki, N.; Kobayashi, T.; Komai, T. Studies on macrocyclic lactone antibiotics. XIII. Anti-tubulin activity and cytotoxicity of rhizoxin derivatives: synthesis of a photoaffinity derivative. J. Antibiot. (Tokyo), 1991, 44(1), 66-75.
[http://dx.doi.org/10.7164/antibiotics.44.66] [PMID: 2001986]
[41]
Martin, M.J.; Coello, L.; Fernandez, R.; Reyes, F.; Rodriguez, A.; Murcia, C.; Garranzo, M.; Mateo, C.; Sanchez-Sancho, F.; Bueno, S.; de Eguilior, C.; Francesch, A.; Munt, S.; Cuevas, C. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J. Am. Chem. Soc., 2013, 135(27), 10164-10171.
[http://dx.doi.org/10.1021/ja404578u] [PMID: 23750450]
[42]
Martinez-Diez, M.; Guillen-Navarro, M.J.; Pera, B.; Bouchet, B.P.; Martinez-Leal, J.F.; Barasoain, I.; Cuevas, C.; Andreu, J.M.; Garcia-Fernandez, L.F.; Diaz, J.F.; Aviles, P.; Galmarini, C.M. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem. Pharmacol., 2014, 88(3), 291-302.
[http://dx.doi.org/10.1016/j.bcp.2014.01.026] [PMID: 24486569]
[43]
ClinicalTrials.gov. Clinical Trial of PM060184 on Advanced Colorectal Cancer after Standard Treatment, 2018. Available at:clinicaltrials.gov/ct2/show/NCT034272- 68.html
[44]
Cassady, J.M.; Chan, K.K.; Floss, H.G.; Leistner, E. Recent developments in the maytansinoid antitumor agents. Chem. Pharm. Bull. (Tokyo), 2004, 52(1), 1-26.
[http://dx.doi.org/10.1248/cpb.52.1] [PMID: 14709862]
[45]
Kovtun, Y.V.; Audette, C.A.; Ye, Y.; Xie, H.; Ruberti, M.F.; Phinney, S.J.; Leece, B.A.; Chittenden, T.; Blattler, W.A.; Goldmacher, V.S. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res., 2006, 66(6), 3214-3221.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3973] [PMID: 16540673]
[46]
Junttila, T.T.; Li, G.; Parsons, K.; Phillips, G.L.; Sliwkowski, M.X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat., 2011, 128(2), 347-356.
[http://dx.doi.org/10.1007/s10549-010-1090-x] [PMID: 20730488]
[47]
Boyraz, B.; Sendur, M.A.; Aksoy, S.; Babacan, T.; Roach, E.C.; Kizilarslanoglu, M.C.; Petekkaya, I.; Altundag, K. Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr. Med. Res. Opin., 2013, 29(4), 405-414.
[http://dx.doi.org/10.1185/03007995.2013.775113] [PMID: 23402224]
[48]
Lambert, J.M.; Chari, R.V. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem., 2014, 57(16), 6949-6964.
[http://dx.doi.org/10.1021/jm500766w] [PMID: 24967516]
[49]
Perez, H.L.; Cardarelli, P.M.; Deshpande, S.; Gangwar, S.; Schroeder, G.M.; Vite, G.D.; Borzilleri, R.M. Antibody-drug conjugates: current status and future directions. Drug Discov. Today, 2014, 19(7), 869-881.
[http://dx.doi.org/10.1016/j.drudis.2013.11.004] [PMID: 24239727]
[50]
Singh, S.K.; Luisi, D.L.; Pak, R.H. Antibody-drug conjugates: design, formulation and physicochemical stability. Pharm. Res., 2015, 32(11), 3541-3571.
[http://dx.doi.org/10.1007/s11095-015-1704-4] [PMID: 25986175]
[51]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Dieras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[52]
Recondo, G., Jr; de la Vega, M.; Galanternik, F.; Diaz-Canton, E.; Leone, B.A.; Leone, J.P. Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine. Cancer Manag. Res., 2016, 8, 57-65.https://dx.doi.org/10.2147%2FCMAR.S104447
[PMID: 27274311]
[53]
Krop, I.E.; Beeram, M.; Modi, S.; Jones, S.F.; Holden, S.N.; Yu, W.; Girish, S.; Tibbitts, J.; Yi, J.H.; Sliwkowski, M.X.; Jacobson, F.; Lutzker, S.G.; Burris, H.A. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol., 2010, 28(16), 2698-2704.
[http://dx.doi.org/10.1200/JCO.2009.26.2071] [PMID: 20421541]
[54]
Hurvitz, S.A.; Dirix, L.; Kocsis, J.; Bianchi, G.V.; Lu, J.; Vinholes, J.; Guardino, E.; Song, C.; Tong, B.; Ng, V.; Chu, Y.W.; Perez, E.A. Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol., 2013, 31(9), 1157-1163.
[http://dx.doi.org/10.1200/JCO.2012.44.9694] [PMID: 23382472]
[55]
Miller, K.D.; Dieras, V.; Harbeck, N.; Andre, F.; Mahtani, R.L.; Gianni, L.; Albain, K.S.; Crivellari, D.; Fang, L.; Michelson, G.; de Haas, S.L.; Burris, H.A. Phase IIa trial of trastuzumab emtansine with pertuzumab for patients with human epidermal growth factor receptor 2-positive, locally advanced, or metastatic breast cancer. J. Clin. Oncol., 2014, 32(14), 1437-1444.
[http://dx.doi.org/10.1200/JCO.2013.52.6590] [PMID: 24733796]
[56]
Krop, I.E.; Kim, S.B.; Gonzalez-Martin, A.; LoRusso, P.M.; Ferrero, J.M.; Smitt, M.; Yu, R.; Leung, A.C.F.; Wildiers, H. TH3RESA study collaborators. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(7), 689-699.
[http://dx.doi.org/10.1016/S1470-2045(14)70178-0] [PMID: 24793816]
[57]
Oncology-times. FDA Approves T-DM1, Now Called Kadcyla, For Late-Stage. Breast Cancer, 2013, 35(6), 21.
[http://dx.doi.org/10.1097/01.COT.0000428633.55584.0b]
[58]
Theriault, R.L.; Carlson, R.W.; Allred, C.; Anderson, B.O.; Burstein, H.J.; Edge, S.B.; Farrar, W.B.; Forero, A.; Giordano, S.H.; Goldstein, L.J.; Gradishar, W.J.; Hayes, D.F.; Hudis, C.A.; Isakoff, S.J.; Ljung, B.M.; Mankoff, D.A.; Marcom, P.K.; Mayer, I.A.; McCormick, B.; Pierce, L.J.; Reed, E.C.; Schwartzberg, L.S.; Smith, M.L.; Soliman, H.; Somlo, G.; Ward, J.H.; Wolff, A.C.; Zellars, R.; Shead, D.A.; Kumar, R. National Comprehensive Cancer Network. Breast cancer, version 3.2013: featured updates to the NCCN guidelines. J. Natl. Compr. Canc. Netw., 2013, 11(7), 753-760.
[http://dx.doi.org/10.6004/jnccn.2013.0098] [PMID: 23847214]
[59]
Ikeda, H.; Hideshima, T.; Fulciniti, M.; Lutz, R.J.; Yasui, H.; Okawa, Y.; Kiziltepe, T.; Vallet, S.; Pozzi, S.; Santo, L.; Perrone, G.; Tai, Y.T.; Cirstea, D.; Raje, N.S.; Uherek, C.; Dalken, B.; Aigner, S.; Osterroth, F.; Munshi, N.; Richardson, P.; Anderson, K.C. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res., 2009, 15(12), 4028-4037.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2867] [PMID: 19509164]
[60]
Schonfeld, K.; Zuber, C.; Pinkas, J.; Hader, T.; Bernoster, K.; Uherek, C. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: pre-clinical studies. J. Hematol. Oncol., 2017, 10(1), 13-16.
[http://dx.doi.org/10.1186/s13045-016-0380-0] [PMID: 28077160]
[61]
Schonfeld, K.; Herbener, P.; Zuber, C.; Hader, T.; Bernister, K.; Uherek, C.; Schuttrumpf, J. Activity of indatuximab ravtansine against triple-negative breast cancer in preclinical tumor models. Pharm. Res., 2018, 35(6), 118-127.
[http://dx.doi.org/10.1007/s11095-018-2400-y] [PMID: 29666962]
[62]
Jagannath, S.; Heffner, L.T., Jr; Ailawadhi, S.; Munshi, N.C.; Zimmerman, T.M.; Rosenblatt, J.; Lonial, S.; Chanan-Khan, A.; Ruehle, M.; Rharbaoui, F.; Haeder, T.; Wartenberg-Demand, A.; Anderson, K.C. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk., 2019, 19(6), 372-380.
[http://dx.doi.org/10.1016/j.clml.2019.02.006] [PMID: 30930134]
[63]
Hong, E.E.; Erickson, H.; Lutz, R.J.; Whiteman, K.R.; Jones, G.; Kovtun, Y.; Blanc, V.; Lambert, J.M. Design of coltuximab ravtansine, a CD19-targeting antibody-drug conjugate (ADC) for the treatment of B-Cell malignancies: structure-activity relationships and preclinical evaluation. Mol. Pharm., 2015, 12(6), 1703-1716.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00175] [PMID: 25856201]
[64]
Blanc, V.; Bousseau, A.; Caron, A.; Carrez, C.; Lutz, R.J.; Lambert, J.M. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin. Cancer Res., 2011, 17(20), 6448-6458.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0485] [PMID: 22003072]
[65]
Kantarjian, H.M.; Lioure, B.; Kim, S.K.; Atallah, E.; Leguay, T.; Kelly, K.; Marolleau, J.P.; Escoffre-Barbe, M.; Thomas, X.G.; Cortes, J.; Jabbour, E.; O’Brien, S.; Bories, P.; Oprea, C.; Hatteville, L.; Dombret, H. A Phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk., 2016, 16(3), 139-145.
[http://dx.doi.org/10.1016/j.clml.2015.12.004] [PMID: 26775883]
[66]
Coiffier, B.; Thieblemont, C.; de Guibert, S.; Dupuis, J.; Ribrag, V.; Bouabdallah, R.; Morschhauser, F.; Navarro, R.; Le Gouill, S.; Haioun, C.; Houot, R.; Casasnovas, O.; Holte, H.; Lamy, T.; Broussais, F.; Payrard, S.; Hatteville, L.; Tilly, H. A phase II, single-arm, multicentre study of coltuximab ravtansine (SAR3419) and rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. Br. J. Haematol., 2016, 173(5), 722-730.
[http://dx.doi.org/10.1111/bjh.13992] [PMID: 27010483]
[67]
Trneny, M.; Verhoef, G.; Dyer, M.J.; Ben Yehuda, D.; Patti, C.; Canales, M.; Lopez, A.; Awan, F.T.; Montgomery, P.G.; Janikova, A.; Barbui, A.M.; Sulek, K.; Terol, M.J.; Radford, J.; Guidetti, A.; Di Nicola, M.; Siraudin, L.; Hatteville, L.; Schwab, S.; Oprea, C.; Gianni, A.M. A phase II multicenter study of the anti-CD19 antibody drug conjugate coltuximab ravtansine (SAR3419) in patients with relapsed or refractory diffuse large B-cell lymphoma previously treated with rituximab-based immunotherapy. Haematologica, 2018, 103(8), 1351-1358.
[http://dx.doi.org/10.3324/haematol.2017.168401] [PMID: 29748443]
[68]
Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; Harrenga, A.; Hauff, P.; Scholle, F.D.; Muller-Tiemann, B.; Kreft, B.; Ziegelbauer, K. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther., 2014, 13(6), 1537-1548.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0926] [PMID: 24714131]
[69]
Johrens, K.; Lazzerini, L.; Barinoff, J.; Sehouli, J.; Cichon, G. Mesothelin as a target for cervical cancer therapy. Arch. Gynecol. Obstet., 2019, 299(1), 211-216.
[http://dx.doi.org/10.1007/s00404-018-4933-z] [PMID: 30324544]
[70]
ClinicalTrials.gov. Phase I Dose Escalation Study Of BAY94-9343 Given by Intravenous Infusion Every 3 Weeks in Japanese Subjects with Advanced Malignancies, 2018. Available at:malignancies.clinicaltrials.gov/ct2/show/NC- T02485119.html
[71]
ClinicalTrials.gov Phase II Anetumab Ravtansine as 2nd Line Treatment for Malignant Pleural Mesothelioma, 2018. Available at:mesothelioma.clinicaltrials.gov/ct2/show/ NCT02610140.html
[72]
ClinicalTrials.gov. Phase Ib Study of Anetumab Ravtansine in Combination with Pemetrexed and Cisplatin in Mesothelin-Expressing Solid Tumors, 2019. Available at:clinicaltrials.gov/ct2/show/NCT02639091.html
[73]
ClinicalTrials.gov. Phase I Study Of Anetumab Ravtansine in Hepatic or Renal Impairment, 2019. Available at:clinicaltrials.gov/ct2/show/NCT02696642.html
[74]
ClinicalTrials.gov. Phase Ib Study of Anetumab Ravtansine in Combination with Pegylated Liposomal Doxorubicin in Patients with Recurrent Mesothelin-Expressing Platinum-Resistant Cancer, 2019. Available at:clinicaltrials.gov/ct2/show/NCT02751918.html
[75]
ClinicalTrials.gov. Thorough ECG (Electrocardiogram) and Drug Interaction Study with Anetumab Ravtansine and Itraconazole,, 2019. Available at:clinicaltrials.gov/ct2/ show/NCT02824042.html
[76]
ClinicalTrials.gov. Pase II Anetumab Ravtansine in Pre-Treated Mesothelin-Expressing Pancreatic Cancer, 2020. Available at:clinicaltrials.gov/ct2/show/NCT03023-722. html
[77]
ClinicalTrials.gov. Phase 1b Multi-Indication Study of Anetumab Ravtansine in Mesothelin Expressing Advanced Solid Tumors; (ARCS-Multi), 2020. Available at:clinicaltrials.gov/ct2/show/NCT03102320.html
[78]
ClinicalTrials.gov. Pembrolizumab with or without Anetumab Ravtansine in Treating Patients with Mesothelin-Positive Pleural Mesothelioma, 2020. Available at:clinicaltrials.gov/ct2/show/NCT03126630.html
[79]
ClinicalTrials.gov. Anetumab Ravtansine and Atezolizumab in Treating Participants with Advanced Non-Small Cell Lung Cancer, 2020. Available at:clinicaltrials.gov/ ct2/ show/NCT03455556.html
[80]
ClinicalTrials.gov. Bevacizumab And Anetumab Ravtansine or Paclitaxel on Treating Participants with Refractory Ovarian, Fallopian Tube, or Primary Peritoneal Cancer, 2020. Available at:clinicaltrials.gov/ct2/show/ NCT035-87311.html
[81]
ClinicalTrials.gov. A Clinical Study of Anetumab Ravtansine in Adults with Solid Tumors Who Have Been Treated in Previous Bayer-Sponsored Anetumab Ravtansine Studies, 2020. Available at:clinicaltrials.gov/ct2/show/ NCT03926143.html
[82]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy