Review Article

聚(ADP-核糖)聚合酶(PARP)抑制剂和合成方法的综述

卷 28, 期 8, 2021

发表于: 12 March, 2020

页: [1565 - 1584] 页: 20

弟呕挨: 10.2174/0929867327666200312113011

价格: $65

conference banner
摘要

聚(ADP-核糖)聚合酶(PARP)是一种必不可少的DNA修复酶。 PARP抑制剂是一种基于“合成致死性”原理的新型小分子靶向药物,可通过竞争性抑制PARP酶的活性来影响DNA修复过程,从而杀死癌细胞。 当前,包括olaparib,rucaparib,niraparib和talazoparib在内的4种PARP抑制剂已被FDA批准用于癌症治疗,并在卵巢癌,乳腺癌和胰腺癌等治疗方面取得了巨大成功。 PARP抑制剂的研究进展,包括主要结构类型,构效关系(SAR)和合成途径,旨在为新型PARP抑制剂的发现和合成提供思路。

关键词: 卵巢癌,合成杀伤力,PARP抑制剂,奥拉帕尼,构效关系,邻苯二酮,合成。

[1]
Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921.
[http://dx.doi.org/10.2174/092986712802002464] [PMID: 22788767]
[2]
Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res., 2010, 16(18), 4527-4531.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0984] [PMID: 20823148]
[3]
Chambon, P.; Weill, J.D.; Mandel, P. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun., 1963, 11, 39-43.
[http://dx.doi.org/10.1016/0006-291X(63)90024-X] [PMID: 14019961]
[4]
Liscio, P.; Camaioni, E.; Carotti, A.; Pellicciari, R.; Macchiarulo, A. From polypharmacology to target specificity: the case of PARP inhibitors. Curr. Top. Med. Chem., 2013, 13(23), 2939-2954.
[http://dx.doi.org/10.2174/15680266113136660209] [PMID: 24171773]
[5]
Kamal, A.; Riyaz, S.; Srivastava, A.K.; Rahim, A. Tankyrase inhibitors as therapeutic targets for cancer. Curr. Top. Med. Chem., 2014, 14(17), 1967-1976.
[http://dx.doi.org/10.2174/1568026614666140929115831] [PMID: 25262803]
[6]
Piskunova, T.S.; Yurova, M.N.; Ovsyannikov, A.I.; Semenchenko, A.V.; Zabezhinski, M.A.; Popovich, I.G.; Wang, Z.Q.; Anisimov, V.N. deficiency in poly(adp-ribose) polymerase-1 (parp-1) accelerates aging and spontaneous carcinogenesis in mice. Curr. Gerontol. Geriatr. Res., 2008, 2008754190
[http://dx.doi.org/10.1155/2008/754190] [PMID: 19415146]
[7]
Lord, C.J.; Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science, 2017, 355(6330), 1152-1158.
[http://dx.doi.org/10.1126/science.aam7344] [PMID: 28302823]
[8]
Palazzo, L.; Ahel, I. PARPs in genome stability and signal transduction: implications for cancer therapy. Biochem. Soc. Trans., 2018, 46(6), 1681-1695.
[http://dx.doi.org/10.1042/BST20180418] [PMID: 30420415]
[9]
Isabelle, M.; Moreel, X.; Gagné, J.P.; Rouleau, M.; Ethier, C.; Gagné, P.; Hendzel, M.J.; Poirier, G.G. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci., 2010, 8, 22.
[http://dx.doi.org/10.1186/1477-5956-8-22] [PMID: 20388209]
[10]
Shah, G.M.; Robu, M.; Purohit, N.K.; Rajawat, J.; Tentori, L.; Graziani, G. PARP inhibitors in cancer therapy: magic bullets but moving targets. Front. Oncol., 2013, 3, 279.
[http://dx.doi.org/10.3389/fonc.2013.00279] [PMID: 24294592]
[11]
Usmani, H.; Hussain, S.A.; Sheikh, A. PARP inhibitors: current status and implications for anticancer therapeutics. Infect. Agent. Cancer, 2013, 8(1), 46.
[http://dx.doi.org/10.1186/1750-9378-8-46] [PMID: 24289880]
[12]
Gupte, R.; Liu, Z.; Kraus, W.L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev., 2017, 31(2), 101-126.
[http://dx.doi.org/10.1101/gad.291518.116] [PMID: 28202539]
[13]
Chen, Q.; Kassab, M.A.; Dantzer, F.; Yu, X. PARP2 mediates branched poly ADP-ribosylation in response to DNA damage. Nat. Commun., 2018, 9(1), 3233.
[http://dx.doi.org/10.1038/s41467-018-05588-5] [PMID: 30104678]
[14]
Zarkovic, G.; Belousova, E.A.; Talhaoui, I.; Saint-Pierre, C.; Kutuzov, M.M.; Matkarimov, B.T.; Biard, D.; Gasparutto, D.; Lavrik, O.I.; Ishchenko, A.A. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Nucleic Acids Res., 2018, 46(5), 2417-2431.
[http://dx.doi.org/10.1093/nar/gkx1318] [PMID: 29361132]
[15]
Ström, C.E.; Helleday, T. Strategies for the use of poly(adenosine diphosphate ribose) polymerase (parp) inhibitors in cancer therapy. Biomolecules, 2012, 2(4), 635-649.
[http://dx.doi.org/10.3390/biom2040635] [PMID: 24970153]
[16]
Curtin, N.J. PARP inhibitors for cancer therapy. Expert Rev. Mol. Med., 2005, 7(4), 1-20.
[http://dx.doi.org/10.1017/S146239940500904X] [PMID: 15836799]
[17]
Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434(7035), 913-917.
[http://dx.doi.org/10.1038/nature03443] [PMID: 15829966]
[18]
Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.; Jackson, S.P.; Smith, G.C.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005, 434(7035), 917-921.
[http://dx.doi.org/10.1038/nature03445] [PMID: 15829967]
[19]
Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; Reinacher-Schick, A.; Tortora, G.; Algül, H.; O’Reilly, E.M.; McGuinness, D.; Cui, K.Y.; Schlienger, K.; Locker, G.Y.; Kindler, H.L. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med., 2019, 381(4), 317-327.
[http://dx.doi.org/10.1056/NEJMoa1903387] [PMID: 31157963]
[20]
McCabe, N.; Turner, N.C.; Lord, C.J.; Kluzek, K.; Bialkowska, A.; Swift, S.; Giavara, S.; O’Connor, M.J.; Tutt, A.N.; Zdzienicka, M.Z.; Smith, G.C.; Ashworth, A. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res., 2006, 66(16), 8109-8115.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0140] [PMID: 16912188]
[21]
Narod, S.A.; Foulkes, W.D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer, 2004, 4(9), 665-676.
[http://dx.doi.org/10.1038/nrc1431] [PMID: 15343273]
[22]
Curtin, N. PARP inhibitors for anticancer therapy. Biochem. Soc. Trans., 2014, 42(1), 82-88.
[http://dx.doi.org/10.1042/BST20130187] [PMID: 24450632]
[23]
Lee, J.M.; Ledermann, J.A.; Kohn, E.C. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol., 2014, 25(1), 32-40.
[http://dx.doi.org/10.1093/annonc/mdt384] [PMID: 24225019]
[24]
Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O’Connor, M.J.; Ashworth, A.; Carmichael, J.; Kaye, S.B.; Schellens, J.H.; de Bono, J.S. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med., 2009, 361(2), 123-134.
[http://dx.doi.org/10.1056/NEJMoa0900212] [PMID: 19553641]
[25]
Wang, Y.Q.; Wang, P.Y.; Wang, Y.T.; Yang, G.F.; Zhang, A.; Miao, Z.H. An update on poly(ADP-ribose)polymerase-1 (PARP-1) inhibitors: opportunities and challenges in cancer therapy. J. Med. Chem., 2016, 59(21), 9575-9598.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00055] [PMID: 27416328]
[26]
Murai, J.; Huang, S.Y.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther., 2014, 13(2), 433-443.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0803] [PMID: 24356813]
[27]
Murai, J.; Huang, S.Y.; Das, B.B.; Renaud, A.; Zhang, Y.; Doroshow, J.H.; Ji, J.; Takeda, S.; Pommier, Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res., 2012, 72(21), 5588-5599.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2753] [PMID: 23118055]
[28]
Shen, Y.; Aoyagi-Scharber, M.; Wang, B. Trapping Poly(ADP-Ribose). Polymerase. J. Pharmacol. Exp. Ther., 2015, 353(3), 446-457.
[http://dx.doi.org/10.1124/jpet.114.222448] [PMID: 25758918]
[29]
Rao, G.W.; Guo, Y.M.; Hu, W.X. Synthesis, structure analysis, and antitumor evaluation of 3,6-dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide derivatives. ChemMedChem, 2012, 7(6), 973-976.
[http://dx.doi.org/10.1002/cmdc.201200109] [PMID: 22539490]
[30]
Rao, G.W.; Xu, G.J.; Wang, J.; Jiang, X.L.; Li, H.B. Synthesis, antitumor evaluation and docking study of novel 4-anilinoquinazoline derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. ChemMedChem, 2013, 8(6), 928-933.
[http://dx.doi.org/10.1002/cmdc.201300120] [PMID: 23640754]
[31]
Rao, G.W.; Wang, C.; Wang, J.; Zhao, Z.G.; Hu, W.X. Synthesis, structure analysis, antitumor evaluation and 3D-QSAR studies of 3,6-disubstituted-dihydro-1,2,4,5-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2013, 23(23), 6474-6480.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.036] [PMID: 24120541]
[32]
Jin, H.; Dan, H-G.; Rao, G-W. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. Heterocycl. Commun., 2018, 24, 1-10.
[http://dx.doi.org/10.1515/hc-2017-0066]
[33]
Wu, Y-C.; Ren, X-Y.; Rao, G-W. Research progress of diphenyl urea derivatives as anticancer agents and synthetic methodologies. Mini Rev. Org. Chem., 2019, 16(7), 617-630.
[http://dx.doi.org/10.2174/1570193X15666181029130418]
[34]
Curtin, N.J.; Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med., 2013, 34(6), 1217-1256.
[http://dx.doi.org/10.1016/j.mam.2013.01.006] [PMID: 23370117]
[35]
Ekblad, T.; Camaioni, E.; Schüler, H.; Macchiarulo, A. PARP inhibitors: polypharmacology versus selective inhibition. FEBS J., 2013, 280(15), 3563-3575.
[http://dx.doi.org/10.1111/febs.12298] [PMID: 23601167]
[36]
Lupo, B.; Trusolino, L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim. Biophys. Acta, 2014, 1846(1), 201-215.
[http://dx.doi.org/10.1016/j.bbcan.2014.07.004] [PMID: 25026313]
[37]
Menear, K.A.; Adcock, C.; Boulter, R.; Cockcroft, X.L.; Copsey, L.; Cranston, A.; Dillon, K.J.; Drzewiecki, J.; Garman, S.; Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, V.M. Jr.; Matthews, I.T.; Moore, S.; O’Connor, M.J.; Smith, G.C.; Martin, N.M. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenz-yl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem., 2008, 51(20), 6581-6591.
[http://dx.doi.org/10.1021/jm8001263] [PMID: 18800822]
[38]
Canan Koch, S.S.; Thoresen, L.H.; Tikhe, J.G.; Maegley, K.A.; Almassy, R.J.; Li, J.; Yu, X.H.; Zook, S.E.; Kumpf, R.A.; Zhang, C.; Boritzki, T.J.; Mansour, R.N.; Zhang, K.E.; Ekker, A.; Calabrese, C.R.; Curtin, N.J.; Kyle, S.; Thomas, H.D.; Wang, L.Z.; Calvert, A.H.; Golding, B.T.; Griffin, R.J.; Newell, D.R.; Webber, S.E.; Hostomsky, Z. Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: design, synthesis, and X-ray cocrystal structure. J. Med. Chem., 2002, 45(23), 4961-4974.
[http://dx.doi.org/10.1021/jm020259n] [PMID: 12408707]
[39]
Thomas, H.D.; Calabrese, C.R.; Batey, M.A.; Canan, S.; Hostomsky, Z.; Kyle, S.; Maegley, K.A.; Newell, D.R.; Skalitzky, D.; Wang, L.Z.; Webber, S.E.; Curtin, N.J. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther., 2007, 6(3), 945-956.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0552] [PMID: 17363489]
[40]
Jones, P.; Altamura, S.; Boueres, J.; Ferrigno, F.; Fonsi, M.; Giomini, C.; Lamartina, S.; Monteagudo, E.; Ontoria, J.M.; Orsale, M.V.; Palumbi, M.C.; Pesci, S.; Roscilli, G.; Scarpelli, R.; Schultz-Fademrecht, C.; Toniatti, C.; Rowley, M. Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem., 2009, 52(22), 7170-7185.
[http://dx.doi.org/10.1021/jm901188v] [PMID: 19873981]
[41]
Jones, P.; Wilcoxen, K.; Rowley, M.; Toniatti, C. Niraparib: a poly(ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J. Med. Chem., 2015, 58(8), 3302-3314.
[http://dx.doi.org/10.1021/jm5018237] [PMID: 25761096]
[42]
Shen, Y.; Rehman, F.L.; Feng, Y.; Boshuizen, J.; Bajrami, I.; Elliott, R.; Wang, B.; Lord, C.J.; Post, L.E.; Ashworth, A. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res., 2013, 19(18), 5003-5015.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1391] [PMID: 23881923]
[43]
Donawho, C.K.; Luo, Y.; Luo, Y.; Penning, T.D.; Bauch, J.L.; Bouska, J.J.; Bontcheva-Diaz, V.D.; Cox, B.F.; DeWeese, T.L.; Dillehay, L.E.; Ferguson, D.C.; Ghoreishi-Haack, N.S.; Grimm, D.R.; Guan, R.; Han, E.K.; Holley-Shanks, R.R.; Hristov, B.; Idler, K.B.; Jarvis, K.; Johnson, E.F.; Kleinberg, L.R.; Klinghofer, V.; Lasko, L.M.; Liu, X.; Marsh, K.C.; McGonigal, T.P.; Meulbroek, J.A.; Olson, A.M.; Palma, J.P.; Rodriguez, L.E.; Shi, Y.; Stavropoulos, J.A.; Tsurutani, A.C.; Zhu, G.D.; Rosenberg, S.H.; Giranda, V.L.; Frost, D.J. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res., 2007, 13(9), 2728-2737.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3039] [PMID: 17473206]
[44]
Penning, T.D.; Zhu, G.D.; Gandhi, V.B.; Gong, J.; Thomas, S.; Lubisch, W.; Grandel, R.; Wernet, W.; Park, C.H.; Fry, E.H.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Donawho, C.K.; Frost, D.J.; Bontcheva-Diaz, V.; Bouska, J.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Rosenberg, S.H.; Giranda, V.L. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: a potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem., 2008, 16(14), 6965-6975.
[http://dx.doi.org/10.1016/j.bmc.2008.05.044] [PMID: 18541433]
[45]
Penning, T.D.; Zhu, G.D.; Gandhi, V.B.; Gong, J.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Donawho, C.K.; Frost, D.J.; Bontcheva-Diaz, V.; Bouska, J.J.; Osterling, D.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Giranda, V.L. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem., 2009, 52(2), 514-523.
[http://dx.doi.org/10.1021/jm801171j] [PMID: 19143569]
[46]
Gangloff, A.R.; Brown, J.; de Jong, R.; Dougan, D.R.; Grimshaw, C.E.; Hixon, M.; Jennings, A.; Kamran, R.; Kiryanov, A.; O’Connell, S.; Taylor, E.; Vu, P. Discovery of novel benzo[b][1,4]oxazin-3(4H)-ones as poly(ADP-ribose)polymerase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(16), 4501-4505.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.055] [PMID: 23850199]
[47]
Ye, N.; Chen, C.H.; Chen, T.; Song, Z.; He, J.X.; Huan, X.J.; Song, S.S.; Liu, Q.; Chen, Y.; Ding, J.; Xu, Y.; Miao, Z.H.; Zhang, A. Design, synthesis, and biological evaluation of a series of benzo[de][1,7]naphthyridin-7(8H)-ones bearing a functionalized longer chain appendage as novel PARP1 inhibitors. J. Med. Chem., 2013, 56(7), 2885-2903.
[http://dx.doi.org/10.1021/jm301825t] [PMID: 23473053]
[48]
Papeo, G.; Orsini, P.; Avanzi, N.R.; Borghi, D.; Casale, E.; Ciomei, M.; Cirla, A.; Desperati, V.; Donati, D.; Felder, E.R.; Galvani, A.; Guanci, M.; Isacchi, A.; Posteri, H.; Rainoldi, S.; Riccardi-Sirtori, F.; Scolaro, A.; Montagnoli, A. Discovery of stereospecific PARP-1 inhibitor isoindolinone NMS-P515. ACS Med. Chem. Lett., 2019, 10(4), 534-538.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00569] [PMID: 30996792]
[49]
Penning, T.D.; Zhu, G.D.; Gong, J.; Thomas, S.; Gandhi, V.B.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E.F.; Park, C.H.; Fry, E.H.; Donawho, C.K.; Frost, D.J.; Buchanan, F.G.; Bukofzer, G.T.; Rodriguez, L.E.; Bontcheva-Diaz, V.; Bouska, J.J.; Osterling, D.J.; Olson, A.M.; Marsh, K.C.; Luo, Y.; Giranda, V.L. Optimization of phenyl-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase inhibitors: identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a highly potent and efficacious inhibitor. J. Med. Chem., 2010, 53(8), 3142-3153.
[http://dx.doi.org/10.1021/jm901775y] [PMID: 20337371]
[50]
Yuan, B.; Ye, N.; Song, S-S.; Wang, Y-T.; Song, Z.; Chen, H-D.; Chen, C-H.; Huan, X-J.; Wang, Y-Q.; Su, Y.; Shen, Y-Y.; Sun, Y-M.; Yang, X-Y.; Chen, Y.; Guo, S-Y.; Gan, Y.; Gao, Z-W.; Chen, X-Y.; Ding, J.; Miao, Z-H. Poly(ADP-ribose)polymerase (PARP) inhibition and anticancer activity of simmiparib, a new inhibitor undergoing clinical trials. Cancer Lett., 2017, 386, 47-56.
[http://dx.doi.org/10.1016/j.canlet.2016.11.010] [PMID: 27847302]
[51]
O’Shaughnessy, J.; Schwartzberg, L.; Danso, M.; Rugo, H.; Miller, K.; Yardley, D.; Carlson, R.; Finn, S.R.; Charpentier, E.; Freese, M.; Gupta, S.; Blackwood-Chirchir, A.; Winer, P E. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/carboplatin (G/C) in metastatic triple-negative breast cancer (TNBC). J. Clin. Oncol., 2011, 29(Suppl. 15), 1007.
[http://dx.doi.org/10.1200/jco.2011.29.15_suppl.1007]
[52]
Patel, A.G.; De Lorenzo, S.B.; Flatten, K.S.; Poirier, G.G.; Kaufmann, S.H. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. Clin. Cancer Res., 2012, 18(6), 1655-1662.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2890] [PMID: 22291137]
[53]
Ledermann, J.; Harter, P.; Gourley, C.; Friedlander, M.; Vergote, I.; Rustin, G.; Scott, C.L.; Meier, W.; Shapira-Frommer, R.; Safra, T.; Matei, D.; Fielding, A.; Spencer, S.; Dougherty, B.; Orr, M.; Hodgson, D.; Barrett, J.C.; Matulonis, U. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol., 2014, 15(8), 852-861.
[http://dx.doi.org/10.1016/S1470-2045(14)70228-1] [PMID: 24882434]
[54]
Ruf, A.; de Murcia, G.; Schulz, G.E. Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry, 1998, 37(11), 3893-3900.
[http://dx.doi.org/10.1021/bi972383s] [PMID: 9521710]
[55]
Singh, S.S.; Sarma, J.A.; Narasu, L.; Dayam, R.; Xu, S.; Neamati, N. A review on PARP1 inhibitors: Pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors. Curr. Top. Med. Chem., 2014, 14(17), 2020-2030.
[http://dx.doi.org/10.2174/1568026614666140929152123] [PMID: 25262797]
[56]
Clark, J.B.; Ferris, G.M.; Pinder, S. Inhibition of nuclear NAD nucleosidase and poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5′-methyl nicotinamide. Biochim. Biophys. Acta, 1971, 238(1), 82-85.
[http://dx.doi.org/10.1016/0005-2787(71)90012-8] [PMID: 4325158]
[57]
Peralta-Leal, A.; Rodríguez-Vargas, J.M.; Aguilar-Quesada, R.; Rodríguez, M.I.; Linares, J.L.; de Almodóvar, M.R.; Oliver, F.J. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic. Biol. Med., 2009, 47(1), 13-26.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.04.008] [PMID: 19362586]
[58]
Xie, Z.; Zhou, Y.; Zhao, W.; Jiao, H.; Chen, Y.; Yang, Y.; Li, Z. Identification of novel PARP-1 inhibitors: Drug design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2015, 25(20), 4557-4561.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.060] [PMID: 26342868]
[59]
Ferraris, D.V. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J. Med. Chem., 2010, 53(12), 4561-4584.
[http://dx.doi.org/10.1021/jm100012m] [PMID: 20364863]
[60]
F.D.A. FDA approves olaparib tablets for maintenance 60 treatment in ovarian cancer. Available at: https://www.fda. gov/drugs/resources-information-approved-drugs/fda-approves-olaparib-tablets-maintenance-treatment-ovarian-cancerAccessed date: August 17, 2017.).
[61]
Reilly, S.W.; Puentes, L.N.; Hsieh, C-J.; Makvandi, M.; Mach, R.H. Altering nitrogen heterocycles of AZD2461 affords high affinity poly(ADP-ribose) polymerase-1 inhibitors with decreased p-glycoprotein interactions. ACS Omega, 2018, 3(8), 9997-10001.
[http://dx.doi.org/10.1021/acsomega.8b00896] [PMID: 30198004]
[62]
Jaspers, J.E.; Kersbergen, A.; Boon, U.; Sol, W.; van Deemter, L.; Zander, S.A.; Drost, R.; Wientjens, E.; Ji, J.; Aly, A.; Doroshow, J.H.; Cranston, A.; Martin, N.M.; Lau, A.; O’Connor, M.J.; Ganesan, S.; Borst, P.; Jonkers, J.; Rottenberg, S. Loss of 53BP1 causes PARP inhibitor resistance in brca1-mutated mouse mammary tumors. Cancer Discov., 2013, 3(1), 68-81.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0049] [PMID: 23103855]
[63]
Russo, A.L.; Kwon, H.C.; Burgan, W.E.; Carter, D.; Beam, K.; Weizheng, X.; Zhang, J.; Slusher, B.S.; Chakravarti, A.; Tofilon, P.J.; Camphausen, K. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin. Cancer Res., 2009, 15(2), 607-612.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2079] [PMID: 19147766]
[64]
McGonigle, S.; Chen, Z.; Wu, J.; Chang, P.; Kolber-Simonds, D.; Ackermann, K.; Twine, N.C.; Shie, J.L.; Miu, J.T.; Huang, K.C.; Moniz, G.A.; Nomoto, K. E7449: A dual inhibitor of PARP1/2 and tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes Wnt signaling. Oncotarget, 2015, 6(38), 41307-41323.
[http://dx.doi.org/10.18632/oncotarget.5846] [PMID: 26513298]
[65]
Wang, B.; Chu, D.; Feng, Y.; Shen, Y.; Aoyagi-Scharber, M.; Post, L.E. Discovery and characterization of (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious poly(ADP-ribose) polymerase-1/2 inhibitor, as an anticancer agent. J. Med. Chem., 2016, 59(1), 335-357.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01498] [PMID: 26652717]
[66]
Litton, J.K.; Rugo, H.S.; Ettl, J.; Hurvitz, S.A.; Gonçalves, A.; Lee, K.H.; Fehrenbacher, L.; Yerushalmi, R.; Mina, L.A.; Martin, M.; Roché, H.; Im, Y.H.; Quek, R.G.W.; Markova, D.; Tudor, I.C.; Hannah, A.L.; Eiermann, W.; Blum, J.L. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N. Engl. J. Med., 2018, 379(8), 753-763.
[http://dx.doi.org/10.1056/NEJMoa1802905] [PMID: 30110579]
[67]
F.D.A. FDA approves talazoparib for gBRCAm HER2-negative locally advanced or metastatic breast cancer. Available at: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-talazoparib-gbrcam-her2-negative-locally-advanced-or-metastatic-breast-cancer(Accessed date: December 14, 2018.).
[68]
Hoy, S.M. Talazoparib: First Global Approval. Drugs, 2018, 78(18), 1939-1946.
[http://dx.doi.org/10.1007/s40265-018-1026-z] [PMID: 30506138]
[69]
White, A.W.; Almassy, R.; Calvert, A.H.; Curtin, N.J.; Griffin, R.J.; Hostomsky, Z.; Maegley, K.; Newell, D.R.; Srinivasan, S.; Golding, B.T. Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem., 2000, 43(22), 4084-4097.
[http://dx.doi.org/10.1021/jm000950v] [PMID: 11063605]
[70]
Coleman, R.L.; Sill, M.W.; Bell-McGuinn, K.; Aghajanian, C.; Gray, H.J.; Tewari, K.S.; Rubin, S.C.; Rutherford, T.J.; Chan, J.K.; Chen, A.; Swisher, E.M. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation - an NRG oncology/gynecologic oncology group study. Gynecol. Oncol., 2015, 137(3), 386-391.
[http://dx.doi.org/10.1016/j.ygyno.2015.03.042] [PMID: 25818403]
[71]
Niraparib, F.D.A. Available at: https://www.fda.gov/drugs/resources-info-rmation-approved-drugs/niraparib-zejula(Accessed date: May 30, 2017.)..
[72]
Scott, L.J. Niraparib: first global approval. Drugs, 2017, 77(9), 1029-1034.
[http://dx.doi.org/10.1007/s40265-017-0752-y] [PMID: 28474297]
[73]
Kolaczkowski, L.; Barkalow, J.; Barnes, D.M.; Haight, A.; Pritts, W.; Schellinger, A. Synthesis of (R)-Boc-2-methylproline via a memory of chirality cyclization. application to the synthesis of veliparib, a poly(ADP-ribose) polymerase inhibitor. J. Org. Chem., 2019, 84(8), 4837-4845.
[http://dx.doi.org/10.1021/acs.joc.8b02866] [PMID: 30716275]
[74]
Barkalow, J.H.; Breting, J.; Gaede, B.J.; Haight, A.R.; Henry, R.; Kotecki, B.; Mei, J.; Pearl, K.B.; Tedrow, J.S.; Viswanath, S.K. Process development for ABT-472, a benzimidazole PARP inhibitor. Org. Process Res. Dev., 2007, 11(4), 693-698.
[http://dx.doi.org/10.1021/op7000194]
[75]
Kasamatsu, K.; Yoshimura, T.; Mandi, A.; Taniguchi, T.; Monde, K.; Furuta, T.; Kawabata, T. α-arylation of α-amino acid derivatives with arynes via memory of chirality: asymmetric synthesis of benzocyclobutenones with tetrasubstituted carbon. Org. Lett., 2017, 19(2), 352-355.
[http://dx.doi.org/10.1021/acs.orglett.6b03533] [PMID: 28045272]
[76]
Kawabata, T.; Moriyama, K.; Kawakami, S.; Tsubaki, K. Powdered KOH in DMSO: an efficient base for asymmetric cyclization via memory of chirality at ambient temperature. J. Am. Chem. Soc., 2008, 130(12), 4153-4157.
[http://dx.doi.org/10.1021/ja077684w] [PMID: 18303890]
[77]
Rucaparib, F.D.A. Available at: https://www.fda.gov/drugs/resources-information-approved-drugs/rucaparib (Accessed date: May 18, 2017.)..
[78]
Webber, S.E.; Canan-Koch, S.S.; Tikhe, J.; Thoresen, L.H. Tricyclic Inhibitors of Poly(ADP-Ribose) Polymerases. U.S. Patent 6,495,541B1. December 17 2002.
[79]
Hughes, D.L. Patent review of manufacturing routes to recently approved PARP inhibitors: olaparib, rucaparib, and niraparib. Org. Process Res. Dev., 2017, 21(9), 1227-1244.
[http://dx.doi.org/10.1021/acs.oprd.7b00235]
[80]
Tang, Z.; Jiang, B.; Shi, Z.; Gong, W.; Liu, Y.; Wang, X.; Gao, Y.; Yu, F.; Zhou, C.; Luo, L.; Wei, M.; Wang, L. Abstract 1651: BGB-290, a novel PARP inhibitor with unique brain penetration ability, demonstrated strong synergism with temozolomide in subcutaneous and intracranial xenograft models. Cancer Res., 2015, 75(15)(Suppl.), 1651.
[http://dx.doi.org/10.1158/1538-7445.AM2015-1651]
[81]
Tang, Z.; Liu, Y.; Zhen, Q.; Ren, B.; Wang, H.; Shi, Z.; Gong, W.; Liu, Y.; Wang, X.; Gao, Y.; Yu, F.; Wu, Y.; Jiang, B.; Sun, X.; Wei, M.; Zhou, C.; Luo, L.; Li, Z.; Yu, J.; Zhao, J.; Wang, J.; Wang, L. Abstract 1653: BGB-290: A highly potent and specific PARP1/2 inhibitor potentiates anti-tumor activity of chemotherapeutics in patient biopsy derived SCLC models. Cancer Res., 2015, 75(15)(Suppl.), 1653.
[http://dx.doi.org/10.1158/1538-7445.AM2015-1653]
[82]
Papeo, G.; Posteri, H.; Borghi, D.; Busel, A.A.; Caprera, F.; Casale, E.; Ciomei, M.; Cirla, A.; Corti, E.; D’Anello, M.; Fasolini, M.; Forte, B.; Galvani, A.; Isacchi, A.; Khvat, A.; Krasavin, M.Y.; Lupi, R.; Orsini, P.; Perego, R.; Pesenti, E.; Pezzetta, D.; Rainoldi, S.; Riccardi-Sirtori, F.; Scolaro, A.; Sola, F.; Zuccotto, F.; Felder, E.R.; Donati, D.; Montagnoli, A. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoindole-4-carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy. J. Med. Chem., 2015, 58(17), 6875-6898.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00680] [PMID: 26222319]
[83]
Jagtap, P.; Soriano, F.G.; Virág, L.; Liaudet, L.; Mabley, J.; Szabó, E.; Haskó, G.; Marton, A.; Lorigados, C.B.; Gallyas, F., Jr; Sümegi, B.; Hoyt, D.G.; Baloglu, E.; VanDuzer, J.; Salzman, A.L.; Southan, G.J.; Szabó, C. Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphate-ribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med., 2002, 30(5), 1071-1082.
[http://dx.doi.org/10.1097/00003246-200205000-00019] [PMID: 12006805]
[84]
Jagtap, P.; Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discov., 2005, 4(5), 421-440.
[http://dx.doi.org/10.1038/nrd1718] [PMID: 15864271]
[85]
Madison, D.L.; Stauffer, D.; Lundblad, J.R. The PARP inhibitor PJ34 causes a PARP1-independent, p21 dependent mitotic arrest. DNA Repair (Amst.), 2011, 10(10), 1003-1013.
[http://dx.doi.org/10.1016/j.dnarep.2011.07.006] [PMID: 21840268]
[86]
Visochek, L.; Castiel, A.; Mittelman, L.; Elkin, M.; Atias, D.; Golan, T.; Izraeli, S.; Peretz, T.; Cohen-Armon, M. Exclusive destruction of mitotic spindles in human cancer cells. Oncotarget, 2017, 8(13), 20813-20824.
[http://dx.doi.org/10.18632/oncotarget.15343] [PMID: 28209915]
[87]
Castiel, A.; Visochek, L.; Mittelman, L.; Dantzer, F.; Izraeli, S.; Cohen-Armon, M. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. BMC Cancer, 2011, 11(1), 412.
[http://dx.doi.org/10.1186/1471-2407-11-412] [PMID: 21943092]
[88]
Jagtap, P.G.; Baloglu, E.; Southan, G.J.; Mabley, J.G.; Li, H.; Zhou, J.; van Duzer, J.; Salzman, A.L.; Szabó, C. Discovery of potent poly(ADP-ribose) polymerase-1 inhibitors from the modification of indeno[1,2-c]isoquinolinone. J. Med. Chem., 2005, 48(16), 5100-5103.
[http://dx.doi.org/10.1021/jm0502891] [PMID: 16078828]
[89]
He, J.X.; Wang, M.; Huan, X.J.; Chen, C.H.; Song, S.S.; Wang, Y.Q.; Liao, X.M.; Tan, C.; He, Q.; Tong, L.J.; Wang, Y.T.; Li, X.H.; Su, Y.; Shen, Y.Y.; Sun, Y.M.; Yang, X.Y.; Chen, Y.; Gao, Z.W.; Chen, X.Y.; Xiong, B.; Lu, X.L.; Ding, J.; Yang, C.H.; Miao, Z.H. Novel PARP1/2 inhibitor mefuparib hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. Oncotarget, 2017, 8(3), 4156-4168.
[http://dx.doi.org/10.18632/oncotarget.13749] [PMID: 27926532]
[90]
Mei, T.S.; Giri, R.; Maugel, N.; Yu, J.Q. Pd(II)-catalyzed monoselective ortho halogenation of C-H bonds assisted by counter cations: a complementary method to directed ortho lithiation. Angew. Chem. Int. Ed. Engl., 2008, 47(28), 5215-5219.
[http://dx.doi.org/10.1002/anie.200705613] [PMID: 18523942]
[91]
Yang, B.H.; Li, Q.; Tian, H.; Yu, J. Process development on a PARP inhibitor (PARP) of 4-{ [3-[[2-(trifluoromethyl)-5,6,7,8-tetrahydro-(1,2,4) triazolo (1,5-α) pyrazine-7-yl] carbonyl]-4-fluorophenyl] methyl } (2H) phthalazine-1-one. Jingxi Yu Zhuanyong Huaxuepin, 2015, 23(12), 27-29.
[http://dx.doi.org/10.3969/j.issn.1008-1100.2015.12.007 ]
[92]
Lu, T.X.; Wang, L.X.; Wang, X.K.; Hu, C.; Zhou, X.B. Improved synthesis of PARP antagonist veliparib. Zhongguo Yaowu Huaxue Zazhi, 2013, 23(6), 476-479.
[http://dx.doi.org/10.14142/j.cnki.cn21-1313/r.2013.06.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy